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Some remarks on the brachistochrone problem with Coulomb friction

Marian Mureşana

a“Babeş-Bolyai” University, Faculty of Mathematics and Computer Science, M. Kogălniceanu str., RO-400084, Cluj-Napoca, România

Abstract. This paper introduces some results on the brachistochrone problem with Coulomb friction and
nonzero initial velocity. The following boundary conditions are considered hereafter: fixed end points and
fixed initial and final velocities.

1. Introduction

1.1. The mathematical statement of the problem

The aim of this section is to introduce the brachistochrone problem. A seminal paper on this topic from
the time of Johann Bernoulli till nowdays with modern ideas and results is [21].

The figures of the present paper were drawn by Mathematica R⃝.
The first problem formulated in terms that now belongs to what is called the calculus of variations was

stated by Johann Bernoulli in June 1696 in Acta Eruditorum, a journal directed by G. W. Leibniz.
The problem stated by J. Bernoulli is also called the brachistochrone problem or the least time sliding, [7,

p. 5], [13, pp. 100–102], [14, p. 33], [1, p. 25], and reads as follows. Find the shape of the curve down which
a bead sliding from rest and accelerated by gravity will slip (without friction) from one point to another in
the least time. The term derives from the Greek βραχιστoσ (brachistos) ”the shortest” and χρoνoσ (chronos)
”time, delay”. So this is a minimum time problem.

In a more modern language this problem is stated as follows. Consider in a vertical plane a rectangular
system of axes so that Ou is the horizontal axis and Ox the vertical axis oriented vertically downwards the
smooth curves connecting two fixed points A = (u0, x0) and B = (u1, x1) with 0 ≤ u0 , u1, 0 ≤ x0 < x1. Find
the shape of the smooth curve down which a bead sliding with initial speed v0 ≥ 0 downward from A
and accelerated by gravity will slip (without friction) to B in the least time. The case with nonzero kinetic
friction is stated and discussed only for uniform and for Coulomb friction in Section 2.

We try to rephrase this problem in a mathematical language. Based on the law of conservation of energy
we write

mv2

2
−

mv2
0

2
= m1(x − x0),
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where 1 is the gravitational acceleration. Thus the movement equation becomes

v(u) =
√

21
√

x − xa , with xa = x0 −
v2

0

21
.

Because of v = ds/ dt, where s is the arc length, [20], we have that dt =
ds√

21
√

x − xa
.

Therefore the time needed to follow the arc is

t =
∫

⌢
AB

ds√
21
√

x − xa
=

1√
21

∫ u1

u0

√
1 + x′2(u)
x(u) − xa

du,

where (·)′ represents the derivative of the quantity (·) with respect to time t.

We conclude that the time t depends on the
⌢

AB arc, i.e., on the function that represents this arc. We
also have two boundary constraints, namely x(u0) = x0 and x(u1) = x1. The arcs satisfying the last two
constraints are said to be admissible arcs or feasible arcs to this problem. By an arc we understand an
absolutely continuous function, [3, p. 4].

A survey on the brachistochrone problem without friction can be found in [17].

1.2. The Euler-Lagrange, Weierstrass-Erdmann, and the transversality necessary conditions

For our purposes we use some notions and notations from [7, Chapter 2]. Euler-Lagrange, Weierstrass-
Erdmann, and the transversality necessary conditions are useful to us. To state these necessary conditions
we consider the problem

minΛ[x], Λ[x] =
∫ b

a
L(t, x(t), x′(t)) dt, x(t) = (x1(t), . . . , xn(t)), (1)

with phase constraints and boundary constraints

(t, x(t)) ∈ T ⊂ [a, b] ×Rn, for all t ∈ [a, b], (a, x(a), b, x(b)) ∈ B. (2)

We suppose that

T = cl (int T), B ⊂ R1+n+1+n closed and L(t, x, v) ∈ C1(T ×Rn;R). (3)

The set Ω ⊂ AC([a, b];Rn) of feasible arcs is defined as

Ω = {x | (t, x(t)) ∈ T, t ∈ [a, b], L(·, x(·), x′(·)) ∈ L1([a, b]) and (a, x(a), b, x(b)) ∈ B}. (4)

If the set B is a singleton, we do not need any other assumption. Otherwise there are necessary some
assumptions on, at least, a neighborhood B0 of the point e[x] = (a, x(a), b, x(b)) ∈ B. In such cases it is
necessary that B0 be a manifold of class C1 of dimension k, 0 ≤ k ≤ 2n+ 1, and having a tangent hyperplane
B′ at e[x] whose vectors are denoted

h = (τ1, ξ1, τ2, ξ2), ξ1 = (ξ1
1, . . . , ξ

1
1) = ( dx1

1, . . . , dxn
1), ξ2 = (ξ1

2, . . . , ξ
1
2) = ( dx1

2, . . . , dxn
2).

