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Abstract. In this paper we consider the completely generalized multi-valued co-variational inequality
problem in Banach spaces and construct an iterative algorithm. We prove the existence of solutions for our
problem involving strongly accretive operators and convergence of iterative sequences generated by the
algorithm.

1. Introduction

The theory of variational inequalities provides us an unified frame work to deal with a wide class of
problems arising in elasticity, structural analysis, economics, optimization, operations research, physical
and engineering sciences, etc; see for example [1, 4, 5, 9] and references therein.

In this paper we consider a more general form of multi-valued variational inequalities problems in
Banach spaces, called completely generalized multi-valued co-variational inequality problem. By extending the
technique of Alber and Yao [3], we suggest an iterative algorithm for finding the approximate solution of
our problem. The convergence of iterative sequences generated by our algorithm is studied. We also prove
the existence of a solution of our problem. Several special cases are also considered.

2. Preliminaries

Let B be a real Banach space with its dual B∗ and ⟨x, f ⟩ a pairing between x ∈ B and f ∈ B∗. We
denote by C(B) and 2B the family of nonempty compact subsets of B and the family of nonempty subsets
of B, respectively. Let N(., .) : B × B → B, G : B → B be the nonlinear mappings, T,A : B → C(B) be the
multi-valued mappings, K : B→ 2B be a multi-valued mapping such that K(x) is a nonempty, closed and
convex set for all x ∈ B. We consider the following completely generalized multi-valued co-variational inequality
problem :

(CGMCVIP)


Find x ∈ B, u ∈ T(x), and v ∈ A(x)
such that G(x) ∈ K(x) and
⟨N(u, v), J(z − G(x)⟩ ≥ 0, ∀ z ∈ K(x),

,

2010 Mathematics Subject Classification. Primary 49J40; Secondary 47H19, 47H10
Keywords. Co-variational inequality, algorithm, accretive map, retraction map
Received: 06 August 2011; Revised 14 December 2011; Accepted: 15 December 2011
Communicated by Ljubiša D.R. Kočinac
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where J : B→ B∗ is the normalized duality operator.
Recall that the normalized duality operator J : B → B∗ is defined for arbitrary Banach space by the

condition

∥ Jx ∥B∗=∥ x ∥ and ⟨x, Jx⟩ =∥ x ∥2, ∀ x ∈ B.

Some examples and properties of the mapping J can be found in [2].

Special Cases

(I) If T is a single-valued nonlinear operator,A = V : B→ C(B) and N(x, y) = Tx + Ay, then (CGMCVIP) is
equivalent to find x ∈ B, y ∈ V(x) such that G(x) ∈ K(x) and⟨

Tx + Ay, J(z − G(x)
⟩ ≥ 0, for all z ∈ K(x). (2.1)

Problem (2.1) is called generalized multi-valued co-variational inequality, considered and studied by Alber and
Yao [3].

(II) When B is a Hibert space, J reduces to the identity mapping. Consequently, problem (2.1) reduces to
the following problem: Find x ∈ B, v ∈ A(x) such that G(x) ∈ K(x) and

⟨Tx + Av, z − G(x)⟩ ≥ 0, ∀ z ∈ K(x). (2.2)

Problem (2.2) is called generalized multi-valued variational inequality introduced and studied by Jou and Yao
[10].

It is clear, from these special cases that our problem (2.1) is more general than the problem considered in
[3] and generalizes many problems in the literature. See, e.g., [8, 13].

