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Available at: http://www.pmf.ni.ac.rs/filomat

A commutator approach to Buzano’s inequality

Mohammad Sal Moslehian∗a, Maryam Khosravib, Roman Drnovšekc
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Abstract. Using a 2×2 matrix trick, an inequality involving commutators of certain Hilbert space operators
as an operator version of Buzano’s inequality, which is in turn a generalization of the Cauchy–Schwarz
inequality, is presented. Also a version of the inequality in the framework of Hilbert C∗-modules is stated
and a special case in the context of C∗-algebras is presented.

1. Introduction and preliminaries

In [4], Buzano obtained the following extension of the celebrated Cauchy–Schwarz inequality in a real
or complex inner product space H :

|⟨a, x⟩⟨x, b⟩| ≤ 1
2

(|⟨a, b⟩| + ∥a∥∥b∥) ∥x∥2 (a, b, x ∈H )

When a = b this inequality becomes the Cauchy–Schwarz inequality

|⟨a, x⟩|2 ≤ ∥a∥2∥x∥2.

For a real inner product space, Richard [18] independently obtained the following stronger inequality:∣∣∣∣∣⟨a, x⟩⟨x, b⟩ − 1
2
⟨a, b⟩∥x∥2

∣∣∣∣∣ ≤ 1
2
∥a∥∥b∥∥x∥2 (a, b, x ∈H ).

Dragomir [5] showed that this inequality (for real or complex case) is valid with coefficients 1
|α| instead of 1

2 ,
where a non-zero number α satisfies the equality |1 − α| = 1. As an application of this inequality, Fujii and
Kubo [9] found a bound for roots of algebraic equations. During developing the operator theory and its
applications, the authors of [6] have recently extended some numerical inequalities to operator inequalities.
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Some mathematicians have also investigated the operator versions of the Cauchy–Schwarz inequality or
its reverse; see [7, 8, 12, 16, 19].

In the next section an operator version of Buzano’s inequality is introduced as a commutator inequality
and in the last section we state a suitable version of it for Hilbert C∗-modules including C∗-algebras.

In this paper, B(H ) stands for the C∗-algebra of all bounded operators on a complex separable Hilbert
space H equipped with the usual operator norm ∥ · ∥. If H is finite-dimensional with dim H = n, we
identify B(H ) with the full matrix algebra Mn(C) of all n × n matrices with entries in the complex field C.
If x, y ∈H , the rank-one operator x ⊗ y is defined by

(x ⊗ y)z = ⟨z, y⟩x (z ∈H )

For a compact operator T ∈ B(H ), the singular values of T are defined to be the eigenvalues of the positive
operator |T| = (T∗T)1/2, enumerated as s1(T) ≥ s2(T) ≥ · · · with their multiplicities counted. If S ∈ B(H ) and

T ∈ B(K ), we use the direct sum notation S⊕T for the block-diagonal operator
[

S 0
0 T

]
defined on H ⊕K .

It can be easily seen that the set of singular values of S ⊕ T is the union of those of S and T. In particular,
the operator norm of S ⊕ T is the maximum of the norm of S and T. For A,B,X ∈ B(H ), the operator
AX−XA is called a commutator and the operator AX−XB is said to be a generalized commutator. There are
several results related to the singular values and unitarily invariant norms of (generalized) commutators,
see [3, 11, 13, 14] and references therein. Recall that a norm |||·||| onMn is said to be unitarily invariant if
|||UAV||| = |||A||| for all A ∈Mn(C) and all unitary matrices U,V ∈Mn(C).