In what follows ⟨·, ·⟩ denotes the inner product in Rn.

Theorem 1.1. ([7]) Consider problem (1)–(2) together with conditions (3)–(4) and let x∗(t), a ≤ t ≤ b, be an arc with
essential bounded derivative, (t, x∗(t)) ∈ int T, t ∈ [a, b]. Suppose that x∗ supplies a strong local minimum of problem
(1)–(2). Then
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(a) (Euler-Lagrange necessary condition) The n functions Lvi (·, x
∗(·), x∗′(·)) coincide a.e. with the n absolutely

continuous functions, let −λi(·) and −λ′i (t) = Lxi(t, x
∗(t), x∗′(t)). Thus we may write

d(Lvi(t, x
∗(t), x∗′(t))

dt
= Lxi(t, x

∗(t), x∗′(t)), a.e. t ∈ [a, b], i = 1, . . . ,n.

In vectorial form the function λ(t) = −Lv(t, x∗(t), x∗′(t)) is absolutely continuous and

d(Lv(t, x∗(t), x∗′(t))
dt

= Lx(t, x∗(t), x∗′(t)), a.e. t ∈ [a, b].

(b) (Weierstrass-Erdmann necessary condition) If x∗ is continuous with piecewise continuous derivative on the
interval [a, b], then at each point t0 of the first kind of discontinuity of x∗′, we have

Lvi (t0, x∗(t0), x∗′(t0 − 0)) = Lvi (t0, x∗(t0), x∗′(t0 + 0)), i = 1, . . . ,n,

L(t0, x∗(t0), x∗′(t0 − 0)) − ⟨
x∗′(t0 − 0), Lv(t0, x∗(t0), x∗′(t0 − 0))

⟩
=L(t0, x∗(t0), x∗′(t0 + 0)) − ⟨

x∗′(t0 + 0), Lv(t0, x∗(t0), x∗′(t0 + 0))
⟩
.

(c) (Transversality necessary condition) In the case of free boundary problems let B′ be the tangent hyperplane to
B at e[x] = (a, x∗(a), b, x∗(b)). Consider h = (τ1, ξ1, τ2, ξ2) = ( dt1, dx1, dt2, dx2) an arbitrary element in B′. Then
the following transversality equality

∆ =


L −

n∑
i=1

x∗i
′Lvi

 dt +
n∑

i=1

Lvi dxi


∣∣∣∣∣∣∣
(b,x∗(b))

(a,x∗(a))

= 0

is true for all tangent vectors h = ( dt1, dx1, dt2, dx2) ∈ B′, the tangent hyperplane to B at (a, x∗(a), b, x∗(b)). Here
the coefficients of dt and dxi are the absolutely continuous functions M(·), respectively, −λ(·) evaluated at the points
(a, x∗(a)) and (b, x∗(b)). If B has at (a, x∗(a), b, x∗(b)) only a tangent cone B′, then ∆ ≥ 0, for all h ∈ B′.

1.3. The Lagrange multipliers rule for a Bolza problem
The problem to be considered in this subsection is that of finding in the class C1[a, b] the arcs

xi = xi(t), i = 1, . . . , n, t ∈ [a, b], (5)

satisfying the differential equations and boundary conditions

φα(t, x, x′) = 0, α = 1, . . . ,m < n, (6)
ψµ(a, x(a), b, x(b)) = 0, µ = 1, . . . , p ≤ 2n + 2, (7)

on which minimizes a Bolza functional of the form

I = G(a, x(a), b, x(b)) +
∫ b

a
f (t, x, x′) dt. (8)

Theorem 1.2. ([15], [5]) Suppose that the functions φ,ψ,G, and f are of class C2. For every minimizing arc x∗ for
the problem of Bolza (5)–(8) there exist constants ci and a function

F = λ0 f +
m∑
α=1

λα(t)φα

such that the equations

Fx′i
=

∫ t

a
Fxi ds + ci, φα = 0, t ∈ [a, b],
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hold at every point of x∗, furthermore such that the end-points of x∗ satisfy, besides the equations ψµ = 0, the condition
that F −

n∑
i=1

x′i Fxi′

 dt +
n∑

i=1

Fx′i
dxi

∣∣∣∣∣∣∣
b

a

+ λ0 dG = 0

for every set of differentials dt1, dxi1 , dt2, dxi2 which satisfy the equations dψµ = 0. The first multiplier λ0 is a
constant, and the multipliers λα(·) are continuous except possible at the values of t defining corners of x∗. The elements
of the set λ0, λα(·) do not vanish simultaneously at any point of x∗.