We first recall that the uniform convexity of the space B means that for any given ϵ > 0 there exists δ > 0
such that for all x, y ∈ B, ∥ x ∥≤ 1, ∥ y ∥≤ 1, ∥ x − y ∥= ϵ, the following inequality

∥ x + y ∥ ≤ 2(1 − δ)

holds. The function

δB(ϵ) = inf
{

1 − ∥ x + y ∥
2

: ∥ x ∥= 1, ∥ y ∥= 1, ∥ x − y ∥= ϵ
}

is called the modulus of the convexity of the space B.
The uniform smoothness of the space B means that for any ϵ > 0, there exists δ > 0 such that

∥ x + y ∥ + ∥ x − y ∥
2

− 1 ≤ ϵ ∥ y ∥

holds. The function

ρB(t) = sup
{∥ x + y ∥ + ∥ x − y ∥

2
− 1 : ∥ x ∥= 1, ∥ y ∥= t

}
is called the modulus of the smoothness of the space B.
We observe that the space B is a uniformly convex if and only if δB(ϵ) > 0 for all ϵ > 0 and it is uniformly
smooth if and only if lim

t→0
t−1ρB(t) = 0.

Remark 2.1. All Hilbert spaces, Lp (or lp) spaces (p ≥ 2) and the Sobolev spaces Wp
m(p ≥ 2) are two uniformly

smooth, while, for 1 < p ≤ 2, Lp (or lp) and Wp
m(p ≥ 2) spaces are p-uniformly smooth.
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The following inequalities will be used in the proof of our main result and the proof of these inequalities
can be found, e.g. in [3], and hence, we omit it.

Proposition 2.2. Let B be a uniformly smooth Banach space and J the normalized duality mapping from B to B∗.
Then, for all x, y ∈ B, we have

(i) ∥ x + y ∥2 ≤ ∥ x ∥2 +2
⟨
y, J(x + y)

⟩
,

(ii)
⟨
x − y, Jx − Jy

⟩ ≤ 2d2ρB(4 ∥ x − y ∥ /d),

where d =
√

(∥ x ∥2 + ∥ y ∥2)/2.

Let us recall the following definitions.

Definition 2.3. The mapping G : B → B is said to be strongly accretive if there exist a constant γ > 0 such
that ⟨

Gx − Gy, J(x − y)
⟩ ≥ γ ∥ x − y ∥2, for all x, y ∈ B.

Definition 2.4. Let T,A : B → C(B) be two multi-valued mappings, N(., .) : B × B → B be a nonlinear
mapping.

(i) The mapping u 7→ N(u, v) is said to be strongly accretive with respect to the mapping T, if for any
x1, x2 ∈ B there exists a constant t > 0 such that for any u1 ∈ T(x1), u2 ∈ T(x2) and any v ∈ A(x),

⟨N(u1, v) −N(u2, v), J(x1 − x2)⟩ ≥ t ∥ x1 − x2 ∥2,
(ii) The mapping v → N(u, v) is said to be strongly accretive with respect to the mapping A, if for any

x1, x2 ∈ B there exists a constant s > 0 such that for any v1 ∈ A(x1), v2 ∈ A(x2) and any u ∈ T(x),

⟨N(u, v1) −N(u, v2), J(x1 − x2)⟩ ≥ s∥x1 − x2∥2.
Remark 2.5. I T,A are single-valued mappings and N(T(x),A(x)) = G(x), then Definition 2.4 reduces to
Definition 2.3.

Definition 2.6. The mapping N(., .) : B × B → B is said to be Lipschitz continuous with respect to first
argument, if there exists a constant β > 0 such that

∥ N(u1, .) −N(u2, .) ∥ ≤ β ∥ u1 − u2 ∥, for some u1 ∈ T(x1),u2 ∈ T(x2), x1, x2 ∈ B.

Definition 2.7. The mapping A : B → C(B) is said to be H-Lipschitz continuous if there exists a constant
η > 0 such that

H
(
A(x),A(y)

) ≤ η ∥ x − y ∥, ∀ x, y ∈ B.
where H(., .) is the Hausdorffmetric on C(B).

Let B be a real Banach space and Ω a nonempty closed convex subset of B.

