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On Delta-suitable elements in algebraic lattices
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Abstract. In this paper we introduce new methods and results that can lead to the solution of a long-
standing open problem of the representation of algebraic lattices by weak congruences. Here known criteria
for A-suitable elements in algebraic lattices are generalized.

1. Introduction

An important lattice determining the structure of an algebra is the weak congruence lattice, i.e., the
lattice consisting of all the weak congruences of that algebra, ordered by inclusion. That lattice contains the
interval sublattice isomorphic to the subuniverse lattice of the algebra, as well as the interval lattice equal to
the congruence lattice of the algebra. Even more, it contains the congruence lattices of all the subalgebras of
the algebra. The weak congruence lattice of an algebra is an algebraic lattice, in which the diagonal element
A plays a special role. It is the smallest congruence of the algebra and the filter TA in the weak congruence
lattice is equal to the congruence lattice of the algebra. The ideal |A is isomorphic to the subalgebra lattice
of the algebra.

Some of the best known representations of algebraic lattices by different algebraic objects are representa-
tions by subuniverses and by congruences of an algebra (solved within Birkhoff-Frink and Gratzer-Schmidt
theorems). In paper [6], W. Lampe gives a survey of some recent results and problems on congruence lattice
representations.

The problem of representation of an algebraic lattice by the weak congruence lattice of an algebra is still
open. Given an algebraic lattice £ = (L, V, A) and a € L, the problem is whether there is an algebra A, such
that the weak congruence lattice of A, denoted by Cw#A, is isomorphic to £ under an isomorphism mapping
Atoa.

If that is the case, we say that a is a A-suitable element of L. Since A is always a codistributive element in
CwA, we conclude that the codistributivity is a necessary condition for an element 2 of an algebraic lattice to
be A-suitable. There are also other conditions that a A-suitable element should fulfill. Some known necessary
conditions for a codistributive element of an algebraic lattice to be A-suitable are given in [13] and in [10] and
a detailed survey of known results is given in [8].

This paper aims to generalize some of these criteria.
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2. Preliminaries

Let L = (L, V, A) be a complete lattice and a4, b € L. a is covered by b (b covers a), denoted bya < bifa < b
and (a,b) = 0. As usual, the supremum of X C L in .L is denoted by \/ X, and the infimum by A X.
A filter generated by a, is denoted by Ta and the ideal generated by a, by |a:

Ta={xeL|x>a}, la={xeL|x<al.

If A is an algebra, we denote by SubA and ConA the collection of all subalgebras and the collection of all
congruences of (A, as well as the corresponding lattices under set inclusion. They are called the subalgebra
lattice and the congruence lattice of A.

The following well known theorem gives a connection between the congruence lattice of an algebra and the
lattice of all equivalences on the support of that algebra:

Theorem 2.1. ([1]) The congruence lattice of an algebra is a complete sublattice of the lattice of all equivalence relations
on the support of that algebra.

A weak congruence relation on an algebra A = (A, H) is a relation ¢ on A that is symmetric, transitive,
compatible with all the operations of A (operations in H) and weakly reflexive (for every nullary operation
c€H,cpo).

The collection Cw A of weak congruences on an algebra A is an algebraic lattice under inclusion.

In the weak congruence lattice, diagonal relation on the algebra and on all the subalgebras play an impor-
tant role:

A={(x,x)|x €A}
Ap = {(x,x) | x € B}, for any B subalgebra of A.

Throughout the paper will also use the notation: if 8 is a subalgebra of A and 0 is a congruence on A,
B[0] = {x € A|xOy for some y € B}.

The weak congruence lattice is important in structure investigations of algebras, since it contains other
known lattices connected with algebras:
If Cw A is the lattice of weak congruences of an algebra A, then:

(i) for every subalgebra 8B of A, Con B is the interval sublattice [Ag, B?],in particular Con A =TA;
(ii) the lattice Sub A of subuniverses of A is isomorphic with the principal ideal |A, under 8 +— Ag;
(iii) the map my : o = ¢ A A is a homomorphism from CwA onto |A.