2. Brachistochrone with Coulomb friction

We here introduce the brachistochrone problem with friction. The case of uniform friction with zero
initial velocity is discussed in Subsection 2.2. Subsection 2.3 is dedicated to the brachistochrone problem
with Coulomb friction and nonzero initial velocity.

2.1. Kinematics of a particle

Let a Cartesian coordinate system uOx coincides with a vertical plane so that Ou is the horizontal axis
and Ox is the axis oriented vertically upwards (see Fig. 1). We are looking for the smooth curves connecting
two fixed points A = (u0, x0) and B = (u1, x1) with u0,u1 ≥ 0, u0 , u1, and 0 ≤ x1 < x0 so that a bead M
sliding with initial speed v0 ≥ 0 downward from A and accelerated by gravity will slip with a nonlinear
kinetic friction to B in the least time T.

B

A

M

u

x

Θ

i

j

Τ

Υ

v

mg

fΜ
fΥ

Γ

r

O

Figure 1: Curvilinear motion

We suppose for the beginning that there exists a solution represented by a sufficiently smooth curve γ
and an arbitrary point M lying on γ. Let τ be the unit tangent vector to γ at M, v be the velocity vector of the
bead M, ν be the unit normal vector to γ at M, g be the acceleration gravity vector, fµ be the friction force,
fν be the normal component of the constraint reaction force, θ be the slope angle of the tangent, and i and j
be the unit vectors of the Cartesian coordinate system uOx.

The position of a particle M relative to the coordinate system uOx is determined by the position vector
r (see Fig. 1). The particle M is moving from A to B, so its position vector r is a function of time t, i.e.,

r = r(t) = (u(t), x(t)).
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The velocity of the particle M at time t is defined as

v = v(t) =
dr(t)

dt
= (u′(t), x′(t)).

Denote v(t) = ∥v(t)∥ and 1 = ∥g∥. Then ∥τ∥ = ∥ν∥ = ∥i∥ = ∥j∥ = 1 and ⟨τ, ν⟩ = ⟨
i, j

⟩
= 0. From Fig. 1, we have

that

τ = − cosθi − sinθj, ν = − sinθi + cosθj,
dτ
dθ
= sinθi − cosθj = −ν,

i = − cosθ τ − sinθν, j = − sinθ τ + cosθν, v = −v cosθi − v sinθj

and

u′(t) = −v(t) cosθ, x′(t) = −v(t) sinθ, (9)

v(t) =
√

u′2(t) + x′2(t), θ′(t) =
u′(t)x′′(t) − u′′(t)x′(t)

v2(t)
.

It is obvious that ∥ dτ/ dθ∥ = 1 and ⟨τ, dτ/ dθ⟩ = 0.
The acceleration of the particle M at instant t is defined and expressed as

a = a(t) =
dv(t)

dt
=

d2r(t)
dt2 =

d(v(t)τ)
dt

=
dv(t)

dt
τ + v(t)

dθ
dt

dτ
dθ

.

Thus we have

a(t) = v′(t) τ + v(t)θ′(t)
dτ
dθ

. (10)

Newton’s second law of the motion of the particle M is

ma = w + fµ + fν, (11)

where w is the weight of the particle, i.e.,

w = mg = −m1j = m1
(
sinθ τ + cosθ

dτ
dθ

)
, (12)

fµ is the friction force,

fµ(t) = − f (t)τ(t), (13)

and fν is the normal component of the constraint reaction force,

fν(t) = n(t)
dτ
dθ

. (14)

Taking into account (10) and (12)–(14), Eq. (11) can be written as

m
(
v′(t) τ + vθ′(t)

dτ
dθ

)
= m1

(
sinθ(t) τ + cosθ(t)

dτ
dθ

)
− f (t) τ + n(t)

dτ
dθ

.

Since for each t the unit vectors τ and dτ/ dθ are linearly independent, from the previous equation we get
the following system of differential equations of the motion to the particle{

mv′(t) = m1 sinθ(t) − f (t),
mv(t)θ′(t) = m1 cosθ(t) + n(t),

(15)

or, after dividing by m (m is a nonzero constant), v′(t) = 1 sinθ(t) − f (t),
v(t)θ′(t) = 1 cosθ(t) + n(t),

where f = f/m and n = n/m.
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Remark 2.1. For general f and n the previous system is difficult to integrate getting solutions in closed
form.

