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A central limit theorem for randomly indexed m-dependent random
variables
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Abstract. In this note, we prove a central limit theorem for the sum of a random number Nn of m-dependent
random variables. The sequence Nn and the terms in the sum are not assumed to be independent. Moreover,
the conditions of the theorem are not stringent in the sense that a simple moving average sequence serves
as an example.

1. Introduction

The assumption of independence for a sequence of observations X1,X2, · · · is often a technical con-
venience. Real data frequently exhibit some dependence and at least some correlation at small lags or
distances. A very important kind of dependence considering distance as a measure of dependence, is the
m-dependence case. A sequence of random variables {Xi}i≥1 is called m-dependent for a given fixed m if
for any two subsets I and J of {1, 2, · · · } such that min(J) −max(I) > m, the families (Xi)i∈I and (X j) j∈J are
independent. Equivalently, the sequence is m-dependent if two sets of random variables {X1, · · · ,Xi} and
{X j,X j+1, · · · } are independent whenever j − i > m.

The central limit theorem has been extended to the case of m-dependent random variables by Hoeffding
and Robbins [20], Diananda [14], Orey [28] and Bergstrom [4]. Since then many other kinds of dependence
in cental limit theorems have been investigated, among which one could mention the m-dependence with
unbounded m [5, 31], finitely-dependence [11], multi-dimensional dependence [6, 12], classes of mixing
conditions (e.g. α, β, ϕ, ℓ-mixing) [9] and dependence inherit from stochastic processes such as stationary
process [17, 19, 26], martingale [18, 32, 34, 35] and Markov process [10, 15, 22]. For more details, we refer
the reader to the recent book [13] and references therein.

The classical central limit theorem for m-dependent random variables is the following. See [20] or [24]
for a proof.

Theorem 1.1. Let {Xi}i≥1 be a stationary m-dependent sequence of random variables. Let E(Xi) = µ, 0 < Var(Xi) =
σ2 < ∞ and Sn =

∑n
i=1 Xi be the partial sum. Then

√
n
τ

(Sn

n
− µ

)
L−→ N(0, 1) (1)

as n→∞, where τ2 = σ2 + 2
∑m+1

i=2 Cov(X1,Xi) and “ L−→ N(0, 1)” denotes convergence in distribution to standard
normal distribution.
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In this note, we aim to generalize Theorem 1.1 in another direction, that is, consider the central limit
theorem for partial sum of a random number of {Xi}. Studies on random central limit theorem have a
long tradition and they are applicable in a wide range of problems including sequential analysis, random
walk problems, and Monte Carlo methods. Central limit problems for the sum of a random number of
independent random variables have been addressed in the pioneer work of Anscombe [3], Rényi [30], and
Blum et. al. [8]. The main result in [8] has also been independently shown by Mogyoródi [27]. More recent
studies can be found in e.g. [16, 21, 23, 29, 33], most of which, nevertheless, deal with independent cases.

The rest of the note is organized as follows. In Section 2, we present our cental limit theorem and in
Section 3, we provide a proof. Finally, we mention briefly some future lines of research in Section 4.

2. The result

The random central limit theorem is established as follows.

Theorem 2.1. Let {Xi}i≥1 be a stationary m-dependent sequence of random variables. Let E(Xi) = µ, 0 < Var(Xi) =
σ2 < ∞ and Sn =

∑n
i=1 Xi be the partial sum. Let {Nn}n≥1 denote a sequence of positive integer-valued random

variables such that

Nn

ωn

P−→ ω (in probability) (2)

as n→∞, where {ωn}n≥1 is an arbitrary positive sequence tending to +∞ and ω is a positive constant. If
(A1) there exists some k0 ≥ 0 and c > 0 such that, for any λ > 0 and n > k0, we have

P
(

max
k0<k1≤k2≤n

|Sk2 − Sk1 − (k2 − k1)µ| ≥ λ
)
≤ c · Var(Sn − Sk0 )

λ2 (3)

and
(A2) Cov(X1,Xi) ≥ 0 for i = 2, · · · ,m + 1,

then
√

Nn

τ

(
SNn

Nn
− µ

)
L−→ N(0, 1) (4)

as n→∞, where τ2 = σ2 + 2
∑m+1

i=2 Cov(X1,Xi).

There is a large body of literature dealing with limiting theory of random sums, where it is often assumed
that the random sequence Nn is independent of the terms in the sum; see e.g. [25, 36] for reference. The
strength of Theorem 2.1 is that this independence is not assumed. Moreover, if we assume Nn to be a
stopping time, the above result follows easily.

We further give some remarks here. Firstly, note that the assumption (A1) is for sufficiently large index
of sequence Xi, i.e., {Xi}i>k0 . Moreover, (A1) is closely related to the famous Anscombe condition [1, 3]. Sec-
ondly, if {Xi}i≥1 is independent, then (A1) automatically holds for k0 = 0 and c = 1 by using the Kolmogorov
inequality (see e.g. [7]). Therefore, the assumption (A1) may be regarded as a “relaxed” Kolmogrov in-
equality. Thirdly, the assumption (A2) says that each pair Xi,X j of {Xn}n≥1 are positively correlated since
the sequence is stationary. Also note that (A2) is the only requirement pertinent to covariances in Theorem
2.1 so that our result can be used to describe systems which have strong correlation in short distance (less
than 2m). In view of the independent case [8], it seems likely that the assertion of Theorem 2.1 still holds
when ω is a positive random variable.

