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Bands of η-simple semigroups
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Abstract. In this paper on an arbitrary semigroup we define a few different types of relations and its
congruence extensions. Also, we describe the structure of semigroups in which these relations are band
congruences. The components of such obtained band decompositions are in some sense simple semigroups.

1. Introduction and preliminaries

Band decompositions of semigroups play a very important role in semigroup theory. The existence of
the greatest band decomposition of semigroups was established by Tamura and Kimura [17], 1955. After
that, several authors have worked on this important topic. Very interesting decompositions are band
decompositions in which components are power joined, periodic and both power joined and periodic
semigroups. These decompositions was studied by Tamura [16], Nordahl [14], Iseki [10] and Bogdanović
[2], [3].

A semigroup S is Archimedean if there exists n ∈ Z+ such that an ∈ SbS, for all a, b ∈ S. A semigroup
S is called power joined if for each pair of elements a, b ∈ S there exist m,n ∈ Z+ such that am = bn. These
semigroups were first considered by Abellanas [1], 1965, for cancellative semigroups only, and Mc Alister
[13], 1968, who called then rational semigroups. Every power joined semigroup is Archimedean. An
element a of a semigroup S is periodic if there exist m,n ∈ Z+ such that am = am+n. A semigroup S is periodic
if every its element is periodic.

Tamura [16] considered commutative Archimedean semigroups which have a finite number of power
joined components. Bands of power joined semigroups are studied by Nordahl [14], in medial case, and by
Bogdanović [3], in the general case. Iseki [10] considered periodic semigroup which is the disjoint union of
semigroup, each containing only one idempotent. In [2] Bogdanović considered bands of periodic power
joined semigroups.

By Z+ we denote the set of all positive integers. In this paper, on a semigroup S, for k ∈ Z+, we define
some new equivalence relations η, ηk and τ. If these equivalences are band congruences then they makes
band decompositions of η-simple (power joined) semigroups, and band decompositions of two types of
periodic power joined semigroups (ηk-simple and τ-simple semigroups). The obtained results generalize
the results of above mentioned authors. Also, on a semigroup S, for k,m,n ∈ Z+, we define the following
relations η(m,n), η(k;m,n) and τ(m,n). These relations are congruences and they are generalizations of system of
congruences defined by Kopamu in [11]. Some characterizations of semigroups, by congruences which are
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more general then ones introduced by Kopamu in [11], are considered by Bogdanović et al. in [6]. Here we
give some equivalent statements in the case when these relations are band congruences.

By S1 we denote a semigroup S with identity 1. By E(S) we denote the set of all idempotents of a
semigroup S. A semigroup which all its elements are idempotents is a band.

Let ϱ be an arbitrary relation on a semigroup S. Then the radical R(ϱ) of ϱ is a relation on S defined by:

(a, b) ∈ R(ϱ)⇔ (∃p, q ∈ Z+) (ap, bq) ∈ ϱ.

The radical R(ϱ) was introduced by Shevrin in [15].
An equivalence relation ξ is a left (right) congruence if for all a, b ∈ S, a ξ b implies ca ξ cb (ac ξ bc). An

equivalence ξ is a congruence if it is both left and right congruence. A congruence relation ξ is a band
congruence on S if S/ξ is a band, i.e. if a ξ a2, for all a ∈ S.

Let ξ be an equivalence on a semigroup S. By ξ♭ we define the largest congruence relation on S contained
in ξ. It is well-known that

ξ♭ = {(a, b) ∈ S × S | (∀x, y ∈ S1) (xay, xby) ∈ ξ}.

For undefined notions and notations we refer [4], [5], [8] and [9].

2. Preliminary results

First we prove the following lemma which is the helpful result for the further work.

Lemma 2.1. Let ξ be a congruence relation on a semigroup S. Then R(ξ) = ξ if and only if ξ is a band congruence
on S.

Proof. Let R(ξ) = ξ. Since ξ is reflexive, then for every a ∈ S we have that

a2 ξ a2 ⇔ (a1)2 ξ (a2)1 ⇔ a R(ξ) a2 ⇔ a ξ a2.