2.2. Brachistochrone with uniform friction, fixed end points, and zero initial velocity
Problem 2.2. Similar to the statement in Subsection 1.1, consider in a vertical plane a rectangular system
of axes so that Ou is the horizontal axis and Ox the vertical axis oriented downwards the smooth curves
connecting two fixed points A = (u0, x0) and B = (u1, x1) with u0 ≥ 0, x0, x1 ≥ 0. Find the shape of the smooth
curve down which a bead sliding with null initial velocity downward from A and accelerated by gravity
will slip with uniform kinetic friction to B in the least time.

Solution 2.2. Since the kinetic friction denoted µ is involved, the terms corresponding to the normal
component of weight and the normal component of the acceleration (present because of path curvature)
must be included. Including both terms requires a constrained variational technique ([2], [11]), but including
the normal component of weight only gives an approximate solution. The tangent and normal vectors are

τ = cosθ i + sinθ j, ν = − sinθ i + cosθ j,

weight and friction forces are then

w = m1j, fµ = −µ|⟨w, −ν⟩|τ = −µm1 cosθ τ,

and the components along the curve are

⟨w, τ⟩ = m1 sinθ and
⟨
fµ, τ

⟩
= −µm1 cosθ.

The first equation in (15) gives that

m
dv
dt
= m1

dx
ds
− µm1

du
ds
,

where v = vτ, and v is the velocity vector. But

dv
dt
= v

dv
ds
=

1
2

dv2

ds
=⇒ v2 = 21(x − µu) =⇒ v =

√
21(x − µu),

so

dt =
ds
v
=

√
1 + x′2√

21(x − µu)
du =⇒ t =

∫ √
1 + x′2

21(x − µu)
du.

Using the Euler-Lagrange necessary condition leads to (1 + x′2)(1 + µx′) + 2(x − µu)x′′ = 0.
This can be reduced to

1 + x′2

(1 + µx′)2 =
c

x − µu
, c constant.

Denote x′ = cot(θ/2) and

du =
c
2

sinθ + 2µ cosθ − µ2 sinθ
cot(θ/2) − µ dθ,

dx =
c
2

cos(θ/2)(sinθ + 2µ cosθ − µ2 sinθ)
cos(θ/2) − µ sin(θ/2)

dθ,

the solution follows as
u = u0 +

k2

2
(θ − sinθ + µ(1 − cosθ)),

x = x0 +
k2

2
(1 − cosθ + µ(θ + sinθ)),

(16)

where k2 = 1/(21c2).
Figure 2 contains three particular graphs for (16).
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x

Figure 2: Brachistochrone with uniform friction

Remark 2.3. (a) The above approach can be found in [12] and [22].
(b) We look for the final angle θ1 as a solution of the nonlinear equation

(u1 − u0)(1 − cosθ1 + µ(θ1 + sinθ1)) = (x1 − x0)(θ1 − sinθ1 + µ(1 − cosθ1)).

Then we determine the constant k by

k =

√
2(u1 − u0)

θ1 − sinθ1 + µ(1 − cosθ1)
.

Now we can write the parametric equations of the brachistochrone curve joining the points A and B
with uniform friction of constant coefficient µ.
(c) The angle of the motion along a trajectory does not depend on the coefficient of friction µ. Indeed,

dx
du
=

sinθ + µ(1 + cosθ)
1 − cosθ + µ sinθ

=
cos(θ/2)(sin(θ/2) + µ cos(θ/2))
sin(θ/2)(sin(θ/2) + µ cos(θ/2))

= cot
θ
2
.

(d) The velocity of the motion along a trajectory is given by

v =
√

u′2 + x′2 = k2θ′
∣∣∣∣∣sin

θ
2
+ µ cos

θ
2

∣∣∣∣∣ .
2.3. Brachistochrone with Coulomb friction and nonzero initial velocity

In the present subsection we consider the brachistochrone problem with Coulomb friction and nonzero
initial velocity.

