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Abstract. In this paper we use transitivity property of the automorphism group of the Kneser graph to
calculate its Wiener, Szeged and PI indices.

1. Introduction

All graphs in this paper are simple and connected. In general a graph is denoted by G = (V,E), where V
is the set of vertices of G and E is the set of edges of G. If z,u, v ∈ V and e = uv ∈ E, then the edge connecting
u to v is denoted by uv ∈ E. Also all graphs considered in this paper are finite in a sense that both V and
E are finite sets. For vertices u and v in V, a path from u to v is a sequence of vertices u = u0,u1, ..., un = v
such that uiui+1 ∈ E where 0 ≤ i ≤ n − 1. In this case n is called the length of the path form u to v. The
length of the shortest path from u to v is called the distance between u and v and is denoted by d(u, v) and
d(z, e) := min{d(z,u), d(z, v)}. The Wiener index of the graph G is denoted by W(G) and is defined by:

W(G) =
∑
{u,v}⊆V

d(u, v).

If the sum of distances from a vertex v in V is denoted by d(v), i. e.

d(v) =
∑
x∈V

d(v, x),

then

W(G) = (1/2)
∑
v∈V

d(v).

The Wiener index for the first time was proposed in [14] in connection with the boiling points of chemical
substances. The definition of the Wiener index in terms of the distances between vertices of a graph is give
by Hosoya in [10]. Because of the above chemical fact about the Wiener index and also the fact that it is an
invariant of the graph, i. e. it is invariant under the automorphism group of the graph, various methods
have been developed to calculate it, for example one can refer to [4, 8].
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Apart from the Wiener index, there are numerous indices associated to a graph which are invariant
under the automorphism group of the graph. Another topological index that we are interested in is called
the Szeged index and is defined as follows. Let G = (V,E) be a simple connected graph and e = uv be an
edge in E. By nu(e|G) we mean the number of vertices in V lying closer to u than v. The quantity nv(e|G) is
defined similarly. Therefore if we define the sets

Nu(e|G) = {w ∈ V | d(w,u) < d(w, v)} and Nv(e|G) = {w ∈ V | d(w, v) < d(w,u)},

then nu(e|G) = |Nu(e|G)| and nv(e|G) = |Nv(e|G)|.
The Szeged index of the graph G = (V,E) is defined by the formula

Sz(G) =
∑

e=uv∈E

nu(e|G)nv(e|G)

Because of the importance of the Szeged index its calculation has been studied by several authors. To
mention a few, one can refer to [5, 9, 11]. A different method of calculating the topological indices, based on
the properties of the automorphism group of the graph, was initiated in [1, 2] and the method was extended
and applied to some well-known graphs. Also this method is used in [15] to compute the Szeged index of
a symmetric graph.

Since the Szeged index takes into account how the vertices of the graph G are distributed, it is natural
to define an index that takes into account the distribution of the edges of G. The Padmakar-Ivan PI-index,
[12, 13] is an additive index which takes into account the distribution of the edges of the graph and therefore
complements the Szeged index in a certain sense. The next topological index that we are interested in is
called the PI-index and is defined as follows. Let G = (V,E) be a simple connected graph and e = uv be an
edge in E. By neu(e|G) we mean the number of edges in E lying closer to u than v. The quantity nev(e|G) is
defined similarly. Therefore if we define the sets

Neu(e|G) = { f ∈ E | d( f ,u) < d( f , v)} and Nev(e|G) = { f ∈ E | d( f , v) < d( f ,u)},

then neu(e|G) = |Neu(e|G)| and nev(e|G) = |Nev(e|G)|.
The PI-index of the graph G = (V,E) is defined by the formula

PI(G) =
∑

e=uv∈E

(
neu(e|G) + nev(e|G)

)
.

In this paper our aim is to use this method which applies group theory to graph theory. For materials
from the theory of groups and graph theory one can see [3] and [7]. We also use this method to calculate
the Wiener, the Szeged and the PI-index of the Kneser graph. It could be applied to the recently introduced
GA2 index [6] as well.

2. Concepts and results

In this section we will use some definitions and theorem from [1] to calculate the Wiener, Szeged and
PI-index of graphs.