The homomorphism in (iii) defines a congruence relation on the weak congruence lattice, every class of
which is the set of congruences of a subalgebra B of A, i.e. the interval [Ag, B*] of the weak congruence
lattice. The set of classes forms a lattice isomorphic to SubA.

The problem of representation of an algebraic lattice by the weak congruence lattice of an algebra is given
in [8]: Let L = (L, V, A) be an algebraic lattice and a € L. Is there an algebra such that its weak congruence lattice is
isomorphic with L, the diagonal relation being the image of a under the isomorphism?

If the answer is "yes’, we say that a is a A-suitable element of lattice L.

Since A is codistributive in Cw#A, i.e., for all p, 6 € CwA, we have

AA(pVO)=(AAp)V(ANADO)

(see e.g. ([8])), we have that every A-suitable element of a lattice is codistributive.
A codistributive element of an algebraic lattice fulfills the following:

Theorem 2.2. ([8]) If an element of an algebraic lattice L = (L, V, A) is codistributive, then for every b €la, the
family {x € L | a A x = b} has the top element.
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If £ is an algebraic lattice and x € L, we denote the top element of the family {y e L |a Ay =a A x} by x.

Some further conditions, which a codistributive element of an algebraic lattice must fulfill in order to
be A-suitable, are given in the following proposition, and they are based on the properties of the weak
congruence lattice:

Proposition 2.3. ([8]) A A-suitable element a € L satisfies the following:

(1) ifx Ay #0thenxVy=xXV7y;

() ifx#0andX <y, theny ANa+y Aa;

B) ifx<aandx #0,then \/l{yeTalyvx<1}#1,

(4) Ify €elaand x <y, then there exists z € [y, y], such that

— forall t € [x,X], the set {c € Ext¥(t) | ¢ < z} is either empty or has the top element, and
— forall t € [x,X], the set {c € Ext!(t) | ¢ £ z} is an antichain (possibly empty), where

Ext/(t) :={we [y, y] |lwnx =t}

In the next section, conditions (3) and (4) from Proposition 2.3 will be generalized.

3. Results
We start from the lemma that we will use for further results.

Lemma 3.1. If a is a A-suitable element of a lattice £, and b < a, then b is a A-suitable element of the ideal |b.

Proof. 1f b = 0, then the assertion of the lemma follows immediately, so let b#0. Let A = (A, H) be an
algebra such that CwA is isomorphic to £ under a lattice isomorphism 77, mapping A to a. Since b < a, b

corresponds to Ag, for a nonempty subalgebra 8 = (B, H) of algebra A. Now Cw$ is isomorphic to b under
the restriction of the isomorphism n to B that maps the diagonal relation Ag to b. Therefore, b is A-suitable

in the lattice |b. [

The next proposition is a generalization of condition (3) in Proposition 2.3.

Proposition 3.2. If a is a A-suitable element of a lattice L and x,y € L, such that x < y < a and X # 0, then the
interval [X, ) has the top element.

Proof. If (x,) = 0, then [x,y) = x, and x is the top element of the interval. Therefore let (x,) # 0 and let
te(x,y). Sincex =aAx<aAt<yAa=y wehavex <tAa<y. Sincex <y, wehavetAa = xor
tAa=y. Ift Na=x, thent <X, which is impossible, sot Aa = yand t € [y, y]. Since t VX =t <, we have:
te{zelylzvx<yland{zeTy|zVvx <y} #0.

According to the previous lemma, v is A-suitable in the lattice |y. Since x < y, x # 0, by condition (3) in
Proposition 2.3 we have:

\izetylzvi<y 7y
Notice that \/{z € Ty |z VX < 7} > V[X, V), since {z € Ty | z VX < J} D [¥, )N Ty. Therefore
VED<\/etylzvi<y <y
and V[x,y) € [x,y). Thus [X, y) has the top element. [

Remark 3.3. Condition from Proposition 3.2 is a generalization of condition (3) in Proposition 2.3.
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Indeed, if x < a and Proposition 3.2 holds, then [x, 1) has the top element t. If f = X, then y V x = 1 for all
y €laand theset{y € Ta|yvx <1}isemptyand \V{y e Ta|yvx <1} =0 < 1. Ift > X, t is greater
than or equal to \/{y € Ta | y V x < 1}, since for every s € {y € Ta | y VX < 1} we have: s VX € [x,1), and
so for every element of {y € Ta | y VX < 1}, there is an element of [x, 1) greater than or equal to it. So
Viyea|lyvx <1} <V[x 1) =t <1 and the condition (3) holds.