Thus, ξ is a band congruence on S.
Conversely, let ξ be a band congruence on a semigroup S. Since the inclusion ξ ⊆ R(ξ) always holds,

then it remains to prove the opposite inclusion. Also, since ξ is a band congruence on S, then we have that

(∀a ∈ S)(∀k ∈ Z+) a ξ ak.

Now assume a, b ∈ S such that a R(ξ) b. Then ai ξ b j, for some i, j ∈ Z+, and by previous we have that
a ξ ai ξ b j ξ b. Thus a ξ b. Therefore, R(ξ) ⊆ ξ, i.e. R(ξ) = ξ.

3. The η relations

On a semigroup S we define the following relations:

(a, b) ∈ η ⇔ (∃i, j ∈ Z+) ai = b j,

(a, b) ∈ η♭ ⇔ (∀x, y ∈ S1) (xay, xby) ∈ η.

It is easy to verify that η is an equivalence relation on a semigroup S.
A semigroup S is η-simple if (∀a, b ∈ S) (a, b) ∈ η. These semigroups are well-known in the literature as

power joined semigroups.
The important result is the following lemma.

Lemma 3.1. If ξ is a band congruence on a semigroup S, then ξ ⊆ η if and only if every ξ-class of S is an η-simple
semigroup.
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Proof. Let A be a ξ-class of S. Then A is a subsemigroup of S, since a ξ a2, for all a ∈ S. Let a, b ∈ A, then a ξ b,
whence a η b in A.

Conversely, let (a, b) ∈ ξ, then ai = b j, for some i, j ∈ Z+, since a and b are in the some ξ-class A of S. Thus
(a, b) ∈ η. Therefore, ξ ⊆ η.

By the following theorem we describe the structure of semigroups in which the relation η is a congruence
relation. These semigroups in a different way have been treated by Bogdanović in [3].

Theorem 3.2. The following conditions on a semigroup S are equivalent:

(i) S is a band of η-simple semigroups;

(ii) η is a (band) congruence on S;

(iii) η♭ is a band congruence on S;

(iv) (∀a ∈ S)(∀x, y ∈ S1) xay η xa2y;

(v) R(η♭) = η♭.

Proof. (i)⇒(ii) Let S be a band B of η-simple semigroups Sα, α ∈ B. Assume a, b, c ∈ S such that a η b. Then
a, b ∈ Sα and c ∈ Sβ, for some α, β ∈ B. Also, ac, bc ∈ SαSβ ⊆ Sαβ, α, β ∈ B and since Sαβ, α, β ∈ B, is η simple,
then ac η bc. Similarly we prove that ca η cb. Thus η is a congruence relation on S. Further, since a, a2 ∈ Sα,
α ∈ B and Sα, α ∈ B, is η-simple, then a η a2, i.e. η is a band congruence on S.

(ii)⇒(i) Let (ii) hold. Then S is a band of η-classes. Since η ⊆ η, then by Lemma 3.1 we have that every
η-class is an η-simple semigroup. Thus S is a band of η-simple semigroups.

(i)⇒(iv) Let S be a band B of η-simple semigroups Sα, α ∈ B. Assume a ∈ S and x, y ∈ S1. Then
xay, xa2y ∈ Sα, for some α ∈ Y. Since Sα, α ∈ Y is η-simple, then xay η xa2y. Thus, (iv) holds.

(iv)⇒(iii) Let (iv) hold. Then by definition for η♭ it is evident that a η♭ a2, for every a ∈ S. Thus η♭ is a
band congruence.

(iii)⇒(i) Let η♭ be a band congruence on S, then S is a band of η♭-classes. Since η♭ is the greatest
congruence on S contained in η, then by Lemma 3.1 we have that every η♭-class is an η-simple semigroup.
Thus S is a band of η-simple semigroups.

(iii)⇔(v) This equivalence immediately follows by Lemma 2.1.

Let m, n ∈ Z+. On a semigroup S we define a relation η(m,n) by

(a, b) ∈ η(m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ η.

If instead of η we assume the equality relation, then we obtain the relation which discussed by S. J. L.
Kopamu in [11] and [12]. The main characteristic of previous defined relation gives the following theorem.

Theorem 3.3. Let S be a semigroup and let m,n ∈ Z+. Then η(m,n) is a congruence relation on S.

