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Abstract. In this paper, a space is a pair (X,K ), where X is a set and K ⊂ exp X. This paper gives some
new characterizations for Si-separation axioms in the space (X,K ) (i = 1, 2). As some corollaries of these
results, some characterizations for Ti-separation axioms in the space (X,K ) are obtained (i = 1, 2).

1. Introduction

In the general theory of topological spaces, separation axioms had played an important role. In a series
of papers, the ordinary separation axioms are modified in the way that the role of open sets is given to
other classes of sets (see e.g. [2, 3, 5, 7, 8]). Moreover, Arenas et al. [1, 6] studied some weak separation
axioms related with Alexandroff topological spaces. In [3], A. Császár discussed some lower separation
axioms T0, T1, T2, S1 and S2 in generalized topological spaces, and gave some “nice” characterizations for
these separation axioms. Having gained some enlightenment from results on separation axioms obtained
by A. Császár in [3], this paper investigates Ti-separation axioms and Si-separation axioms (i = 1, 2), and
obtain some new characterizations for these separation axioms in the space (X,K ).

In this paper, a space is a pair (X,K ), where X is a set and K ⊂ exp X. Throughout this paper, we use
the following notations.

Notation 1.1. Let (X,K ) be a space and A ⊂ X.
(1) κA = {x : x ∈ K ∈ K implies K

∩
A , ∅}.

(2) χA =
∩{K : A ⊂ K ∈ K }.

(3) χA =
∩{κK : A ⊂ K ∈ K }.

Remark 1.2. ([3]) (1) In the sense of Notation 1.1, if no K ∈ K satisfies x ∈ K, then x ∈ κA.
(2) In particular, χA = X and χA = X if there do not exist sets K ⊂ K satisfying A ⊂ K.
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2. Preliminaries

Let us recall Ti-separation axioms (i = 0, 1, 2) and Si-separation axioms (i = 1, 2), which come from [3].

Definition 2.1. Let (X,K ) be a space.
(1) T0-separation axiom: x, y ∈ X and x , y imply the existence of K ∈ K containing precisely one of x

and y.
(2) T1-separation axiom: x, y ∈ X and x , y imply the existence of K ∈ K such that x ∈ K and y < K.
(3) T2-separation axiom: x, y ∈ X and x , y imply the existence of K,K′ ∈ K such that x ∈ K, y ∈ K′ and

K
∩

K′ = ∅.
(4) S1-separation axiom: If x, y ∈ X and there exists K ∈ K such that x ∈ K and y < K, then there exists

K′ ∈ K satisfying y ∈ K′ and x < K′.
(5) S2-separation axiom: If x, y ∈ X and there exists K ∈ K such that x ∈ K and y < K, then there exist

K′,K′′ ∈ K satisfying x ∈ K′, y ∈ K′′ and K′
∩

K′′ = ∅.

Remark 2.2. Some of the consequences of these separation axioms are valid in this generality. In particu-
larly, the following hold.

(1) T2-separation axiom =⇒ T1-separation axiom =⇒ T0-separation axiom.
(2) S2-separation axiom =⇒ S1-separation axiom.
(3) T1-separation axiom⇐⇒ T0- and S1-separation axiom.
(4) T2-separation axiom⇐⇒ T0- and S2-separation axiom.

The following belong to A. Császár [3].

Lemma 2.3. ([3]) Let (X,K ) be a space. Given x, y ∈ X, κ{x} , κ{y} if and only if there exists K ∈ K containing
precisely one of x and y. Thus, K satisfies T0-separation axiom if and only if κ{x} , κ{y} for all x, y ∈ X.

Lemma 2.4. ([3]) Let (X,K ) be a space. K satisfies S1-separation axiom if and only if x ∈ K ∈ K implies κ{x} ⊂ K.

Definition 2.5. ([3]) Let X be a set. A mapping λ : exp X −→ exp X is called an envelope operation (or
briefly an envelope) on X if the following hold (We write λA for λ(A)).