The condition in the previous proposition is more general, because it cannot be derived from conditions
(1)-(4) of Theorem 2.3, which is illustrated in the following example.

Example 3.4. A lattice and an element a are given in Figure 1.
Element a fulfills the conditions of Theorem 2.3, but not the condition in Proposition 3.2. Therefore, we
conclude that element 4 in Figure 1 is not A—suitable by the new condition.
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Figure 1

The previous proposition is further generalized in the following theorem.

Theorem 3.5. If a is a A-suitable element of a lattice L, x,y € L, x # Oand x < y < a, then

yvE\ [ JIyvEy

z€(x,y)
is either the empty set, or has the top element.

Proof. Let Abe an algebra whose weak congruence lattice is isomorphic to £ under an isomorphism map-
ping a to A4. The isomorphism maps x, y, z to Ag, Ac and Ap, for some nonempty subuniverses B, C and D
of the algebra A.

Suppose [y VX, ) \ U.ew,yly V Z, ) # 0; then the corresponding subset of CwA is not empty, i.e.,

[Ac Vv B2, C?)\ U [Ac v D?,C?) # 0.
De(B,C)

Let g € [Ac V B2, C?)\ Upep,o)[Ac V D?,C?). Clearly g € ConC. If B[g] = {x € C | x oy for some y € B}, itis
a subuniverse of C containing B, i.e. B < B[g] < C.

Ifs, t € B[p], we have s pp and t o7 for some p, r € B. Since p O B?, we havealsop pr, and so (s, t) € . Since
this is true for all s, t € B[g], we have p 2 B[p]*>. But ¢ 2 D? forany D € (B, C], so B[g] = Band p € B?U(C\B)*.
Since this is true for any ¢ € [Ac V B, C*) \ Upe o) [Ac V D?, C?) and B> U (C \ B)? is an equivalence on B, the
supremum 6 of this set in the set of all equivalences on C is also a subset of BU (C\ B)*>. By Theorem 2.1, we
have also that 6 is also the supremum of [Ac V B%, C*)\ Upe(s o) [Ac V D?, C?) in the set of all congruences of C.
As 6 C B> U (C\ B)*, we have B[0] = B. Now it is easy to see that 6 € [Ac V B, C?) \ Upepo[Ac V D?,C?),
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because any element of [Ac V B?, C?) contains Ac V B? and so does 6; also 0 € B>U(C\ B)?> and so 0 < C? and
0 € [Ac vV B%,C?). Since 6 C B> U (C \ B)?, we have that 6 # D* for any D € (B,C) and so 6 ¢ [Ac V D?, C?) for
any D € (B,C). Thus 6 € [Ac V B%,C*) \ Upe,o)[Ac V D?,C?), and 6 is the top element of the set. Therefore,
the corresponding subset of L has the top element. [

Remark 3.6. It is straightforward that the condition from Proposition 3.2 is a special case of the condition
from Theorem 3.5.

The next example shows that the condition from Theorem 3.5 is more general than other conditions.

Example 3.7. An element a in the lattice in Figure 2 fulfills all the conditions from Proposition 2.3, as well

as the condition in Proposition 3.2, but it is not A-suitable, because the condition of Theorem 3.5 does not
hold.
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a

Figure 2

In the following part, we give a generalization of condition (4) of Proposition 2.3, which is at the same
time a generalization of Proposition 3.2.
We use the notation and ideas from the proof of Theorem 2.22 from ([8]) by M. Plos¢ica.

Lemma 3.8. Let A be an algebra and B and C, B < C be two subalgebras of A. Then the collection
ec = {p € ConC | thereisno x € B,y € C\ B such that xpy)}
has the supremum.