Definition 2.8. ([6, 7, 12]) A mapping QΩ : B→ Ω is said to be
(i) retraction on Ω if Q2

Ω
= QΩ;

(ii) nonexpansive retraction on Ω if it satisfies the inequality

∥ QΩx −QΩy ∥ ≤ ∥ x − y ∥, ∀ x, y ∈ B;

(iii) sunny retraction on Ω if for all x ∈ B and for all 0 ≤ t < +∞,
QΩ(QΩx + t(x −QΩx)) = QΩx.

We have the following characterization of a sunny nonexpansive retraction mapping.

Proposition 2.9. ([7]) QΩ is a sunny nonexpansive retraction if and only if for all x ∈ B and for all y ∈ Ω⟨
x −QΩx, J(QΩx − y)

⟩ ≥ 0.

Proposition 2.10. ([3]) Let B be a Banach space, Ω a nonempty closed and convex subset of B, m = m(x) : B→ B
and QΩ : B→ Ω be a sunny nonexpansive retraction. Then for all x ∈ B, we have

QΩ+m(x)x = m(x) +QΩ(x −m(x)).
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3. Iterative Algorithm

In this section we first give some characterizations of solutions of (CGMCVIP).

Theorem 3.1. Let B be a Banach space, T,A : B→ C(B), N(., .) : B × B→ B, G : B→ B, QK(X) : B→ K(X) be
a sunny nonexpansive retraction and K : B→ 2B such that K(x) is nonempty closed convex subset for all x ∈ B.
Then the following statements are equivalent:

(i) x ∈ B, u ∈ T(x), v ∈ A(x) are solutions of (CGMCVIP);
(ii) x ∈ B, u ∈ T(x), v ∈ A(x) and Gx = QK(x)(Gx − τ(N(u, v))) for any τ > 0.

Proof. For the proof, we refer to [4] and references mentioned therein.

By combining Proposition 2.10 and Theorem 3.1, we have the following theorem.

Theorem 3.2. Let B be a Banach space, X a nonempty closed convex subset of B. Let T,A : B → C(B),
N(., .) : B × B → B, G : B → B, QX : B → X be a sunny nonexpansive retraction and K : B → 2B such that
K(x) = m(x) + X for all x ∈ B. Then x ∈ B, u ∈ T(x), v ∈ A(x) are solutions of (CGMCVIP) if and only if

x = x − Gx +m(x) +QX(Gx − τ(N(u, v)) −m(x)), for any τ > 0.

Algorithm 3.3. We now construct the algorithm for finding approximate solutions of (CGMCVIP). Let
K(x) = m(x) + X, where X is a nonempty closed convex subset of B and τ > 0 be fixed.

Given x0 ∈ B, take any u0 ∈ T(x0), v0 ∈ A(x0) and let

x1 = x0 − Gx0 +m(x0) +QX(Gx0 − τ(N(u0, v0)) −m(x0)).

Since T(x0) and A(x0) are nonempty and compact sets, there exist u1 ∈ T(x1), v1 ∈ A(x1) such that

∥ u0 − u1 ∥ ≤ H(T(x0),T(x1)),

∥ v0 − v1 ∥ ≤ H(A(x0),A(x1)).

Let
x2 = x1 − Gx1 +m(x1) +QX(Gx1 − τ(N(u1, v1)) −m(x1)).

By induction, we can obtain sequences {xn}, {un} and {vn} and

xn+1 = xn − Gxn +m(xn) +QX(Gxn − τ(N(un, vn)) −m(xn)), (3.1)

un ∈ T(xn), ∥ un − un+1 ∥≤ H(T(xn),T(xn+1)),

vn ∈ A(xn), ∥ vn − vn+1 ∥≤ H(A(xn),A(xn+1)),

n = 0, 1, 2 · · ·

4. Convergence Theory

We apply Algorithm 3.3 to prove the following convergence and existence result.