Proof. It is clear that η(m,n) is reflexive and symmetric. Assume that a η(m,n) b and b η(m,n) c. Then for every
x ∈ Sm and y ∈ Sn there exist k, l, s, t ∈ Z+ such that (xay)k = (xby)l and (xby)s = (xcy)t, whence

(xay)ks = (xby)ls = (xcy)tl,

i.e. xay η xcy. Thus η(m,n) is transitive and therefore it is a congruence on S.

Remark 3.4. Let µ be an equivalence relation on a semigroup S and let m,n ∈ Z+. Then a relation µ(m,n)
defined on S by

(a, b) ∈ µ(m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ µ

is a congruence relation on S. But, there exists a relation µ which is not equivalence, for example µ = ,
for which the relation µ(m,n) is a congruence on S.
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The complete description of µ(m,n) congruence, for µ = , was given by Bogdanović et al. in [7].

Theorem 3.5. Let m,n ∈ Z+. The following conditions on a semigroup S are equivalent:

(i) η(m,n) is a band congruence on S;

(ii) (∀x ∈ Sm)(∀y ∈ Sn)(∀a ∈ S) xay η xa2y;

(iii) η ⊆ η(m,n);

(iv) R(η(m,n)) = η(m,n).

Proof. (i)⇒(ii) This implication follows immediately.
(ii)⇒(iii) Assume that a η b. Then ai = b j, for some i, j ∈ Z+. Then for every x ∈ Sm, y ∈ Sn and i, j ∈ Z+

we have that xay η xa2y η xaiy = xb jy η xby. Since η is transitive, we have that a η(m,n) b. Thus η ⊆ η(m,n).
(iii)⇒(i) Since a η a2, for every a ∈ S, then we have that a η(m,n) a2, for every a ∈ S, i.e. η(m,n) is a band

congruence.
(i)⇔(iv) This equivalence immediately follows by Lemma 2.1.

Proposition 3.6. Let m,n ∈ Z+. If η(m,n) is a band congruence on a semigroup S, then S is a band of η(m,n)-simple
semigroups.

Proof. Let A be an η(m,n)-class of a semigroup S. Assume a, b ∈ A, then a η(m,n) b in S, i.e. xay η xby, for every
x ∈ Sm and every y ∈ Sn, whence we have that for every x ∈ Am and every y ∈ An is xay η xby, i.e. a η(m,n) b in
A. Thus A is η(m,n)-simple.

4. The ηk relations

Let k ∈ Z+ be a fixed integer. On a semigroup S we define the following relations by

(a, b) ∈ ηk ⇔ ak = bk;

(a, b) ∈ η♭k ⇔ (∀x, y ∈ S1) (xay, xby) ∈ ηk.

It is easy to verify that ηk is an equivalence relation on a semigroup S.
A semigroup S is ηk-simple if (∀a, b ∈ S) (a, b) ∈ ηk. These semigroups are periodic.

Lemma 4.1. Let k ∈ Z+. If ξ is a band congruence on a semigroup S, then ξ ⊆ ηk if and only if every ξ-class of S is
an ηk-simple semigroup.

Proof. Let A be a ξ-class of S. Then A is a subsemigroup of S, since a ξ a2, for all a ∈ S. Let a, b ∈ A, then a ξ b,
whence a ηk b in A.

Conversely, let (a, b) ∈ ξ. Since a and b are in the some ξ-class A of S and since A is ηk-simple,then
(a, b) ∈ ηk. Therefore, ξ ⊆ ηk.

By the following theorem we give structural characterization of bands of ηk-simple semigroups.

Theorem 4.2. Let k ∈ Z+. Then the following conditions on a semigroup S are equivalent:

(i) S is a band of ηk-simple semigroups;

(ii) (∀a, b ∈ S) ( (ab)k = (akbk)k ∧ ak = a2k );

(iii) ηk is a band congruence on S;

(iv) η♭k is a band congruence on S;

(v) (∀a ∈ S)(∀x, y ∈ S1) xay ηk xa2y;
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(vi) R(ηk) = ηk and ηk is a congruence on S;

(vii) R(η♭k) = η♭k.

Proof. (i)⇒(ii) Let S be a band Y of ηk-simple semigroups Sα, α ∈ Y. For every a, b ∈ S we have that a ∈ Sα,
b ∈ Sβ, for some α, β ∈ Y, whence ab, akbk ∈ Sαβ and so (ab)k = (akbk)k. Clearly, ak = a2k.