Definition 2.1. Let G be a group which acts on a set X. Let us denote the action of σ ∈ G on x ∈ X by xσ.
Then G is said to act transitively on X if for every x, y ∈ X there is σ ∈ G such that xσ = y.

Definition 2.2. Let G = (V,E) be a graph. An automorphism σ of G is a one-to-one mapping from V to V
which preserves adjacency, i. e. e = uv is an edge of G if and only if eσ := uσvσ is also an edge of G. The set
of all the automorphisms of the graph G is a group under the usual composition of mappings. This group
is denoted byAut(G) and is a subgroup of the symmetric group on X.
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From Definition 2.2 it is clear thatAut(G) acts on the set V of vertices of G. This action induces an action
on the set E of edges of G. In fact if e = uv is an edge of G and σ ∈ Aut(G) then eσ = uσvσ is an edge of G and
this is a well-defined action ofAut(G) on E.

Definition 2.3. Let G = (V,E) be a graph. G is called vertex-transitive ifAut(G) acts transitively on the set X
of vertices of G. IfAut(G) acts transitively on the set E of edges of G, then G called an edge-transitive graph.

Theorem 2.4. Let G = (V,E) be a simple vertex-transitive graph and let v ∈ V be a fixed vertex of G. Then

W(G) = (1/2) |V| d(v),

where

d(v) =
∑
x∈V

d(v, x).

Theorem 2.5. Let G = (V,E) be a simple edge-transitive graph and let e = uv be a fixed edge of G. Then the Szeged
index of G is as follows:

Sz(G) = |E|nu(e|G)nv(e|G).

Theorem 2.6. Let G = (V,E) be a simple edge-transitive graph and let e = uv be a fixed edge of G. Then the PI-index
of G is as follows:

PI(G) = |E|
(
neu(e|G) + nev(e|G)

)
.

3. Computing the Wiener, the Szeged and PI-index of the Kneser graph

Definition 3.1. The Kneser graph KGn,k is the graph whose vertices correspond to the k-element subsets of
a set of n elements, and where two vertices are connected if and only if the two corresponding sets are
disjoint. Clearly we must impose the restriction n ≥ 2k. Kneser graphs are named after Martin Kneser, who
first investigated them. Therefore KGn,k has

(n
k
)

vertices, it is regular of degree
(n−k

k
)
. The number of edges

of KGn,k is (1/2)
(n

k
)(n−k

k
)
.

The complete graph on n vertices is the Kneser graph KGn,1. The Kneser graph KG2n−1,n−1 is known as
the odd graph On, the odd graph O3 = KG5,2 is isomorphic to the Petersen graph.

If σ is a permutation of Ω and A ⊆ Ω then Aσ is defined by Aσ := {aσ|a ∈ A} which is again a subset
of Ω of cardinality |A|. Therefore each permutation of Ω induces a permutation on the set of vertices of
KGn,k. If AB is an edge of KGn,k, then A and B are subset of Ω with cardinality k, where |A ∩ B| = ∅ and for
any permutation σ of Ω we have |Aσ ∩ Bσ| = |A ∩ B| = ∅, which proves that σ is an element of Aut(KGn,k).
Therefore we have proved the following theorem:

Theorem 3.2. The automorphism group of the Kneser graph KGn,k contains a subgroup isomorphic to the symmetric
group on n letters.

From the above fact we can show vertex and edge transitivity of the Kneser graph.

Lemma 3.3. The Kneser graph is both vertex and edge transitive.

Proof. Let Ω be a set of size n. Without loss of generality we may assume Ω = {1, 2, ..., n}. Let the Kneser
graph be defined on Ω. Consider two distinct vertices A and B of KGn,k. We may assume A = {1, 2, ..., k},
B = {1′, 2′, ..., k′}.Then we set Ω − A = {k + 1, ..., n} and Ω − B = {(k + 1)′, ..., n′} and both are subsets of Ω.
Then π : Ω→ Ω defined by i→ i′ is an element of the symmetric group Sn which by Theorem 4 induces an
element ofAut(KGn,k) and Aπ = B. This proves that KGn,k is vertex-transitive.
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Now assume AB and CD are distinct edges of KGn,k. To prove edge-transitivity of KGn,k it is enough to
show that there is a permutation π on Ω such that Aπ = C and Bπ = D. Without loss of generality we may
assume that A = {1, 2, ..., k−1, k},B = {k+1, ..., 2k−1, 2k},C = {1′, 2′, ..., (k−1)′, k′},D = {(k+1)′, ..., (2k−1)′, (2k)′}.
Then we set Ω − (A ∪ B) = {2k + 1, ..., n} and Ω − (C ∪ D) = {(2k + 1)′, ..., n′} and both subsets Ω. Now the
permutation π : Ω→ Ω defined by i→ i′ has the required property and the lemma is proved.