The notion of Hilbert C∗-module is a generalization of that of Hilbert space. Let A be a C∗-algebra,
and let X be a complex linear space, which is a right A -module satisfying λ(xa) = x(λa) = (λx)a for all
x ∈X , a ∈ A , λ ∈ C. The space X is called a (right) pre-Hilbert C∗-module over A if there exists an A -inner
product ⟨·, ·⟩ : X ×X → A satisfying

(i) ⟨x, x⟩ ≥ 0 (i.e. ⟨x, x⟩ is a positive element of A ) and ⟨x, x⟩ = 0 if and only if x = 0;
(ii) ⟨x, λy + z⟩ = λ⟨x, y⟩ + ⟨x, z⟩;
(iii) ⟨x, ya⟩ = ⟨x, y⟩a;
(iv) ⟨x, y⟩∗ = ⟨y, x⟩;

for all x, y, z ∈X , λ ∈ C, a ∈ A .
We can define a norm on X by ∥x∥ := ∥⟨x, x⟩∥ 1

2 , where the latter norm denotes that in the C∗-algebra A .
A pre-Hilbert A -module is called a (right) Hilbert C∗-module over A (or a (right) Hilbert A -module) if it is
complete with respect to its norm. Any inner product space can be regarded as a pre-HilbertC-module and
any C∗-algebra A is a Hilbert C∗-module over itself via ⟨a, b⟩ = a∗b (a, b ∈ A ). For more information about
C∗-algebras and Hilbert C∗-modules see [17] and [15], respectively.

2. The Hilbert space case

To establish singular value inequalities for Hilbert space operators, we need the following lemma, which
is an immediate consequence of the Maximin principle (see, e.g., [2, p. 75] or [10, p. 27]).

Lemma 2.1. Suppose that X,Y,Z ∈ B(H ). If Y is compact, then

s j(XYZ) ≤ ∥X∥ ∥Z∥ s j(Y)

for all j = 1, 2, . . ..

Now we state our main result.

Theorem 2.2. Let A,B,X ∈ B(H ) be such that A is invertible and it commutes with X. Suppose that, for some
Hilbert space K , Ã = A ⊕ A′ ∈ B(H ⊕K ), B̃ = B ⊕ 0 ∈ B(H ⊕K ) and X̃ ∈ B(H ⊕K ) is any compact
extension of X. Then, for j = 1, 2, . . .,

s j(ÃX̃ − X̃B̃) ≤ max{1, ∥1 − A−1B∥}∥Ã∥ s j(X̃).
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If K = {0}, then
s j(AX − XB) ≤ ∥A − B∥ s j(X) ≤ ∥1 − A−1B∥ ∥A∥ s j(X).

Proof. Since X̃ leaves H invariant, we can write

Ã =
[

A 0
0 A′

]
, B̃ =

[
B 0
0 0

]
, X̃ =

[
X Y
0 Z

]
.

It follows from Lemma 2.1 and

ÃX̃ − X̃B̃ =
[

AX − XB AY
0 A′Z

]
=

[
A 0
0 A′

] [
X Y
0 Z

] [
I − A−1B 0

0 I

]
that

s j(ÃX̃ − X̃B̃) ≤ max{1, ∥1 − A−1B∥} ∥Ã∥ s j(X̃).

If K = {0}, then s j(AX − XB) = s j(X(A − B)) ≤ ∥A − B∥ s j(X) by Lemma 2.1.

Corollary 2.3. Let A,B,X be n × n matrices such that A is invertible and it commutes with X. Suppose that
Ã = A ⊕ A′

, B̃ = B ⊕ 0 and X̃ is any extension of X to Cn ⊕ Cm for some m. Then
(i) |||ÃX̃ − X̃B̃||| ≤ max{1, ∥1 − A−1B∥}∥Ã∥ |||X̃||| for every unitarily invariant norm ||| · ||| on Cn+m.
(ii) |ÃX̃ − X̃B̃| ≤ max{1, ∥1 − A−1B∥}∥Ã∥U|X̃|U∗ for some unitary matrix U ∈Mn+m(C).

Proof. It follows from Theorem 2.2 that we have, for each k = 1, 2, . . . ,n +m,

k∑
j=1

s j(ÃX̃ − X̃B̃) ≤
k∑

j=1

max{1, ∥1 − A−1B∥} ∥Ã∥ s j(X̃) .

The Ky Fan dominance theorem (see, e.g., [2, p. 93]) then completes the proof of (i).
The assertion (ii) follows from the fact that for positive matrices S, T the inequalities s j(S) ≤ s j(T) (1 ≤

j ≤ n +m) are equivalent to S ≤ UTU∗ for some unitary matrix U.