2.3.1. Statement of the problem
We only mention some papers on this subject, namely, [18] and [21].
We recall system (15), namely,{

mv′(t) = m1 sinθ(t) − f (t),
mv(t)θ′(t) = m1 cosθ(t) + n(t),

where n(t) = ⟨fν, dτ/ dθ⟩ and f (t) = µ|n(t)|.
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Similarly to [18], we assume that the normal component of the constraint reaction force is continuously
oriented opposite to the gravitational force, that is,

n(t) ≤ 0. (17)

From (15), by eliminating n(t), we find the first differential constraint

f1(t) = v′(t) − 1 sinθ(t) + µ(−vθ′(t) + 1 cosθ(t)) = 0. (18)

We recall (9) under the form of other two differential (nonholonomic) constraints

f2(t) = u′(t) + v(t) cosθ(t) = 0, f3(t) = x′(t) + v(t) sinθ(t) = 0. (19)

From (17), by the second equation in (15), we are led to

v(t)θ′(t) − 1 cosθ(t) ≤ 0.

We now introduce, based on [18], an unknown function q′ so that the previous inequality becomes an
equality and this is the next and last differential constraint to our problem

f4(t) = v(t)θ′(t) − 1 cosθ(t) + q′2(t) = 0. (20)

All together we have four differential constraints, namely, f1 = 0, f2 = 0, f3 = 0, and f4 = 0.

A

B

Θ1

Θ2

v
1

v
2

A

B

Θ1

Θ2

v1

v
2

Figure 3: The idea of the case in Section 2.3

Let us introduce the following boundary conditions

u(0) = u0, x(0) = x0, v(0) = v0, (21)
u(T) = uT, x(T) = xT, v(T) = vT. (22)

Now, our problem can be expressed as the following Lagrange problem

I =
∫ T

0
dt→ min, (23)

with the boundary conditions (21) and (22) and the constraints (18)–(20).
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2.3.2. Transformation of the problem by the Lagrange multipliers rule
Accordingly to Theorem 1.2, [4], [5], [6, Ch. VII] or [9], we can transform this problem by the Lagrange

multipliers rule into an unconstrained Lagrange problem of the form

J =
∫ T

0

1 +
4∑
1

λi fi

 dt

=

∫ T

0
{1 + λ1[v′(t) − 1 sinθ(t) + µ(−v(t)θ′(t) + 1 cosθ(t))]

+ λ2[u′(t) + v(t) cosθ(t)] + λ3[x′(t) + v(t) sinθ(t)] + λ4[v(t)θ′(t) − 1 cosθ(t) + q′2(t)]} dt.

(24)

whereλ1, . . . , λ4 are functions depending upon t and they have to be found, with the following transversality
condition

{
[
F −

(
u′Fu′ + x′Fx′ + v′Fv′ + θ

′Fθ′ + q′Fq′
)]

dt + Fu′ du + Fx′ dx + Fv′ dv + Fθ′ dθ + Fq′ dq}
∣∣∣T
0
= 0, (25)

for every set of differentials du0, du1, dx0, dx1, dv0, dv1, dθ0, dθ1, dq0, and dq1 satisfying the boundary
conditions (21) and (22). Here F represents the integrand of the functional (24), that is,

F = F(u′, x′, v, v′, θ, θ′, q′, λ1, λ2, λ3, λ4) = 1 +
4∑
1

λi fi. (26)

The multipliers λi are continuous except possibly for the values of t defining the corners of the extremal
solutions x∗′.

2.3.3. Transformation of the state variables
Accordingly to [10], introducing the following transformations of the state variables

z1 = u, z2 = x, z3 = v, z4 = θ, z′5 = q′,
z′6 = λ1, z′7 = λ2, z′8 = λ3, z′9 = λ4,

the integrand of the functional (24) can be written as

L(z′1, z
′
2, z3, z′3, z4, z′4, z

′
5, z
′
6, z
′
7, z
′
8, z
′
9)

= 1 + z′6
(
z′3 − µz3z′4 + 1(µ cos z4 − sin z4)

)
+ z′7(z′1 + z3 cos z4) + z′8(z′2 + z3 sin z4) + z′9(z3z′4 − 1 cos z4 + z′5

2)

and the problem now is

J =
∫ T

0
L(z′1, z

′
2, z3, z′3, z4, z′4, z

′
5, z
′
6, z
′
7, z
′
8, z
′
9) dt → min,

with the transversality condition
L −

9∑
i=1

z′i Lz′i

 dt +
9∑

i=1

Lz′i
dzi


∣∣∣∣∣∣∣
T

0

= 0

and the boundary conditions

z1(0) = u0, z2(0) = x0, z3(0) = v0, zi(0) = 0, i = 5, . . . , 9, (27)
z1(T) = uT, z2(T) = xT, z3(T) = vT. (28)
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2.3.4. Solving the problem in z variables
The corresponding Euler-Lagrange equations ((a) in Theorem 1.1) are

∂L
∂zi
− d

dt

(
∂L
∂z′i

)
= 0, i = 1, . . . , 9, (29)

whereas the boundary conditions are(
∂L
∂z′i

)
dzi

∣∣∣∣∣∣T
0

= 0, i = 1, . . . , 9,
L −

9∑
i=1

∂L
∂z′i

z′i

 dt


∣∣∣∣∣∣∣
T

0

= 0.