(ii)⇒(iii) It is clear that ηk is an equivalence. Let aηkb and x ∈ S, then ak = bk and by hypothesis we have
that (ax)k = (akxk)k = (bkxk)k = (bx)k, i.e. ax ηk bx. Similarly, xa ηk, xb. Thus ηk is a congruence relation on S,
and since ak = a2k we have that ηk is a band congruence on S.

(iii)⇒(i) Let ηk be a band congruence and A be an ηk-class of S. Assume a, b ∈ A, then a ηk b in A and thus
A is an ηk-simple semigroup. Therefore, S is a band of ηk-simple semigroups.

(i)⇒(v) Let S be a band Y of ηk-simple semigroups Sα, α ∈ Y. Assume a ∈ S and x, y ∈ S1. Then
xay, xa2y ∈ Sα, for some α ∈ Y. Since Sα, α ∈ Y is an ηk-simple semigroup then xay ηk xa2y. Thus, (v) holds.

(v)⇒(iv) Let (v) hold. Then by definition for η♭k it is evident that a η♭k a2, for every a ∈ S. Thus η♭k is a band
congruence.

(iv)⇒(i) Let η♭k be a band congruence on S, then S is a band of η♭k-classes. Since η♭k is the largest congruence
on S contained in ηk, then by Lemma 4.1 we have that every η♭k-class is ηk-simple semigroup. Thus S is a
band of ηk-simple semigroups.

(iii)⇔(vi) and (iv)⇔(vii) These equivalences follow immediately by Lemma 2.1.

Let k,m,n ∈ Z+. On a semigroup S we define a relation η(k;m,n) by

(a, b) ∈ η(k;m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ ηk.

The following lemma holds.

Lemma 4.3. Let S be a semigroup and let k,m,n ∈ Z+, then η(k;m,n) is a congruence relation on S.

Proof. It is clear that η(k;m,n) is reflexive and symmetric. Assume a, b, c ∈ S such that a η(k;m,n) b and b η(k;m,n) c.
Then for every x ∈ Sm and every y ∈ Sn we obtain that (xay)k = (xby)k and (xby)k = (xcy)k, whence

(xay)k = (xcy)k,

i.e. xay η(k;m,n) xcy. Thus η(k;m,n) is transitive and therefore it is a congruence on S.

Theorem 4.4. Let k,m,n ∈ Z+. Then the following conditions on a semigroup S are equivalent:

(i) η(k;m,n) is a band congruence on S;

(ii) (∀x ∈ Sm)(∀y ∈ Sn)(∀a ∈ S) xay ηk xa2y;

(iii) R(η(k;m,n)) = η(k;m,n).

Proof. (i)⇔(ii) This equivalence is evident.
(i)⇔(iii) This equivalence immediately follows by Lemma 2.1.

Proposition 4.5. Let k,m,n ∈ Z+. If η(k;m,n) is a band congruence on a semigroup S, then ηk ⊆ η(k;m,n).

Proof. Since η(k;m,n) is a band congruence on S, then xay ηk xaiy, for every i ∈ Z+ and for all x ∈ Sm, y ∈ Sn,
a ∈ S. Assume a, b ∈ S such that a ηk b. Then ak = bk. Thus for every x ∈ Sm and y ∈ Sn we have that

xay ηk xaky = xbky ηk xby.

Since ηk is transitive, we obtain that a η(k;m,n) b. Thus ηk ⊆ η(k;m,n).
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5. The τ relations

Further, by previous defined relations on a semigroup S we define the following relations:

(a, b) ∈ τ ⇔ (∃k ∈ Z+) (a, b) ∈ ηk;

(a, b) ∈ τ♭ ⇔ (∀x, y ∈ S1) (xay, xby) ∈ τ.

It is easy to verify that the relation τ is an equivalence on a semigroup S.
A semigroup S is τ-simple if (∀a, b ∈ S) (a, b) ∈ τ.
By the following theorem we describe the structure of bands of τ-simple semigroups. Bogdanović in [2]

gave some other characterizations of these semigroups.