Lemma 3.4. Let k ≥ 2 and n ≥ 2k + 2. Then for any two vertices like u and v in KGn,k we have:
(a) d(u, v) ≤ 2 if n ≥ 3k − 1,
(b) d(u, v) ≤ 3 if n < 3k − 1.

Proof. Case (a)
Let u, v be two distinct vertices in KGn,k. We consider two cases:
(1) u ∩ v = ∅
In this case we have d(u, v) = 1.
(2) |u ∩ v| = i, 1 ≤ i ≤ k − 1
Let Ω = {1, 2, ..., n} and u, v be two distinct subset of Ω each of cardinality k. We show that there is a

shortest path of length 2 from u to v. Without loss of generality we may assume that u = {1, 2, ..., i, i+ 1, ..., k}
and v = {1, 2, ..., i, k + 1, ..., 2k − i} such that 1 ≤ i ≤ k − 1. We consider c = {2k, ..., 3k − 1} which is possible
because n ≥ 3k − 1 therefore ucv is a shortest path of length 2 from u to v.

Case (b)
Let u, v be two distinct vertices in KGn,k. We consider two cases:
(1) u ∩ v = ∅
In this case we have d(u, v) = 1.
(2) |u ∩ v| = i, 1 ≤ i ≤ k − 1
Let Ω = {1, 2, ..., n} and u, v be two distinct subset of Ω each of cardinality k. We show that there is

a path from u to v such that d(u, v) = 2 or 3. If i = k − 1 without loss of generality we may assume that
u = {1, 2, ..., k − 1, k}, v = {1, 2, ..., k − 1, k + 1} and f = {k + 2, ..., 2k + 1} therefore u f v is a path from u to v such
that d(u, v) = 2. Now if 1 ≤ i ≤ k − 2 without loss of generality we may assume that u = {1, 2, ..., i, i + 1, ..., k}
and v = {1, 2, ..., i, k+ 1, ..., 2k− i}. We consider c = {k+ 1, ..., 2k}, d = {i+ 1, ..., k, 2k+ 1, ..., 2k+ i} therefore ucdv
is a path from u to v such that d(u, v) = 3.

By Lemma 3.4 the following Corollary follows:

Corollary 3.5. For a positive integer k ≥ 2 and n ≥ 2k + 1, the Kneser graph KGn,k is connected.

Theorem 3.6. Let k ≥ 2 and n ≥ 2k + 2. The Wiener index of KGn,k is:
(1) If n ≥ 3k − 1 then we have

W(KGn,k) = (1/2)
(
n
k

)((
n − k

k

)
+ 2

((n
k

)
− 1 −

(
n − k

k

)))
.

(2) If n < 3k − 1, then we have

W(KGn,k) = (1/2)
(
n
k

)((
n − k

k

)
+ 2

( n−2k∑
j=1

(
k

k − j

)(
n − 2k

j

))
+ 3

((n
k

)
− 1 −

(
n − k

k

)
−

n−2k∑
j=1

(
k

k − j

)(
n − 2k

j

)))
.

Proof. By Lemma 3.3, KGn,k is vertex-transitive and by Theorem 2.4:

W(KGn,k) = (1/2)
(
n
k

)
d(A)

where A is a fixed vertex of KGn,k and d(A) =
∑

B d(A,B),where B is a subset of Ωwith cardinality k.