Proof. TBC is non-empty, since Ac € TP, Let y be the supremum of I'*€ in ConC. It belongs to I'> since,
by Theorem 2.1, it coincides with the the supremum of I'>* in the lattice of all equivalences on C, and the
latter supremum is less or equal to B> U (C\ B)2. O

Proposition 3.9. Ifa be a A— suitable element of a lattice L, then if x, y €la, X # 0and x < y, there exists z € [y, y),
such that

— forall t € [x,X], the set {c € Ext!(t) | ¢ < z} is either empty or has the top element, and
— forall t € [x,X], the set {c € Ext!(t) | ¢ £ z} is an antichain (possibly empty), where
ExtV(f) :={wely,yllwnx=t.
Proof. Sinceaisa A-suitable element, then there is an algebra A whose weak congruence lattice is isomorphic
to £ under an isomorphism f mapping a to As. From x, y €la, it follows that there are subalgebras $ and
C, such that Ay and Ac correspond to x and y under f, respectively and 8 < C in lattice SubA. Let I be

the collection of congruences from Con C defined in Lemma 3.8. By Lemma 3.8, I'?€ has the supremum 7.
Since y € T'BC then we have y < B2 U (C \ B)? < C? and it belongs to ConC \ {C?} = [Ac, C?).
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y would be a relation that corresponds to element z in the proposition. Let @ € Con8B, and we consider
a collection of relations Y = {p € Ext“(a) | p < y}. Suppose that this collection is not empty. For every
B € Ext®(a), it follows BN B? = a, and since § < 7, we have that every g € Y belongs to . Then, \/ Y € '€
and \/ Y N B? = a. \/ Y is the required top element.

To prove the second part of the proposition, suppose that a € ConB and set ® = {p € Ext®(a) | o £ 7}
is not empty. If a1, a; € ®, then a3 N B? = a; N B? = a. Since a7 £ y and a; £ y, it follows that there are
x1,%2 € B, y1,y2 € C\ B, such that xja1y; and xoa21,. Hence B[] = C, and Bla;] = C, since B[a;] and Bla]
are subalgebras of C, and 8 < C. If a1 C ay, let (x,y) € ay \ a1. There exist xo, yo € B, such that xpa1x and
Yoa1y and, consequently xoapx and yoaoy. Now, clearly (xo, o) € a2 \ a1, and a, N B? # a3 N B?, and we have
a contradiction. Therefore, a; and a; are not comparable under C and @ is an antichain. O

Remark 3.10. This is a generalization of condition (4) of Proposition 2.3, except for the trivial case when
X = 0. Indeed, in condition (4) we have z € [y, y] and here z € [y, ).

The assertion of Proposition 3.2 also follows from the previous proposition: Let x < y < a € L and
z € [y,y) the element, existing by the previous proposition. The set (x,y] = [y V X, y] = Ext¥(x) is either
equal to {y}, or has at least two comparable elements (because ¥ € ExtY(x)). In the first case [x,y) = {x}
and the assertion of Proposition 3.2 follows. In case ExtY(x) contains two comparable elements, from the
previous proposition follows that one of them must be less or equal to z, so let u < z be one of them. Now
XZZAXZ2ZUAX=X,50ZAX=1X,ie. z€ExtV(x).

Now, z is the top element of ExtY(x) \ {y}: if s € ExtY(x) \ {y}, by the previous proposition we have s < z,
since the set {c € ExtY(x) | ¢ £ z} already contains iy and z < y. Since [, y) = {x} U (ExtY(x) \ {y}), z is also the
top element of [x, ).

A generalization of Proposition 3.9 is given in the following theorem:

Theorem 3.11. If a is a A-suitable element of a lattice L = (L,V,A) and x,y € L, such that x # 0, x < y < a, then
there is a mapping @ : [x,y) — [y, V), such that:

— forall t € [x,X] and u € [x,y), the set {c € ExtY(t) | c < @(u)} is either empty or has the top element, and

— forall t € [x,X], the set {c € Ext¥(t) | (Yu € [x, y))(c £ @(u))} is an antichain (possibly empty), where
Ext/(t) :=={w e [y, y] |wnt=th

Proof. Let Abe an algebra representing lattice £ together with elementa, i.e. let A be an algebra isomorphic
to L under an isomorphism f, mapping A to a. Elements x and y correspond to Ag and Ac for B, C € SubA,
and the interval [B, C) of SubA is

[B,C) = {A; |i e II.