(1) A ⊂ λA for A ⊂ X.
(2) λA ⊂ λB for A ⊂ B ⊂ X.
(3) λλA = λA for A ⊂ X.

Lemma 2.6. ([3]) Let κ : exp X −→ exp X and χ : exp X −→ exp X be defined as Notation 1.1. Then both κ and χ
are envelopes on X, and hence the following hold.

(1) x ∈ κ{x}, x ∈ χ{x} and κ{x} ⊂ χ{x}.
(2) If x ∈ κ{y}, then κ{x} ⊂ κ{y}.
(3) If x ∈ χ{y}, then χ{x} ⊂ χ{y}.

3. The main results

For a space (X,K ) and x ∈ X, we write Kx = {K : x ∈ K ∈ K } for the sake of convenience. Consequently,
x ∈ K ∈ K if and only if K ∈ Kx. Thus, “K ∈ Kx” denotes “x ∈ K ∈ K ” in this section.

By the definitions of κ, χ and χ, the following remark is obvious.

Remark 3.1. Let (X,K ) be a space and x ∈ X. Then the following hold.
(1) κ{x} = {y : K ∈ Ky implies x ∈ K}, i.e., y ∈ κ{x} if and only if x ∈ K for each K ∈ Ky.
(2) χ{x} = ∩{K : K ∈ Kx}, i.e., y ∈ χ{x} if and only if y ∈ K for each K ∈ Kx.
(3) χ{x} = ∩{κK : K ∈ Kx}.
(4) y < κ{x} if and only if there exists K ∈ Ky such that x < K.
(5) y < χ{x} if and only if there exists K ∈ Kx such that y < K.
(6) y < χ{x} if and only if there exists K ∈ Kx such that y < κK.
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Lemma 3.2. Let (X,K ) be a space and x ∈ X. Then κ{x} = X −∪{K : K ∈ K −Kx}.

Proof. Let y ∈ κ{x}. By Remark 3.1(1), x ∈ K for each K ∈ Ky. So, for each K ∈ K , y < K if K < Kx. That is,
for each K ∈ K −Kx, y < K. It follows that y <

∪{K : K ∈ K −Kx}, and so y ∈ X −∪{K : K ∈ K −Kx}. On
the other hand, let y ∈ X −∪{K : K ∈ K −Kx}. Then we have y ∈ κ{x} by reversing the proof above. This
proves that κ{x} = X −∪{K : K ∈ K −Kx}.

Lemma 3.3. Let (X,K ) be a space and x, y ∈ X. Then the following are equivalent.
(1) K

∩{x, y} = {x, y} for each K ∈ Kx.
(2) y ∈ χ{x}.
(3) x ∈ κ{y}.
(4) Kx ⊂ Ky.
(5) χ{y} ⊂ χ{x}.
(6) κ{x} ⊂ κ{y}.

Proof. (1) =⇒ (2): Let K
∩{x, y} = {x, y} for each K ∈ Kx. Then y ∈ K for each K ∈ Kx. By Remark 3.1(2),

y ∈ χ{x}.
(2) =⇒ (3): It holds from Remark 3.1(1),(2).
(3) =⇒ (4): Let x ∈ κ{y}. By Lemma 3.2, x ∈ X −∪{K : K ∈ K −Ky}, i.e., x <

∪{K : K ∈ K −Ky}. So, if
K ∈ K −Ky, then x < K. Consequently, if K ∈ Kx, then K ∈ Ky. This proves that Kx ⊂ Ky.

(4) =⇒ (5): Let Kx ⊂ Ky. Then χ{y} = ∩{K : K ∈ Ky} ⊂
∩{K : K ∈ Kx} = χ{x}.

(5) =⇒ (1) Let χ{y} ⊂ χ{x}. For each K ∈ Kx, since y ∈ χ{y} ⊂ χ{x}, y ∈ K. Note that x ∈ K. It follows that
K
∩{x, y} = {x, y}.