R. Mohammadyari, M.R. Darafsheh / Filomat 26:4 (2012), 665–672 669

Case (1) By Lemma 3.4 for any vertex like u ∈ V, the number of vertices like v such that d(u, v) = i,
0 ≤ i ≤ 2 is calculated as follows:

if d(u, v) = 0, then the number of choices for v is 1, and if d(u, v) = 1 then the number of choices for v is(n−k
k
)

and if d(u, v) = 2 then the number of choices for v is
((n

k
) − 1 − (n−k

k
))

. Therefore we have

W(KGn,k) = (1/2)
(
n
k

)((
n − k

k

)
+ 2

((n
k

)
− 1 −

(
n − k

k

)))
.

Case (2) By Lemma 3.4 for any vertex like u ∈ V, the number of vertices like v such that d(u, v) = t,
0 ≤ t ≤ 3 is calculated as follows:

if d(u, v) = 0, then the number of choices for v is 1, if d(u, v) = 1 then the number of choices for v is
(n−k

k
)
,

if d(u, v) = 2 then the number of choices for v is
(∑n−2k

j=1
( k

k− j
)(n−2k

j
))

and if d(u, v) = 3 then the number of

choices for v is
((n

k
) − 1 − (n−k

k
) − (∑n−2k

j=1
( k

k− j
)(n−2k

j
)))

. Therefore we have

W(KGn,k) = (1/2)
(
n
k

)((
n − k

k

)
+ 2

n−2k∑
j=1

(
k

k − j

)(
n − 2k

j

) + 3
((n

k

)
− 1 −

(
n − k

k

)
−

n−2k∑
j=1

(
k

k − j

)(
n − 2k

j

)))
.

Lemma 3.7. Let e = uv ∈ E(KGn,k).
(1) If n ≥ 3k − 1, to calculate nu(e|KGn,k) it is enough to calculate vertices like z in V such that d(u, z) ≤ 1 and

d(u, z) < d(v, z),
(2) If n < 3k − 1 ,to calculate nu(e|KGn,k) it is enough to calculate vertices like z in V such that d(u, z) ≤ 2 and

d(u, z) < d(v, z).

Proof. Case (1) , n ≥ 3k − 1, by Lemma 3.4 for vertices like u, v, z such that u , v we have three cases:
(a) d(u, z) = 0, then u = z, therefore z ∈ Nu(e|KGn,k).
(b) d(u, z) = 1, then d(v, z) = 0 or 1 or 2. If d(v, z) = 0 or 1, then z < Nu(e|KGn,k) but if d(v, z) = 2, then

z ∈ Nu(e|KGn,k).
(c) d(u, z) = 2, then d(v, z) = 0 or 1 or 2, therefore z < Nu(e|KGn,k).
Case (2) , n < 3k − 1, by Lemma 3.4 for vertices like u, v, z such that u , v we have four cases:
(a) d(u, z) = 0, then u = z, therefore z ∈ Nu(e|KGn,k).
(b) d(u, z) = 1, then d(v, z) = 0 or 1 or 2 or 3. If d(v, z) = 0 or 1, then z < Nu(e|KGn,k) but if d(v, z) = 2 or 3,

then z ∈ Nu(e|KGn,k).
(c) d(u, z) = 2, then d(v, z) = 0 or 1 or 2 or 3. If d(v, z) = 0 or 1 or 2, then z < Nu(e|KGn,k) but if d(v, z) = 3,

then z ∈ Nu(e|KGn,k).
(d) d(u, z) = 3, then d(v, z) = 0 or 1 or 2 or 3, therefore z < Nu(e|KGn,k).

Theorem 3.8. Let k ≥ 2 and n ≥ 2k + 2. The Szeged index of KGn,k is:
(1) If n ≥ 3k − 1 then we have

Sz(KGn,k) = (1/2)
(
n
k

)(
n − k

k

)((
n − k

k

)
−

(
n − 2k

k

))2

.

(2) If n < 3k − 1, then we have

Sz(KGn,k) = (1/2)
(
n
k

)(
n − k

k

) n−2k∑
j=1

(
k

k − j

)(
n − 2k

j

)
+ 1


2

.
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Proof. Since by Lemma 3.3, KGn,k is edge-transitive, we can use Theorem 2.5 to write

Sz(KGn,k) = (1/2)
(
n
k

)(
n − k

k

)
nu(e|KGn,k)nv(e|KGn,k),

where e = uv is a fixed edge of KGn,k. Since KGn,k is a symmetric graph therefore nu(e|KGn,k) = nv(e|KGn,k),
hence

Sz(KGn,k) = (1/2)
(
n
k

)(
n − k

k

)(
nu(e|KGn,k)

)2
.