Theorem 4.1. Let B be a uniformly smooth Banach space with the module of smoothness ρB(t) ≤ Ct2 for some C > 0.
Let X be a closed convex subset of B, N(., .) : B×B→ B be a bifunction, T,A : B→ C(B) be the multi-valued mappings,
G,m : B → B be single-valued mappings. Let QX : B → X be a sunny nonexpansive retraction, K : B → 2B be a
multi-valued mapping such that K(x) = m(x) + X for all x ∈ B. Suppose that the following conditions are satisfied:

(i) N(., .) is strongly accretive with respect to mappings T and A with corresponding constants t > 0, s > 0;
Lipschitz continuous in both the arguments with corresponding constants β > 0 and α > 0,

(ii) G is both strongly accretive with constant γ > 0 and Lipschitz continuous with constant δ > 0,
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(iii) m is Lipschitz continuous with constant θ > 0,
(iv) T and A are H-Lipschitz continuous with constant ξ > 0 and η > 0, respectively,
(v) 0 < 2(1 − 2γ + 64Cδ2)

1
2 + 2θ + (1 − 2τ(t + s) + 64Cτ3(α2η2 + β2ξ2))

1
2 < 1.

Then there exist x ∈ B, u ∈ T(x) and v ∈ A(x) which are solutions of (CGMCVIP) and the sequences {xn}, {un}
and {vn} generated by the Algorithm 3.3 converge strongly to x, u and v, respectively i.e. xn → x, un → u and
vn → v as n→∞.

Proof. By the iterative scheme (3.1) and Proposition 2.10, we have

∥xn+1 − xn∥ = ∥xn − Gxn +m(xn) +QX(Gxn − τ(N(un, vn)) −m(xn))
− (xn−1 − Gxn−1 +m(xn−1) −QX(Gxn−1 − τ(N(un−1, vn−1)) −m(xn−1)))∥
≤ ∥xn − xn−1 − (Gxn − Gxn−1)∥ + 2∥m(xn) −m(xn−1)∥ + ∥xn − xn−1

− (Gxn − Gxn−1)∥ + ∥xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))∥
= 2∥xn − xn−1 − (Gxn − Gxn−1)∥ + 2∥m(xn) −m(xn−1)∥
+ ∥xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))∥. (4.1)

By Proposition 2.2, we have

∥xn − xn−1 − (Gxn − Gxn−1)∥2 ≤ ∥xn − xn−1∥2 − 2⟨Gxn − Gxn−1, J(xn − xn−1 − (Gxn − Gxn−1))⟩
= ∥xn − xn−1∥2 − 2⟨Gxn − Gxn−1, J(xn − xn−1)⟩
− 2⟨Gxn − Gxn−1, J(xn − xn−1 − (Gxn − Gxn−1)) − J(xn − xn−1)⟩

≤ ∥xn − xn−1∥2 − 2γ∥xn − xn−1∥2 + 4d2ρB

(4∥Gxn − Gxn−1∥
d

)
≤ ∥xn − xn−1∥2 − 2γ∥xn − xn−1∥2 + 64C∥Gxn − Gxn−1∥2

≤ (1 − 2γ + 64Cδ2)∥xn − xn−1∥2. (4.2)

By Proposition 2.2, we have

∥xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))∥2 ≤ ∥xn − xn−1∥2 − 2τ⟨N(un, vn) −N(un−1, vn−1),
J(xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))⟩
= ∥xn − xn−1∥2 − 2τ⟨N(un, vn) −N(un−1, vn−1),

J(xn − xn−1)⟩ − 2τ⟨N(un, vn) −N(un−1, vn−1),
J(xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))) − J(xn − xn−1)⟩

= ∥xn − xn−1∥2 − 2τ⟨N(un, vn) −N(un−1, vn)
+N(un−1, vn) −N(un−1, vn−1), J(xn − xn−1)⟩
− 2τ⟨N(un, vn) −N(un−1, vn−1),
J(xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))) − J(xn − xn−1)⟩
= ∥xn − xn−1∥2 − 2τ⟨N(un, vn) −N(un−1, vn),

