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Available at: http://www.pmf.ni.ac.rs/filomat

On the edge monophonic number of a graph

J. Johna, P. Arul Paul Sudhaharb

aDepartment of Mathematics, Government College of Engineering, Tirunelveli - 627 007, India
bDepartment of Mathematics, Alagappa Government Arts College, Karaikudi-630 004, India.

Abstract. For a connected graph G = (V,E), an edge monophonic set of G is a set M ⊆ V(G) such that every
edge of G is contained in a monophonic path joining some pair of vertices in M. The edge monophonic
number m1(G) of G is the minimum order of its edge monophonic sets and any edge monophonic set of
order m1(G) is a minimum edge monophonic set of G. Connected graphs of order p with edge monophonic
number p are characterized. Necessary condition for edge monophonic number to be p − 1 is given. It
is shown that for every two integers a and b such that 2 ≤ a ≤ b, there exists a connected graph G with
m(G) = a and m1(G) = b, where m(G) is the monophonic number of G.

1. Introduction

By a graph G = (V,E), we mean a finite undirected connected graph without loops or multiple edges.
The order and size of G are denoted by p and q respectively. For basic graph theoretic terminology we
refer to Harary [2]. A chord of a path u0,u1,u2, ..., uh is an edge uiu j, with j ≥ i + 2. An u − v path is
called a monophonic path if it is a chordless path. The monophonic path in a connected graph is intro-
duced in [8]. A monophonic set of G is a set M ⊆ V(G) such that every vertex of G is contained in a
monophonic path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum
order of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set of G.
The monophonic number of a graph G is studied in [3–6]. It was shown that in [7] that determining the
monophonic number of a graph is NP-complete. The edge geodetic number of a graph is introduced in [1]
and further studied in [9]. An edge monophonic set of G is a set M ⊆ V(G) such that every edge of G is
contained in a monophonic path joining some pair of vertices in M. The edge monophonic number m1(G)
of G is the minimum order of its edge monophonic sets and any edge monophonic set of order m1(G) is
a minimum edge monophonic set of G. The maximum degree of G, denoted by ∆(G), is given by ∆(G) =
max{de1G(v) : v ∈ V(G)}. N(v) = {u ∈ V(G) : uv ∈ E(G)} is called the neighborhood of the vertex v in G. For
any set S of vertices of G, the induced subgraph < S > is the maximal subgraph of G with vertex set S. A
vertex v is a simplicial vertex of a graph G if< N(v) > is complete. A vertex v is an universal vertex of a graph
G, if it is a full degree vertex of G. A graph G is geodetic if each pair of vertices in G is joined by a unique
shortest path. The join of graphs G and H, denoted by G + H, is the graph with V(G + H) = V(G) ∪ V(H)
and E(G+H) = E(G)∪E(H)∪ {uv : u ∈ V(G) and v ∈ V(H)}. For the graph G given in Figure 1.1, M = {v2, v4}
is a monophonic set of G so that m(G) = 2 and S = {v1, v3, v6, v7} is the minimum edge monophonic set for
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G so that m1(G) = 4.
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2. Some results on edge monophonic number of a graph

Definition 2.1. A vertex v in a connected graph G is said to be a semi-simplicial vertex of G if ∆(< N(v) >) =
|N(v)| − 1.

Remark 2.2. Every simplicial vertex of G is a semi-simplicial vertex of G but the converse is not true. For the graph
G given in Figure 2.1, v1 and v5 are semi-simplicial vertices of G and also they are simplicial vertices of G. Now, v2
and v3 are semi-simplicial vertices of G but not simplicial vertices of G.

v

v v vv
v2

v1 v3 v4 v5

G
Figure 2.1

Theorem 2.3. Each semi-simplicial vertex of G belongs to every edge monophonic set of G.