We proceed to calculate nu(e|KGn,k). We define Ei, 0 ≤ i ≤ 2 to be the number of vertices like x in V such that
d(u, x) = i and d(u, x) < d(v, x)

Case (1) By Lemma 3.7 it is enough to calculate E0 and E1. It is obvious that E0 = 1 and E1 =(n−k
k
) − 1 − (n−2k

k
)
. Then we have

Sz(KGn,k) = (1/2)
(
n
k

)(
n − k

k

)((
n − k

k

)
−

(
n − 2k

k

))2

.

Case (2) By Lemma 3.7 it is enough to calculate E0,E1 and E2. It is obvious that E0 = 1,E1 =
(n−k

k
)−1. Now

we calculate E2 =
(∑n−2k

j=1
( k

k− j
)(n−2k

j
)) − E1, in fact for vertices like z such that d(u, z) = 2 and d(u, z) < d(v, z),

we have |u∩ z| = k− j where 1 ≤ j ≤ n− 2k. Therefore the number of vertices like z such that d(u, z) = 2 and

d(u, z) < d(v, z) is
(∑n−2k

j=1
( k

k− j
)(n−2k

j
)) − E1 where E1 is the number of vertices like r such that d(v, r) = 1. Then

we have

Sz(KGn,k) = (1/2)
(
n
k

)(
n − k

k

) n−2k∑
j=1

(
k

k − j

)(
n − 2k

j

)
+ 1


2

.

Theorem 3.9. Let k ≥ 2 and n ≥ 2k + 2. The PI-index of KGn,k is:
(1) If n ≥ 3k − 1, then we have

PI(KGn,k) =
(
n
k

)(
n − k

k

)
(E0 + E1),

where E0 =
(n−k

k
) − 1 and

E1 = (1/2)
( k−1∑

i=1

(
k

k − i

)(
n − 2k

i

)((n − 2k
k

)
−

(
n − 2k − i

k

)))
+

k−1∑
i=1

(
k

k − i

)(
n − 2k

i

)((
n − k

k

)
−

(
n − k − i

k

)
−

((n − 2k
k

)
−

(
n − 2k − i

k

)))
,

(2) If n < 3k − 1, then we have

PI(KGn,k) =
(
n
k

)(
n − k

k

)
(S0 + S1 + S2),
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where S0 =
(n−k

k
) − 1,

S1 =

n−2k∑
j=1

((n − k
k

)
−

(
n − k − j

k

))( k
k − j

)(
n − 2k

j

)
,

and

S2 =

n−2k∑
j=1

((n − k
k

)
−

(
n − k − j

k

))((n − k
k

)
− 1

)
.

Proof. Since by Lemma 3.3, KGn,k is edge-transitive, we can use Theorem 2.6 to write

PI(KGn,k) = (1/2)
(
n
k

)(
n − k

k

)(
neu(e|KGn,k) + nev(e|KGn,k)

)
,

where e = uv is a fixed edge of KGk. Since KGn,k is a symmetric graph, therefore neu(e|KGn,k) = nev(e|KGn,k),
hence

PI(KGn,k) =
(
n
k

)(
n − k

k

)
neu(e|KGn,k).

We proceed to calculate neu(e|KGn,k).
Case (1) , n ≥ 3k− 1, by Lemma 3.7 we define Ei, 0 ≤ i ≤ 1 to be the number of edges like 1 in E such that

d(u, 1) = i and d(u, 1) < d(v, 1). E0 =
(n−k

k
) − 1, to calculate E1 we consider two cases:

(a) Let w ∈ V, where u,w are adjacent and |w ∩ v| = k − i where 1 ≤ i ≤ k − 1. In this case we calculate
the number of edges like f = st where s, t ∈ V, d(u, t) = d(s, u) = 1 and d(v, f ) > 1. If |w ∩ v| = k − i where
1 ≤ i ≤ k − 1 then the number of vertices like r such that d(u, r) = d(v, r) = d(w, r) = 1 is

(n−2k−i
k

)
and the

number of choices w is
( k

k−i
)(n−2k

i
)

and the number of vertices that adjacent to w,u but are not adjacent to v is( k
k−i

)(n−2k
i

)((n−2k
k

) − (n−2k−i
k

))
. Therefore the number of all edges in this case is

(1/2)
( k−1∑

i=1

(
k

k − i

)(
n − 2k

i

)((n − 2k
k

)
−

(
n − 2k − i

k

)))
.