The next result may be considered as a slight generalization of [13, Lemma 3] in the case when X ∈ B(H )
is a compact operator leaving invariant the range of a projection P ∈ B(H ).

Corollary 2.4. Let P ∈ B(H ) be a non-zero projection on a subspace K of H , and let X ∈ B(H ) be a compact
operator which leaves K invariant. Suppose that C ∈ B(H ) is a contraction satisfying PC = CP = 0. Then, for
α ∈ C and j = 1, 2, . . .,

s j((P + C)X − αXP) ≤ max{1, |1 − α|} s j(X). (1)

Proof. Since the restriction of the operator P + C to the subspace K is the identity operator, Theorem 2.2
can be applied for the operators Ã = P + C, B̃ = αP and X̃ = X.

Suppose that x, a, b ∈H and ∥x∥ = 1. Set P = x ⊗ x, C = 0 and X = x ⊗ b in inequality (1). Then

∥PXa − αXPa∥ ≤ max{1, |1 − α|}∥X∥∥a∥.

Since
∥PXa − αXPa∥ = ∥(x ⊗ x)(x ⊗ b)a − α(x ⊗ b)(x ⊗ x)a∥

= ∥⟨a, b⟩⟨x, x⟩x − α⟨a, x⟩⟨x, b⟩x∥
= |⟨a, b⟩ − α⟨a, x⟩⟨x, b⟩|

and ∥X∥ = ∥b∥, we obtain that

|⟨a, b⟩ − α⟨a, x⟩⟨x, b⟩| ≤ max{1, |1 − α|}∥b∥∥a∥.
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If x is an arbitrary non-zero vector in an inner product space H , by completing the space we can assume
that H is a Hilbert space. Then an application of the last inequality for the unit vector x

∥x∥ proves the
following version of Buzano’s inequality. It allows us to regard inequality (1) as an operator version of
Buzano’s inequality.

Corollary 2.5. Let x, a, b be vectors in an inner product space H and α ∈ C. Then∣∣∣⟨a, b⟩∥x∥2 − α⟨a, x⟩⟨x, b⟩∣∣∣ ≤ max{1, |1 − α|}∥b∥∥a∥∥x∥2. (2)

Remark 2.6. An easy inspection of the proof of Dragomir’s result [5, Theorem 3.3] shows that he in fact
proved inequality (2).

The following result is a slight generalization of [5, Theorem 3.7] (and of Corollary 2.5).

Theorem 2.7. Let {ei}∞i=1 be an orthonormal family in a Hilbert space H , and let {λi}∞i=1 be a bounded sequence of
complex numbers. Then ∣∣∣∣∣∣∣

∞∑
i=1

λi⟨a, ei⟩⟨ei, b⟩ − ⟨a, b⟩
∣∣∣∣∣∣∣ ≤ max{1, sup

i≥1
|1 − λi|} ∥b∥ ∥a∥

for all a, b ∈H . If {ei}∞i=1 is an orthonormal basis of H , then∣∣∣∣∣∣∣
∞∑

i=1

λi⟨a, ei⟩⟨ei, b⟩ − ⟨a, b⟩
∣∣∣∣∣∣∣ ≤ sup

i≥1
|1 − λi| ∥b∥ ∥a∥.

Proof. The series
∑∞

i=1 λi⟨a, ei⟩⟨ei, b⟩ converges absolutely, since

∞∑
i=1

|λi⟨a, ei⟩⟨ei, b⟩| ≤ sup
i≥1
|λi| ·
 ∞∑

i=1

|⟨a, ei⟩|2


1/2  ∞∑
i=1

|⟨ei, b⟩|2


1/2

≤ sup
i≥1
|λi| ∥a∥ ∥b∥

by the Cauchy–Schwarz inequality in the sequence space l2 and by Bessel’s inequality. Therefore, it is
enough to show that, for each positive integer n, we have∣∣∣∣∣∣∣

n∑
i=1

λi⟨a, ei⟩⟨ei, b⟩ − ⟨a, b⟩
∣∣∣∣∣∣∣ ≤ max{1, |1 − λ1|, . . . , |1 − λn|} ∥b∥ ∥a∥.