Theorem 5.1. The following conditions on a semigroup S are equivalent:

(i) S is a band of τ-simple semigroups;

(ii) τ is a band congruence on S;

(iii) τ♭ is a band congruence on S;

(iv) (∀a ∈ S)(∀x, y ∈ S1) xay τ xa2y;

(v) R(τ) = τ and τ is a congruence on S;

(vi) R(τ♭) = τ♭.

Proof. (i)⇒(ii) Let S be a band Y of τ-simple semigroups Sα, α ∈ Y. Assume a, b, c ∈ S such that a τ b. Then
ak = bk, for some k ∈ Z+. So, then a, b ∈ Sα and c ∈ Sβ, for some α, β ∈ Y. Thus ac, bc ∈ SαSβ ⊆ Sαβ, α, β ∈ Y
and since Sαβ, α, β ∈ Y, is τ-simple, then ac τ bc. Similarly, ca τ cb. Hence, τ is a congruence relation on S.
Further, since a, a2 ∈ Sα, α ∈ Y and Sα, α ∈ Y, is τ-simple, then a τ a2, i.e. τ is a band congruence on S.

(ii)⇒(i) Let (ii) hold. Then S is a band of τ-classes. Let A be a τ-class of S. Then A is a subsemigroup of
S. Assume a, b ∈ A, then a τ b in A and A is a τ-simple. Therefore, S is a band of τ-simple semigroups.

(i)⇒(iv) Let S be a band Y of τ-simple semigroups Sα, α ∈ Y. Assume a ∈ S and x, y ∈ S1. Then
xay, xa2y ∈ Sα, for some α ∈ Y. Since Sα, α ∈ Y is τ-simple then xay τ xa2y. Thus, (iv) holds.

(iv)⇒(iii) This implication follows immediately.
(iii)⇒(i) Let (iii) hold. Then S is a band of τ♭-classes. Let A be an arbitrary τ♭-class of S. Then A is a

subsemigroup of S. Assume a, b ∈ A, then a τ♭ b in A and since τ♭ ⊆ τ, then a τ b in A. Thus A is a τ-simple.
Therefore, S is a band of τ-simple semigroups.

(ii)⇔(v) and (iii)⇔(vi) These equivalences follows by Lemma 2.1.

Let m, n ∈ Z+. On a semigroup S we define a relation τ(m,n) by

(a, b) ∈ τ(m,n) ⇔ (∀x ∈ Sm)(∀y ∈ Sn) (xay, xby) ∈ τ.

The following theorem holds.

Theorem 5.2. Let S be a semigroup and let m,n ∈ Z+. Then τ(m,n) is a congruence relation on S.

Proof. It is clear that τ(m,n) is reflexive and symmetric. Assume a, b, c ∈ S such that a τ(m,n) b and b τ(m,n) c.
Then for every x ∈ Sm and y ∈ Sn there exist k, l ∈ Z+ such that (xay)k = (xby)k and (xby)l = (xcy)l, whence

(xay)kl = (xby)kl = (xby)lk = (xcy)lk.

So, we have that xay ηlk xcy, i.e. xay τ xcy. Thus τ(m,n) is transitive and therefore it is a congruence on S.

Theorem 5.3. Let m,n ∈ Z+. Then the following conditions on a semigroup S are equivalent:

(i) τ(m,n) is a band congruence on S;
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(ii) (∀x ∈ Sm)(∀y ∈ Sn)(∀a ∈ S) xay τ xa2y;

(iii) R(τ(m,n)) = τ(m,n).

Proof. (i)⇔(ii) This equivalence follows immediately.
(i)⇔(iii) This equivalence immediately follows by Lemma 2.1.

Proposition 5.4. Let m,n ∈ Z+. If τ(m,n) is a band congruence on a semigroup S, then τ ⊆ τ(m,n).

Proof. Since τ(m,n) is a band congruence on S, then xay τ xaiy, for every i ∈ Z+ and for all x ∈ Sm, y ∈ Sn,
a ∈ S. Assume a, b ∈ S such that a τ b. Then ak = bk, for some k ∈ Z+. Thus for every x ∈ Sm, y ∈ Sn and
k ∈ Z+ we have that xay τ xaky = xbky τ xby. Since τ is transitive, then a τ(m,n) b. Therefore τ ⊆ τ(m,n).
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