Proof. Let M be an edge monophonic set of G. Let v be a semi-simplicial vertex of G. Suppose that v < M.
Let u be a vertex of < N(v) > such that de1<N(v)>(u) = |N(v)| − 1. Let u1,u2, ..., uk(k ≥ 2) be the neighbors
of u in < N(v) >. Since M is an edge monophonic set of G, the edge uv lies on the monophonic path
P : x, x1, ..., ui,u, v,u j, ..., y, where x, y ∈ M. Since v is a semi-simplicial vertex of G,u and u j are adjacent in
G and so P is not a monophonic path of G, which is a contradiction.

Corollary 2.4. Each simplicial vertex of G belongs to every edge monophonic set of G.

Proof. Since every simplicial vertex of G is a semi-simplicial vertex of G, the result follows from Theorem
2.3.
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Theorem 2.5. Let G be a connected graph, v be a cut vertex of G and let M be an edge monophonic set of G. Then
every component of G − v contains an element of M.

Proof. Let v be a cut vertex of G and M be an edge monophonic set of G. Suppose there exists a component,
say G1 of G − v such that G1 contains no vertex of M. By Corollary 2.4, M contains all the simplicial
vertices of G and hence it follows that G1 does not contains any simplicial vertex of G. Thus G1 contains
at least one edge, say xy. Since M is an edge monophonic set, xy lies on the u − w monophonic path
P : u,u1,u2, ..., v, ..., x, y, ..., v1, ..., v...,w. Since v is a cut vertex of G, the u − x and y − w sub paths of P both
contains v and so P is not a path, which is a contradiction.

Theorem 2.6. No cut vertex of a connected graph G belongs to any minimum edge monophonic set of G.

Proof. Let M be a minimum edge monophonic set of G and v ∈ M be any vertex. We claim that v is not a
cut vertex of G. Suppose that v is a cut vertex of G. Let G1,G2, ...,Gr, (r ≥ 2) be the components of G − v.
By Theorem 2.5, each component Gi(1 ≤ i ≤ r) contains an element of M. We claim that M1 = M − {v} is
also an edge monophonic set of G. Let xy be an edge of G. Since M is an edge monophonic set, xy lies on a
monophonic path P joining a pair of vertices u and v of M. Assume without loss of generality that u ∈ G1.
Since v is adjacent to at least one vertex of each Gi(1 ≤ i ≤ r), assume that v is adjacent to z in Gk, k , 1. Since
M is an edge monophonic set, vz lies on a monophonic path Q joining v and a vertex w of M such that w
must necessarily belongs to Gk. Thus w , v. Now, since v is a cut vertex of G, the union P ∪ Q is a path
joining u and w in M and thus the edge xy lies on this monophonic path joining two vertices u and w of M1.
Thus we have proved that every edge that lies on a monophonic path joining a pair of vertices u and v of
M also lies on a monophonic path joining two vertices of M1. Hence it follows that every edge of G lies on
a monophonic path joining two vertices of M1, which shows that M1 is an edge monophonic set of G. Since
|M1| = |M| − 1, this contradicts the fact that M is a minimum edge monophonic set of G. Hence v < M so
that no cut vertex of G belongs to any minimum edge monophonic set of G.

Corollary 2.7. For any non trivial tree T, the edge monophonic number m1(G) equals the number of end vertices in
T. In fact, the set of all end vertices of T is the unique minimum edge monophonic set of T.

Proof. This follows from Corollary 2.4 and Theorem 2.6.

Corollary 2.8. For the complete graph Kp(p ≥ 2),m1(Kp) = p.

Proof. Since every vertex of the complete graph Kp(p ≥ 2) is a simplicial vertex, by Corollary 2.4, the vertex
set of Kp is the unique edge monophonic set of Kp. Thus m1(Kp) = p.

Corollary 2.9. For every pair k, p of integers with 2 ≤ k ≤ p, there exists a connected graph G of order p such that
m1(G) = k.

Proof. For k = p, the result follows from Corollary 2.8. Also, for each pair of integers with 2 ≤ k ≤ p, there
exists a tree of order p with k end vertices. Hence the result follows from Corollary 2.7.

Theorem 2.10. For the cycle Cp(p ≥ 4),m1(Cp) = 2.