For i € I let T4C be the subset of ConC defined as follows:

[4C ={geConC|pC A2 U (C\ A}

Let y; be the supremum of I'“ in lattice ConC for i € I (which exists by Lemma 3.8) and y; # C? fori € I.
Now, we define mapping ¢ : [B, C) — ConC, by:

P(A) =i,
and the required mapping ¢ : [x,y) — [y, y) is defined by
p=flopof.
Let o be a congruence of C. We have the following;:
(i) peT4C s> g<yforiel;

(i) [(Vi € I)p ¢ T4C] = B[p] = C.
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The assertion (ii) follows from the fact that B[g] is a subuniverse of C containing B, i.e. it is equal to A;
for some i € I or Blg] = C. If B[g] = A;, then ¢ € A? U (C \ A;)* and thus g € €. Therefore B[g] = C

Now, let¢ € ConB,and 0 € Extc(qb). If B[] = A;, then 0 € [4Cand O < yi. By the same argument as used
above we have that g = \/{0 € Ext“(¢) | 6 < y;} € T4C. We also have that ¢ € Ext(¢), so

{0 € Ext“(¢) | 0 < yi)

has the top element ;.

Letg, ¢ €t € Extc((p) | (Vi € I)(t £ yi)}. By (ii) we have that B[g] = B[] =CIf p < ¢y and (d,e) € Y \ o,
then b pd and c ge for some b,c € B. Now from bipd and cip e (by d ¢ e) it follows that b c. If (b, c) € g, then
(d,e) € p,s0 (b,¢c) ¢ pand p N B> # 1 N B?, which contradicts the assumptions. Thus, any two elements of

{t € Ext“(¢) | (Vi € D)(t £ 1)}
are incomparable. The assertion of the theorem follows. [

We give an example in the sequel proving that the condition from Theorem 3.11 is a generalization of
the previously introduced conditions.

Example 3.12. Element a of the lattice in Figure 3 fulfills all the conditions of Propositions 2.3,3.2,3.9, as
well as of Theorem 3.5, but it is not A-suitable, because it does not fulfill the condition of Theorem 3.11:

Figure 3

After some generalizations of the known criteria for a A-suitable element, we can summarize these
results in the following theorem:

Theorem 3.13. A A-suitable element a € L satisfies the following:
(1) ifx Ay +0,thenxVy=xV7y;
() ifx #0andx <y, theny ANa# yAa;
@) Ifx#0andx <y <a, then [y vV x,y) \ Uewyly V 2, Y) is cither the empty set, or has the top element;

(4) Ifx #0, x <y < a, then there is a mapping ¢ : [x, y) — [y, V), such that:
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— forall t € [x,x] and u € [x,y), the set {c € Ext(t) | ¢ < @(u)} is either empty or has the top element, and
— forall t € [x,X], the set {c € Ext(t) | (Yu € [x, y))(c & @(u))} is an antichain (possibly empty), where

ExtV(t) :={w e[y, y] lwnt=t}

Remark 3.14. This theorem includes all the known criteria, given in Proposition 2.3: condition (3) is a
generalization of Proposition 3.2 and therefore a generalization of condition (3) of Proposition 2.3; condition
(4) is an obvious generalization of Proposition 3.9, and accordingly a generalization of condition (4) of
Proposition 2.3.

Remark 3.15. The question arises whether these four conditions are independent. The lattice in Figure 3
proves that condition (4) cannot be derived from other three. The lattice in Figure 2 proves that condition (3)
is independent. In the next example we provide lattices that prove independence of conditions (1) and (2).

Example 3.16. The lattice in Figure 4 fulfills conditions (1), (3) and (4) of the previous theorem, but does
not fulfill condition (2).

The lattice in Figure 5 fulfills conditions (2), (3) and (4) of the previous theorem, but does not fulfill
condition (1).

NN
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Figure 4 Figure 5
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