Set A :=
∑n

i=1 ei ⊗ ei, B :=
∑n

i=1 λiei ⊗ ei and X :=
∑n

i=1 ei ⊗ b. Consider the closed subspace K spanned by
vectors e1, . . . , en. Note that A is the identity operator on K , and B leaves K invariant and it is zero on the
orthogonal complement of K . Also, X is an operator from H to K , so its restriction to K commutes with
A. By Theorem 2.2, we have

∥AX − XB∥ ≤ max{1, ∥1 − (A|K )−1B|K ∥}∥A∥∥X∥,

and so, for each a ∈H ,

∥(AX − XB)a∥ ≤ max{1, |1 − λ1|, . . . , |1 − λn|}
∥∥∥∥∥∥∥

n∑
i=1

ei

∥∥∥∥∥∥∥ ∥b∥∥a∥.
Since

(AX − XB)a =

 n∑
i=1

ei


⟨a, b⟩ − n∑

i=1

λi⟨a, ei⟩⟨ei, b⟩
 ,

we obtain the desired inequality. When {ei}∞i=1 is a basis of H , we can omit the number 1 in the maximum
by the last assertion of Theorem 2.2.
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3. The Hilbert C∗-module case

The following theorem is Buzano’s inequality in the context of Hilbert C∗-modules.

Theorem 3.1. Let X be a Hilbert C∗-module. If x, y, z ∈X such that ⟨x, z⟩ commutes with ⟨z, z⟩, then

|2⟨x, z⟩⟨z, y⟩ − ⟨z, z⟩⟨x, y⟩| ≤ ∥x∥∥z∥2|y|. (3)

Proof. For x, y, z ∈X , we have

|2⟨x, z⟩⟨z, y⟩ − ⟨z, z⟩⟨x, y⟩| = |⟨2z⟨z, x⟩, y⟩ − ⟨x⟨z, z⟩, y⟩|
= |⟨2z⟨z, x⟩ − x⟨z, z⟩, y⟩|
≤ ∥2z⟨z, x⟩ − x⟨z, z⟩∥ |y| (4)

and

∥2z⟨z, x⟩ − x⟨z, z⟩∥2 = ∥⟨2z⟨z, x⟩ − x⟨z, z⟩, 2z⟨z, x⟩ − x⟨z, z⟩⟩∥
= ∥4⟨x, z⟩⟨z, z⟩⟨z, x⟩ − 2⟨x, z⟩⟨z, x⟩⟨z, z⟩
−2⟨z, z⟩⟨x, z⟩⟨z, x⟩ + ⟨z, z⟩⟨x, x⟩⟨z, z⟩∥

≤ ∥z∥4∥x∥2. (5)

Now (3) follows from (4) and (5).

Using Theorem 3.1 and the fact that, in a C∗-algebra, the relation |c| ≤ M is equivalent to the condition
that |cd| ≤M|d| for all d, we get

Corollary 3.2. If a, b ∈ A are elements of a C∗-algebra such that a∗b commutes with b∗b, then

|2a∗bb∗ − b∗ba∗| ≤ ∥a∥∥b∥2.

The following provides a non-trivial example.

Example 3.3. Let H be a separable complex Hilbert space and let {ei}∞i=1 be an orthonormal basis for H .
Define the operator u : H →H by

u(ei) =
{

ei+1 , i ≤ n
0 , i > n .

Then the adjoint operator u∗ is defined by u∗(ei) =
{

ei−1 , 2 ≤ i ≤ n + 1
0 , i > n + 1 or i = 1 . If K1,K2 are the subspaces

generated with {e1, · · · , en} and {e2, · · · , en+1}, respectively, then u∗u is the projection onto K1 and uu∗ is the
projection onto K2. For all v ∈ B(H ), we clearly have vu = 0 on K ⊥

1 . Therefore, if v(K2) ⊆ K1, then vu
commutes with u∗u, so that we have

∥2vuu∗ − u∗uv∥ ≤ ∥v∥.
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