(30)

Since for z4 there is no initial or final requirement, we have the following natural boundary conditions(
∂L
∂z′4

)∣∣∣∣∣∣
0

= 0 =⇒ (−µvλ1 + vλ4
)∣∣∣

0
= 0,(

∂L
∂z′4

)∣∣∣∣∣∣
T

= 0 =⇒ (−µvλ1 + vλ4
)∣∣∣

T = 0.

(31)

Since z5, . . . z9 are not given at the final position, we have more natural boundary conditions of the form(
∂L
∂z′5

)∣∣∣∣∣∣
T

= 0 =⇒ (
q′λ4

)∣∣∣
T
= 0, (32)(

∂L
∂z′6

)∣∣∣∣∣∣
T

= 0 =⇒ (
v′ − µvθ′ + 1(µ cosθ − sinθ)

)∣∣∣
T
= 0, (33)(

∂L
∂z′7

)∣∣∣∣∣∣
T

= 0 =⇒ (u′ + v cosθ)|T = 0, (34)(
∂L
∂z′8

)∣∣∣∣∣∣
T

= 0 =⇒ (x′ + v sinθ)|T = 0, (35)(
∂L
∂z′9

)∣∣∣∣∣∣
T

= 0 =⇒
(
vθ′ − 1 cosθ + q′2

)∣∣∣∣
T
= 0. (36)

The final time is not specified, thus the second equation in (30) leads to the following transversality conditionL −
9∑

i=1

∂L
∂z′i

z′i


∣∣∣∣∣∣∣
T

= 0 (37)

or in expanded form(
1 + λ11(µ cosθ − sinθ) + v(λ2 cosθ + λ3 sinθ) −λ4(q′2 + 1 cosθ))

∣∣∣
T
= 0. (38)

Euler-Lagrange equations (29) explicitly are written as follows

∂L
∂z3
− d

dt

(
∂L
∂z′3

)
= 0, (39)

∂L
∂z4
− d

dt

(
∂L
∂z′4

)
= 0, (40)
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d
dt

(
∂L
∂z′1

)
= 0, (41)

d
dt

(
∂L
∂z′2

)
= 0, (42)

d
dt

(
∂L
∂z′5

)
= 0, (43)

d
dt

(
∂L
∂z′6

)
= 0, (44)

d
dt

(
∂L
∂z′7

)
= 0, (45)

d
dt

(
∂L
∂z′8

)
= 0, (46)

d
dt

(
∂L
∂z′9

)
= 0. (47)

So in order to give an answer to our problem we have to solve the system composed by the differen-
tial equations (39)–(47) with the boundary conditions (27)–(28) and (31)–(36), and with the transversality
condition (37).

2.3.5. Return to the original variables
From (39)–(47) we get the following system of nonlinear differential equations

(41) =⇒ λ′2 = 0 =⇒ λ2 = c∗2, constant (48)
(42) =⇒ λ′3 = 0 =⇒ λ3 = c∗3, constant (49)
(39) =⇒ λ′1 + µθ

′λ1 − λ2 cosθ − λ3 sinθ − λ4θ
′ = 0, (50)

(40) =⇒ (1 cosθ + µ1 sinθ − µv′)λ1 + v sinθλ2 − v cosθλ3 − µvλ′1 + v′λ4 − 1 sinθλ4 + vλ′4 = 0, (51)
(44) =⇒ v′ − µvθ′ + 1(µ cosθ − sinθ) = 0, (52)

(43) =⇒ (q′λ4)′ = 0
(32)
=⇒ q′λ4 ≡ 0, (53)

(45) =⇒ u′ + v cosθ = 0, (54)
(46) =⇒ x′ + v sinθ = 0, (55)

(47) =⇒ vθ′ − 1 cosθ + q′2 = 0. (56)

We now discuss the consequences of the (31)–(38) boundary conditions. Because the initial (u0, x0) point,
the final (u1, x1) point, the initial speed v|0 = v0, and the final speed v|T = v1, are all fixed, we have that

du|0 = du|T = dx|0 = dx|T = dv|0 = dv|T = 0.