(4) =⇒ (6) Let Kx ⊂ Ky. Then K −Ky ⊂ K −Kx, and hence
∪{K : K ∈ K −Ky} ⊂

∪{K : K ∈ K −Kx}.
By Lemma 3.2, κ{x} = X −∪{K : K ∈ K −Kx} ⊂ X −∪{K : K ∈ K −Ky} = κ{y}.

(6) =⇒ (3) Let κ{x}) ⊂ κ{y}. Then x ∈ κ{x} ⊂ κ{y}.

Lemma 3.4. Let (X,K ) be a space. Then the following are equivalent.
(1) (X,K ) satisfies S1-separation axiom.
(2) For every pair x, y ∈ X, x < χ{y} implies y < χ{x}.
(3) For every pair x, y ∈ X, x ∈ χ{y} implies y ∈ χ{x}.
(4) For every pair x, y ∈ X, x < κ{y} implies y < κ{x}.
(5) For every pair x, y ∈ X, x ∈ κ{y} implies y ∈ κ{x}.

Proof. (1) =⇒ (2): Assume that (X,K ) satisfies S1-separation axiom. Let x, y ∈ X and x < χ{y}. Then there
exists K ∈ K such that y ∈ K and x < K. Since (X,K ) satisfies S1-separation axiom, there exists K′ ∈ K
such that x ∈ K′ and y < K′. So y < χ{x}.

(2) =⇒ (1): Assume that (2) holds. Let x, y ∈ X and let there exist K ∈ K such that x ∈ K, y < K. Then
y < χ{x}. Since (2) holds, x < χ{y}. So there exists K′ ∈ K such that y ∈ K′ and x < K′. This proves that
(X,K ) satisfies S1-separation axiom.

(2)⇐⇒ (3): It is clear.
(4)⇐⇒ (5): It is clear.
(3) =⇒ (5): Assume that (3) holds. Let x, y ∈ X and x ∈ κ{y}. By Lemma 3.3, y ∈ χ{x}, and so x ∈ χ{y}. By

Lemma 3.3 again, y ∈ κ{x}.
(5) =⇒ (3): The proof is similar to that of (3) =⇒ (5).

Theorem 3.4.1. Let (X,K ) be a space. Then the following are equivalent.
(1) (X,K ) satisfies S1-separation axiom.
(2) For each x ∈ X, χ{x} = κ{x}.
(3) For each x ∈ X, χ{x} ⊂ κ{x}.
(4) For each x ∈ X, κ{x} ⊂ χ{x}.
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Proof. (1) =⇒ (2): Assume that (X,K ) satisfies S1-separation axiom. Let x ∈ X. If y < κ{x}, then there exists
K ∈ Ky such that x < K. Since (X,K ) satisfies S1-separation axiom, there exists K′ ∈ Kx such that y < K′,
and so y < χ{x}. This proves that χ{x} ⊂ κ{x}. On the other hand, if y < χ{x}, then there exists K ∈ Kx such
that y < K. Since (X,K ) satisfies S1-separation axiom, there exists K′ ∈ Ky such that x < K′, and so y < κ{x}.
This proves that κ{x} ⊂ χ{x}. Consequently, χ{x} = κ{x}

(2) =⇒ (3): It is clear.
(3)=⇒ (4): Assume that (3) holds. Let x ∈ X. If y ∈ κ{x}, then x ∈ χ{y} from Lemma 3.3. Since χ{y} ⊂ κ{y},

x ∈ κ{y}. By Lemma 3.3 again, y ∈ χ{x}. This proves that κ{x} ⊂ χ{x}.
(4) =⇒ (1): Assume that (4) holds. Let x ∈ K ∈ K , then κ{x} ⊂ χ{x}. By the definition of χ{x}, χ{x} ⊂ K.

So κ{x} ⊂ χ{x} ⊂ K. By Lemma 2.4, (X,K ) satisfies S1-separation axiom.