In order to verify that our theorem is not vainly true, we present an example of the sequence {Xi}i≥1 of
random variables which satisfy the conditions of Theorem 2.1. Actually, a simple moving average process
serves our purpose. Suppose that the sequence {Zi}i≥1 consists of i.i.d. random variables with a finite
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variance σ2, expectation µ and let Xi = (Zi+Zi+1)/2. Then, {Xi}i≥1 is a stationary 1-dependent sequence with
E(Xi) = µ and Var(Xi) = σ2/2. Obviously, Cov(X1,X2) = σ2/4 and

Sn =

n∑
i=1

Xi =
Z1 + Zn+1

2
+

n∑
i=2

Zi. (5)

Hence, the assumption (A2) is satisfied. Furthermore, it is easy to see that (A1) is satisfied with k0 = 0 and
c = 2 by exploiting expression (5) and the Kolmogorov inequality.

3. Proof of Theorem 2.1

Without loss of generality, we can assume that Xi’s are centered at 0, i.e., µ = 0. Let 0 < ε < 1/2. From
(2) it follows that there exists some n0, such that for any n ≥ n0,

P(|Nn − ωωn| > εωωn) ≤ ε. (6)

For any x ∈ R, we have

P
(

SNn

τ
√

Nn
< x

)
=

∞∑
n=1

P
(

Sn

τ
√

n
< x,Nn = n

)
. (7)

By (6) and (7), we have for n ≥ n0,∣∣∣∣∣∣∣P
(

SNn

τ
√

Nn
< x

)
−

∑
|n−ωωn |≤εωωn

P
(

Sn

τ
√

n
< x,Nn = n

)∣∣∣∣∣∣∣ ≤ ε. (8)

Let n1 = [ω(1 − ε)ωn] and n2 = [ω(1 + ε)ωn]. Since ωn tends to infinity, we have n1 ≥ k0 for large enough
n. Note that Sn1 +

∑
n1<k≤n Xk = Sn. Then we have for |n − ωωn| ≤ εωωn,

P
(

Sn

τ
√

n
< x,Nn = n

)
≤ P(Sn1 <

√
n2τx + Y,Nn = n), (9)

where

Y = max
n1<n≤n2

∣∣∣∣∣∣∣ ∑
n1<k≤n

Xk

∣∣∣∣∣∣∣ . (10)

Likewise, we get

P
(

Sn

τ
√

n
< x,Nn = n

)
≥ P(Sn1 <

√
n1τx − Y,Nn = n), (11)

Involving the assumption (A1) and (10), we obtain

P(Y ≥ ε 1
3
√

n1) ≤ c(n2 − n1)τ2

ε
2
3 n1

≤ 4cτ2ε
1
3 , (12)

the right-hand side of which is less than 1 when ε is small enough.
Denote by E the event that Y < ε1/3√n1. By virtue of (8), (9) and (12), we get

P
(

SNn

τ
√

Nn
< x

)
≤ P

(
Sn1

τ
√

n1
<

√
n2

n1
x +
ε

1
3

τ
,E

)
+ 4cσ2ε

1
3 + ε

≤ P

 Sn1

τ
√

n1
<

√
1 + 2ε
1 − 2ε

x +
ε

1
3

τ

 + (4cσ2 + 1)ε
1
3 . (13)
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Similarly, from (8), (11) and (12) it follows that

P
(

SNn

τ
√

Nn
< x

)
≥ P

(
Sn1

τ
√

n1
< x − ε

1
3

τ
,E

)
− ε. (14)

Using (14), (12) and the assumption (A2), we may derive

P
(

SNn

τ
√

Nn
< x

)
≥ P

(
Sn1

τ
√

n1
< x − ε

1
3

τ

)
· P(E) − ε

≥
(
1 − 4cσ2ε

1
3

)
· P

(
Sn1

τ
√

n1
< x − ε

1
3

τ

)
− ε, (15)

where the first inequality is due to an application of the FKG inequality (see e.g. [2]). In general, if Ω
is a finite distributive lattice, and µ is a positive measure satisfying the lattice condition, then any two
monotonically increasing functions f and 1 on Ω have the positive correlation inequality:

⟨ f1⟩ ≥ ⟨ f ⟩⟨1⟩, (16)

where ⟨ f ⟩ is the expected value with respect to µ.
Now by Theorem 1.1 we obtain

lim
n1→∞

P
(

Sn1

τ
√

n1
< x

)
= Φ(x), (17)

where Φ(x) = (1/
√

2π)
∫ x

−∞ e−u2/2du is the standard normal distribution function. Combining (13), (15) and
(17), we then conclude the proof of Theorem 2.1.

4. Concluding remarks

As remarked in Section 2, it is likely that Theorem 2.1 holds even when the limit in (2) is a positive
random variable, and not necessarily a constant. From the practical point of view, this would be much
more useful, as many random sums that appear in practical applications have such Nn. Take, for instance,
geometric random sums, where Nn is geometric with parameter 1/n and Nn/n converges to standard
exponential distribution, and not to a constant. Thus, it would be desirable to extend our result to the case
of random ω in (2).

A more general question could be: what happens if one only assumes that Nn tends to infinity?
In addition, it would be useful to evaluate the limits of random sums normalized by constants rather

than random quantities, as this leads to practical way of approximating the random sums. So, it would be
interesting to modify our main result to include the limiting distribution of

an

Nn∑
i=1

(Xi − bn) (18)

for some suitable sequences of constants an > 0 and bn ∈ R.
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