We further have

(31) =⇒ (−µvλ1 + vλ4)|0 = 0 and (−µvλ1 + vλ4)|T = 0, (57)

Therefore the first equation in (30) is satisfied for every i = 1, . . . , 9. Taking into account the condition (37)
and the fact that dt|0 = 0, the second equation in (30) is satisfied.

2.3.6. Solving the Euler-Lagrange equations
Now by (53) we have that either q′ ≡ 0 or λ4 ≡ 0. So the cases q′ ≡ 0 and λ4 ≡ 0 do not hold

simultaneously. This implies that on the interval [0,T] (T is still unknown) an extremal may consists of
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curves on which q′ ≡ 0 and λ4 /≡ 0 and of curves on which q′ /≡ 0 and λ4 ≡ 0. Consequently the functional J
may have corner points. If s is the total number of corner points of an extremal with the corresponding time
instances tp, p ∈ {1, . . . , s}, then the Weierstrass-Erdmann necessary conditions ((b) of Theorem 1.1) require
that (

∂L
∂z′i

)∣∣∣∣∣∣
tp−0

=

(
∂L
∂z′i

)∣∣∣∣∣∣
tp+0

, i = 1, . . . , 9, p = 1, . . . , s, (58)L −
9∑

i=1

∂L
∂z′i

z′i


∣∣∣∣∣∣∣
tp−0

=

L −
9∑

i=1

∂L
∂z′i

z′i


∣∣∣∣∣∣∣
tp+0

, p = 1, . . . , s, (59)

By (41)–(47) we have that (58) is satisfied identically for i = 1, 2, 5, . . . , 9 and p = 1, . . . , s. Because the
integrand L does not depend explicitly on t, the equations (48)–(56) in regard to (37) have the first integral
of the form

L −
9∑

i=1

∂L
∂z′i

z′i = 0 on [0,T], (60)

the conditions (59) are satisfied. The quantities u, x, and v are continuous at the corner points of the extremal,
i.e.,

u(tp − 0) = u(tp + 0), x(tp − 0) = x(tp + 0), v(tp − 0) = v(tp + 0). (61)

By the last equation in (61), the Weierstrass-Erdmann conditions (58) for i = 3, 4 and p = 1, . . . , s are reduced
to

λ1(tp − 0) = λ1(tp + 0), λ4(tp) = 0, p = 1, . . . , s. (62)

Case 1. q′ ≡ 0 and λ4 /≡ 0.

From (48) and (49) we have that

λ2 = c∗2, λ3 = c∗3. (63)

According to [18] it follows that

v = v(θ) =
c1

cosθ
, c1 nonzero integration constant (64)

and

u = −
c2

1

1
tanθ + c2, (65)

x = −
c2

1

1
tan2 θ + c3, (66)

t =
c1

1
tanθ + c4, (67)

where c1, c2, c3, and c4 are constants. Equations (65)–(66) represent the parametric equations of a free-fall
parabola in a nonresistant environment.

From (48), (64), and the change of independent variable d(·)/ dt = θ′( d(·)/ dθ), the equations (50) and
(51) yield

d(λ4 − µλ1)
dθ

= −λ1 +
c1(−λ2 sinθ + λ3 cosθ)

1 cos2 θ
, (68)
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dλ1

dθ
= (λ4 − µλ1) +

c1(λ2 cosθ + λ3 sinθ)
1 cos2 θ

. (69)

This system of linear differential equations in λ1 and λ4 gives

λ1 = c5 sinθ + c6 cosθ +
c1

1
λ2 sinθ +

c1

1
λ3 sinθ tanθ, (70)

λ4 = (cosθ + µ sinθ)c5 + (µ cosθ − sinθ)c6 +
c1

1
λ3 sinθ(1 + µ tanθ) +

c1

1
λ2 sinθ(µ − tanθ). (71)

Case 2. q′ /≡ 0 and λ4 ≡ 0.