Let (X,K ) be a space. Recall K is called a generalized topology in X if K ′ ⊂ K implies
∪{K : K ∈

K ′} ∈ K ; (X,K ) is called a generalized topological space if K is a generalized topology in X. We call
a family {Fx : x ∈ X} of subsets of a set X constitutes a partition of X if for every pair x, y ∈ X, Fx = Fy or
Fx
∩

Fy = ∅. In [3], A. Császár obtained the following proposition.

Proposition 3.5. ([3]) Let (X,K ) be a generalized topological space. If (X,K ) satisfies S1-separation axiom, then
{κ{x} : x ∈ X} constitutes a partition of X.

The following theorem improve Proposition 3.5 by omitting “generalized topological” in Proposition
3.5.

Theorem 3.5.1. Let (X,K ) be a space. Then the following are equivalent.
(1) (X,K ) satisfies S1-separation axiom.
(2) {κ{x} : x ∈ X} constitutes a partition of X.
(3) {χ{x} : x ∈ X} constitutes a partition of X.

Proof. (1) =⇒ (2): Assume that (X,K ) satisfies S1-separation axiom. Let x, y ∈ X and κ{x}∩κ{y} , ∅, Then
there exists z ∈ κ{x}∩κ{y}. By Lemma 3.4, x ∈ κ{z} since z ∈ κ{x}. So κ{z} ⊂ κ{x} and κ{x} ⊂ κ{z} by Lemma
2.6. It follows that κ{x} = κ{z}. Similarly, κ{y} = κ{z}. Thus κ{x} = κ{y}. This proves that {κ{x} : x ∈ X}
constitutes a partition of X.

(2) =⇒ (3): Assume that (2) holds. Let x, y ∈ X and χ{x}∩χ{y} , ∅, Then there exists z ∈ χ{x}∩χ{y}. By
Lemma 2.6, χ{z} ⊂ χ{x} since z ∈ χ{x}. On the other hand, x ∈ κ{z} by Lemma 3.3. Thus x ∈ κ{x}∩κ{z} , ∅,
so κ{x} = κ{z}, and hence z ∈ κ{z} = κ{x}. So x ∈ χ{z}. It follows that χ{x} ⊂ χ{z}. This proves that χ{x} = χ{z}.
Similarly, χ{y} = χ{z}. Consequently, χ{x} = χ{y}. So {χ{x} : x ∈ X} constitutes a partition of X.

(3) =⇒ (1): Assume that (3) holds. Let x, y ∈ X and y < χ{x}. By Lemma 3.4, it suffices to prove that
x < χ{y}. Since y ∈ χ{y}, so χ{x} , χ{y}, and hence χ{x}∩χ{y} = ∅. Since x ∈ χ{x}, so x < χ{y}.

Theorem 3.5.2. Let (X,K ) be a space. Then the following are equivalent.
(1) (X,K ) satisfies S2-separation axiom.
(2) x ∈ K ∈ K implies χ{x} ⊂ K.
(3) χ{x} = κ{x} for each x ∈ X.

Proof. (1) =⇒ (2): Assume that (X,K ) satisfies S2-separation axiom. Let x ∈ K ∈ K and y ∈ χ{x}. It suffices
to prove that y ∈ K. In fact, if y < K, then there exist K′,K′′ ∈ K such that x ∈ K′, y ∈ K′′ and K′

∩
K′′ = ∅.

Thus y < κK′. Note that K′ ∈ Kx. So y < χ{x}. This is a contradiction.
(2) =⇒ (1): Assume that (2) holds. Let x, y ∈ X and let there exist K ∈ K such that x ∈ K, y < K. Then

y < χ{x}. So there exists K′ ∈ Kx such that y < κK′. It follows that there exists K′′ ∈ Ky such that K′
∩

K′′ = ∅.
This proves that (X,K ) satisfies S2-separation axiom.