(b) Let w ∈ V,where u,w are adjacent and |w∩v| = k− i where 1 ≤ i ≤ k−1. In this case we calculate the
number of edges like 1 = ac where a, c ∈ V and d(u, a) = 1, d(c,u) = 2 or d(u, a) = 2, d(c,u) = 1. It is enough to
calculate the number of vertices like t where d(w, t) = 1, d(u, t) = 2 and d(v, t) > 2. If |w∩ v| = k− i where 1 ≤
i ≤ k−1 then the number of choices for t is

(n−k
k
)−(n−k−i

k
)−((n−2k

k
)−(n−2k−i

k
))

. In fact
(n−k−i

k
)

is the number of edges

like h such that d(v, h) = 1 and
(n−2k

k
)− (n−2k−i

k
)

is the number of edges that calculated in case(a). Therefore the

number of all edges in this case is
∑k−1

i=1
( k

k−i
)(n−2k

i
)((n−k

k
)−(n−k−i

k
)−((n−2k

k
)−(n−2k−i

k
)))
,hence the number of all edges

in the cases (a), (b) is (1/2)
(∑k−1

i=1
( k

k−i
)(n−2k

i
)((n−2k

k
)− (n−2k−i

k
)))
+
∑k−1

i=1
( k

k−i
)(n−2k

i
)((n−k

k
)− (n−k−i

k
)− ((n−2k

k
)− (n−2k−i

k
)))

.

Therefore PI(KGn,k) =
(n

k
)(n−k

k
)
(E0 + E1),where E0 =

(n−k
k
) − 1 and

E1 = (1/2)
( k−1∑

i=1

(
k

k − i

)(
n − 2k

i

)((n − 2k
k

)
−

(
n − 2k − i

k

)))
+

k−1∑
i=1

(
k

k − i

)(
n − 2k

i

)((
n − k

k

)
−

(
n − k − i

k

)
−

((n − 2k
k

)
−

(
n − 2k − i

k

)))
,
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Case (2) , n < 3k − 1, by Lemma 3.7 we define Si, 0 ≤ i ≤ 2 to be the number of edges like 1 in E such that

d(u, 1) = i and d(u, 1) < d(v, 1). S0 =
(n−k

k
)−1, and similar to case(b) above S1 =

∑n−2k
j=1

( k
k− j

)(n−2k
j

)((n−k
k
)− (n−k− j

k

))
.

Now to calculate S2 it is enough we calculate the number of edges like X ∈ E such that d(u,X) = 2 and

d(u,X) < d(v,X), therefore S2 =
∑n−2k

j=1

((n−k
k
) − (n−k− j

k

))((n−k
k
) − 1

)
, because if let w ∈ V,where u,w are adjacent

and |w ∩ v| = k − j where 1 ≤ j ≤ i, then the number of vertices like r such that d(v, r) = d(r,w) = 1 is
(n−k− j

k

)
,

therefore the number of edges like f such that d(u, f ) = 2 and d(u, f ) < d(v, f ) is
((n−k

k
) − (n−k− j

k

))((n−k
k
) − 1

)
where in fact

(n−k
k
)− (n−k− j

k

)
is the number of vertices like s such that d(w, s) = 1, d(u, s) = 2 and d(u, s) < d(v, s)

and
(n−k

k
) − 1 is the number of vertices like z ∈ V such that d(s, z) = 1 and d(u, z) = 3. Hence we have

PI(KGn,k) =
(n

k
)(n−k

k
)
(S0 + S1 + S2), where S0 =

(n−k
k
) − 1, S1 =

∑n−2k
j=1

((n−k
k
) − (n−k− j

k

))( k
k− j

)(n−2k
j

)
, and S2 =∑n−2k

j=1

((n−k
k
) − (n−k− j

k

))((n−k
k
) − 1

)
.
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