J(xn − xn−1)⟩ − 2τ⟨N(un−1, vn) −N(un−1, vn−1),
J(xn − xn−1)⟩ − 2τ⟨(N(un, vn) −N(un−1, vn−1),
J(xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))) − J(xn − xn−1)⟩. (4.3)

Since N is strongly accretive with respect to the mappings T and A, we have

⟨N(un, vn) −N(un−1, vn), J(xn − xn−1)⟩ + ⟨−N(un−1, vn) −N(un−1, vn−1), J(xn − xn−1)⟩ ≥ (t + s)∥xn − xn−1∥2. (4.4)
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Using (4.4) and (ii) of Proposition 2.2, (4.3) becomes

∥xn − xn−1 − τ(N(un, vn) −N(un−1, vn−1))∥2 ≤ ∥xn − xn−1∥2 − 2τ(t + s)∥xn − xn−1∥2

+ 4d2ρB

(
4τ2∥N(un, vn) −N(un−1, vn−1)∥

d

)
. (4.5)

Using Lipschitz continuity of N in both the arguments and Algorithm 3.3, we estimate the following

4d2ρB

(
4τ2∥N(un, vn) −N(un−1, vn−1)∥

d

)
= 4d2ρB

(
4τ2

d
(∥N(un, vn) −N(un, vn−1) +N(un, vn−1) −N(un−1, vn−1)∥)

)
≤ 4d2ρB

(
4τ2

d
(∥N(un, vn) −N(un, vn−1)∥ + ∥N(un, vn−1) −N(un−1, vn−1)∥)

)
≤ 64Cτ3(∥N(un, vn) −N(un, vn−1)∥2 + ∥N(un, vn−1) −N(un−1, vn−1)∥2)

≤ 64Cτ3(α2∥vn − vn−1∥2 + β2∥un − un−1∥2)

≤ 64Cτ3(α2H2(A(xn),A(xn−1)) + β2H2(T(xn),T(xn−1)))

≤ 64Cτ3(α2η2∥xn − xn−1∥2 + β2ξ2∥xn − xn−1∥2)

= 64Cτ3(α2η2 + β2ξ2))∥xn − xn−1∥2. (4.6)

It is clear from the Lipschitz continuity of m that

∥ m(xn) −m(xn−1) ∥ ≤ θ ∥ xn − xn−1 ∥ . (4.7)

From (4.2)-(4.7), we have the following inequality:

∥ xn+1 − xn ∥ ≤ k ∥ xn − xn−1 ∥,

where k = 2(1 − 2γ + 64Cδ2)
1
2 + 2θ + (1 − 2τ(t + s) + 64Cτ3(α2η2 + β2ξ2))

1
2 and 0 < k < 1 by (v).

Consequently, {xn} is a Cauchy sequence, and thus, converges to some x ∈ B. Now we prove that
un → u ∈ T(x) and vn → v ∈ A(x). From Algorithm 3.3, we have

∥ un+1 − un ∥ ≤ H(T(xn+1),T(xn)) ≤ ξ ∥ xn+1 − xn ∥

and
∥ vn+1 − vn ∥ ≤ H(A(xn+1),A(xn)) ≤ η ∥ xn+1 − xn ∥

which imply that the sequence {un} and {vn} are Cauchy sequences in B. Let un → u and vn → v. Since
QX, G, T, A, N(., .) and m are continuous in B, we have

x = x − Gx +m(x) +QX(GX − τ(N(u, v)) −m(x)).

It remains to show that u ∈ T(x) and v ∈ A(x). In fact,

d(u,T(x)) = inf {∥ u − w ∥: w ∈ T(x)}
≤∥ u − un ∥ +d(un,T(x))
≤∥ u − un ∥ +H(T(xn),T(x))
≤∥ u − un ∥ +ξ ∥ xn − x ∥→ 0.

Hence d(u,T(x)) = 0 and therefore u ∈ T(x). Similarly, we can prove that v ∈ A(x). The result then follows
from Theorem 3.2.
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