(1) =⇒ (3): Assume that (X,K ) satisfies S2-separation axiom. Let x ∈ X. By Lemma 3.3, we only need to
prove χ{x} ⊂ κ{x}. Let y ∈ χ{x}. It suffices to prove that y ∈ κ{x}. In fact, if y < κ{x}, then there exists K ∈ Ky
such that x < K. And so there exist K′,K′′ ∈ K such that x ∈ K′, y ∈ K′′ and K′

∩
K′′ = ∅. Thus y < κK′.

Note that K′ ∈ Kx. So y < χ{x}. This is a contradiction.
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(3) =⇒ (1): Assume that (3) holds. Let x, y ∈ X and let there exist K ∈ K such that x ∈ K, y < K. Then
x < κ{y}, and hence x < χ(y). So there exists K′ ∈ Ky such that x < κK′. It follows that there exists K′′ ∈ Kx
such that K′

∩
K′′ = ∅. This proves that (X,K ) satisfies S2-separation axiom.

Taking Lemma 3.4 and Theorem 3.5.1 into account, the following question is interesting.

Question 3.6. Let (X,K ) be a space. Are the following equivalent.
(1) (X,K ) satisfies S2-separation axiom.
(2) For every pair x, y ∈ X, x < χ{y} implies y < χ{x}.
(3) {χ{x} : x ∈ X} constitutes a partition of X.

The following answer the above question.

Proposition 3.7. Let (X,K ) be a space. Then, for every pair x, y ∈ X, x < χ{y} implies y < χ{x}.

Proof. Let x, y ∈ X. If x < χ{y}, then there exists K ∈ Ky such that x < κK, and hence there exists K′ ∈ Kx
such that K′

∩
K = ∅. Thus, y < κK′. So y < χ{x}.

Proposition 3.8. Let (X,K ) be a space. If (X,K ) satisfies S2-separation axiom, then {χ{x} : x ∈ X} constitutes a
partition of X.

Proof. Assume that (X,K ) satisfies S2-separation axiom. By Remark 2.2(2) and Proposition 3.6, {κ{x} : x ∈ X}
constitutes a partition of X. Also, by Theorem 3.5.2, χ{x} = κ{x} for each x ∈ X. So {χ{x} : x ∈ X} constitutes
a partition of X.

Example 3.9. There exists a space (X,K ) such that {χ{x} : x ∈ X} constitutes a partition of X, and (X,K )
does not satisfy S1-separation axiom.

Put X = {a, b, c, d} and K = {{a}, {a, b}, {c}, {c, d}}. It is not difficult to check that κK = {a, b} if K ∈ {{a}, {a, b}},
and κK = {c, d} if K ∈ {{c}, {c, d}}. So χ{x} = {a, b} if x ∈ {a, b}, and χ{x} = {c, d} if x ∈ {c, d}. Then {χ{x} : x ∈ X}
constitutes a partition {{a, b}, {c, d}} of X. Since κ{a} = {a, b} and χ{a} = {a}, κ{a} , χ{a}, so (X,K ) does not
satisfy S1-separation axiom.

As some applications of Theorem 3.4.1, Theorem 3.5.1 and Theorem 3.5.2, we give some characterizations
of Ti-separation axiom (i = 1, 2).

Theorem 3.9.1. Let (X,K ) be a space. Then the following are equivalent.
(1) (X,K ) satisfies T1-separation axiom.
(2) For every pair x, y ∈ X, x , y implies κ{x}∩κ{y} = ∅.
(3) For each x ∈ X, κ{x} = {x}.
(4) For every pair x, y ∈ X, x , y implies χ{x}∩χ{y} = ∅.
(5) For each x ∈ X, χ{x} = {x}.

Proof. (1)=⇒ (2): Assume that (X,K ) satisfies T1-separation axiom. Let x, y ∈ X and x , y. By Remark 2.2(3),
(X,K ) satisfies T0- and S1-separation axiom. So κ{x} , κ{y} from Lemma 2.3, and hence κ{x}∩κ{y} = ∅
from Theorem 3.5.1.