As before by (48) and (49), we have that

λ2 = c∗∗2 , λ3 = c∗∗3 . (72)

According to [18] it follows that

v = − 1
B

secθ
2µ(tanθ + A) − sec2 θ

, (73)

λ1 =
1
1

secθ(tanθ + A)
sec2 θ − 2µ(tanθ + A)

, (74)

where

A =
µλ2 + λ3

µλ3 − λ2
, B =

µλ3 − λ2

1 + µ2 (75)

and

u = u(θ) =
1

21B2

{
b1

[
arctan

(
tanθ − µ

a2

)
+

a2(tanθ − µ)

(tanθ − µ)2 + a2
2

]}
−

2µ(a2
2 + a1(tanθ − µ))

a2
2[(tanθ − µ)2 + a2

2]2

}
+ cu, (76)

x = x(θ) =
1

21B2

{
b2

[
arctan

(
tanθ − µ

a2

)
+

a2(tanθ − µ)

(tanθ − µ)2 + a2
2

]
(77)

− 1
(tanθ − µ)2 + a2

2

−
2µ(a2

2 + µa1)(tanθ − µ) + a2
2(µ − a1)

a2
2 + [(tanθ − µ)2 + a2

2]2

}
+ cx,

where

a1 = −(A + µ), a2 =
√

1 + µ2 + 2µa1 ,

b1 =
a2

2 − 3µa1

a5
2

, b2 =
µ(a2

2 − 3µa1)

a5
2

.

We also have the equation of t depending on the angle θ,

t = t(θ) = ct −
[
b3 arctan

(
tanθ − µ

a2

)
−

2µ(a2
2 + a1(tanθ − µ))

a2
2[(tanθ − µ)2 + a2

2]

]
, (78)

where

b3 =
a2

2 − 2µa1

a3
2

.
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2.4. Arrangement of the line segments on the extremal

Let L1 and L2 be the line segments for q′ ≡ 0, λ4 /≡ 0 and q′ /≡ 0, λ4 ≡ 0, respectively. Let nL1 and nL2 be the
total number of line segments L1 and L2, respectively, on the extremal of the functional J. By (63), (72), and
the conditions (58) (i = 1, 2, p = 1, . . . , s) we are led to the conclusion that

λ2 = c∗2, λ3 = c∗3, for all t ∈ [0,T]. (79)

The arrangement of the line segments on the extremal has to satisfy the condition that the total number
of unknown integration constants c2, c3, c1, c5, c6 (c4 is irrelevant regarding the arrangement of the line
segments on the brachistochrone) on the line segments L1, the integration constants cu and cx on the line
segments L2, the unknown values of angles θp = θ(tp), p = 1, . . . , s, and the unknowns c∗2 and c∗3 are equal to
the number of available conditions for them to be determined.

If the extremal of the functional J has the beginning and the ending line segment of the type L1, then in
such a case is true that nL1 = ⌊s/2⌋ + 1 and nL2 = ⌊s/2⌋, where ⌊·⌋ is the floor function, [16, §1.2]. Based on
conditions (21)–(22), equations (64) and (65)–(67), the integration constants c2, c3, and c4 may be replaced on
the beginning line segment by the functional dependencies on the unknown θ0 = θ(0), and on the ending
line segment by the functional dependencies on the unknowns θ f = θ(T) and v f = v(T). Now, in regard to
(79), there is a total of 9 + s + 5(nL1 − 2) + 2nL2 = 4 + 9⌊s/2⌋ unknowns, or in expanded form

|

9︷                            ︸︸                            ︷
{c2, c3, c1, c5, c6, c∗2, c

∗
3, c5, c6} | + |

s︷     ︸︸     ︷
{t1, . . . , ts} | + |

5︷            ︸︸            ︷
{c2, c3, c1, c5, c6} |(nL1 − 2) + |

2︷ ︸︸ ︷
{cu, cx} |nL2 ,

and for them to be determined there are available the natural boundary conditions (57) and the conditions
(61) and (62) which give an amount of 2 + 5s conditions. For this variant, the equation 4 + 9⌊s/2⌋ = 2 + 5s
gives that s = 4.

Based on the above results we state the following theorem.

Theorem 2.4. Consider the brachistochrone problem given by the equations (15) with the boundary conditions (21)
and (22) and an extremal of it such that the first and the last segment are of type L1. Then this extremal has four
corners points. The parametric equations of the extremal are given by (65)–(66) and (76)–(77).

The other cases can be discussed similarly.

3. Concluding remarks

In [18] Šalinić studied the brachistochrone problem with Coulomb friction and nonzero initial speed.
The boundary conditions considered in [18] are: fixed end points and fixed initial velocity. Since here we
imposed a final speed, we obtained four corner points whereas in [18] two corner points are found. In [18]
the authors also discussed reachability and computation problems.

In spite of the fact that the brachistochrone problem appeared more than 300 years ago it is far from being
completely solved. We mention only two developments: the tunnel problem ([19]) and the brachistochrone
problem on manifolds ([21], [8]).
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