(2) =⇒ (3): Assume that (2) holds. Let x ∈ X, then x ∈ κ{x}. For each y ∈ X − {x}, since y ∈ κ{y} and
κ{x}∩κ{y} = ∅, y < κ{x}. It follows that κ{x} = {x}.

(3) =⇒ (1): Assume that (3) holds. For every pair x, y ∈ X, if x , y, then κ{x} = {x} , {y} = κ{y}, So
(X,K ) satisfies T0-separation axiom from Lemma 2.3. On the other hand, for each x ∈ X, κ{x} = {x} ⊂ χ{x}.
By Theorem 3.4.1, (X,K ) satisfies S1-separation axiom. Thus, (X,K ) satisfies T1-separation axiom from
Remark 2.2(3).

(1) =⇒ (4): Assume that (X,K ) satisfies T1-separation axiom. Then (X,K ) satisfies S1-separation axiom
from Remark 2.2(3). Let x, y ∈ X and x , y. Then χ{x} = κ{x} and χ{y} = κ{y} from Theorem 3.4.1. By the
above (1) =⇒ (2), κ{x}∩κ{y} = ∅. It follows that χ{x}∩χ{y} = ∅.

(4) =⇒ (5) =⇒ (1): The proof can be completed by a similar way as in the proof of (2) =⇒ (3) =⇒ (1), so
we omit it.
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Theorem 3.9.2. Let (X,K ) be a space. Then the following are equivalent.
(1) (X,K ) satisfies T2-separation axiom.
(2) x, y ∈ X and x , y imply the existence of K ∈ K such that x ∈ K and y < κK.
(3) x, y ∈ X and x , y imply the existence of K ∈ K such that x ∈ K ⊂ κK ⊂ X − {y}.
(4) For each x ∈ X, χ{x} = {x}.
(5) For every pair x, y ∈ X, x , y implies χ{x}∩χ{y} = ∅.

Proof. (1) =⇒ (2): Assume that (X,K ) satisfies T2-separation axiom. Let x, y ∈ X and x , y. By Remark
2.2(1),(4), (X,K ) satisfies S2- and T1-separation axiom. By Theorem 3.5.2 and Theorem 3.9.1, χ{x} = κ{x} =
{x}, and hence y < χ{x}. Thus, there exists K ∈ K such that x ∈ K and y < κK.

(2) =⇒ (3): Assume that (2) holds. Let x, y ∈ X and x , y. Then there exists K ∈ K such that x ∈ K and
y < κK. Thus x ∈ K ⊂ κK ⊂ X − {y}.

(3) =⇒ (4): Assume that (3) holds. Let x ∈ X. If y ∈ X and x , y, then there exists K ∈ K such that
x ∈ K ⊂ κK ⊂ X − {y}. Thus, K ∈ Kx and y < κK, so y < χ{x}. This proves that χ{x} = {x}.

(4) =⇒ (1): Assume that (4) holds. Let x ∈ K ∈ K . Then χ{x} = {x} ⊂ K. So (X,K ) satisfies S2-separation
axiom from Theorem 3.5.2. In addition, {x} ⊂ χ{x} ⊂ χ{x} = {x}, so χ{x} = {x}. By Theorem 3.9.1, (X,K )
satisfies T1-separation axiom. It follows that (X,K ) satisfies T2-separation axiom from Remark 2.2(1),(4).

(4) =⇒ (5): Assume that (4) holds. Let x, y ∈ X and x , y. Then χ{x}∩χ{y} = {x}∩{y} = ∅.
(5) =⇒ (4): Assume that (5) holds. Let x ∈ X, then x ∈ χ{x}. For each y ∈ X − {x}, since y ∈ χ{y} and

χ{x}∩χ{y} = ∅, y < χ{x}. It follows that χ{x} = {x}.
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