Proof. Let Cp : v1, v2, ..., vp, v1 be the cycle. Let x, y be two non adjacent vertices of Cp. Then it is clear that
{x, y} is an edge monophonic set of Cp so that m1(Cp) = 2.

Theorem 2.11. For the complete bipartite graph G = Km,n
(i) m1(G) = 2 if m = n = 1
(ii) m1(G) = n if n ≥ 2,m = 1
(iii) m1(G) = min{m,n} if m,n ≥ 2.
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Proof. (i) This follows from Corollary 2.8.
(ii) This follows from Corollary 2.7.
(iii) Let m,n ≥ 2. First assume that m < n.

Let U = {u1,u2, ..., um} and W = {w1,w2, ...,wn} be a bipartition of G.Let M = U. We prove that M is a
minimum edge monophonic set of G. Any edge uiw j(1 ≤ i ≤ m, 1 ≤ j ≤ n) lies on the monophonic path
ui,w j,uk for any k , i so that M is an edge monophonic set of G. Let T be any set of vertices such that
|T| < |M|. If T ⊆ U, there exists a vertex ui ∈ U such that ui < T. Then for any edge ui w j(1 ≤ j < n), the
only monophonic path containing uiw j are ui,w j,uk(k , i) and w j,ui,wl(l , j) and so uiw j cannot lie in a
monophonic path joining two vertices of T. Thus T is not an edge monophonic set of G. If T ⊆ W, again T
is not an edge monophonic set of G by a similar argument. If T ⊆ U ∪W such that T contains at least one
vertex from each of U and W, then, since |T| < |M|, there exist vertices ui ∈ U and w j ∈ W such that ui < T
and w j < T. Then clearly the edge uiw j does not lie on a monophonic path connecting two vertices of T so
that T is not an edge monophonic set. Thus in any case T is not an edge monophonic set of G. Hence M
is a minimum edge monophonic set so that m1(G) = |M| = m. Now, if m = n, we can prove similarly that
M = U or W is a minimum edge monophonic set of G. Thus the theorem follows.

Remark 2.12. For any connected graph G of order p, 2 ≤ m(G) ≤ m1(G) ≤ p.

Proof. A monophonic set needs at least two vertices and therefore m(G) ≥ 2. Also every edge monophonic
set is a monophonic set of G and then m(G) ≤ m1(G). Clearly the set of all vertices of G is an edge monophonic
set of G so that m1(G) ≤ p. Thus 2 ≤ m(G) ≤ m1(G) ≤ p.

Remark 2.13. The bounds in Remark 2.12 are sharp. The set of the two end vertices of a path Pp(p ≥ 2) is its unique
edge monophonic set so that m1(Pp) = 2. For any non trivial tree T, m(T) = m1(T) = number of end vertices of T.
For the complete graph G = Kp(p ≥ 2),m1(G) = p. Also, the inequalities in the remark can be strict. For the graph G
given in Figure 2.2, m(G) = 3,m1(G) = 4, p = 5 so that 2 < m(G) < m1(G) < p.v
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Corollary 2.14. Let G be a connected graph with k semi-simplicial vertices. Then max(2, k) ≤ m1(G) ≤ p.

Proof. This follows from Theorem 2.3 and Remark 2.12.

Definition 2.15. A graph G is said to be a semi-simplicial graph if every vertices of G is a semi-simplicial vertex of
G.

Remark 2.16. Complete graphs are semi-simplicial graphs. A graph with at least two universal vertex is also
semi-simplicial graph. In fact, there are certain semi-simplicial graphs without any universal vertex as the following
example shows.
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Theorem 2.17. For a semi-simplicial graph G,m1(G) = p.

Proof. This follows from Theorem 2.3.

The following Theorem characterizes graphs for which the edge monophonic number is p.

Theorem 2.18. Let G be a connected graph of order p. Then m1(G) = p if and only if G is a semi-simplicial graph.

Proof. If G is a semi-simplicial graph, then by Theorem 2.17, m1(G) = p. Conversely, let m1(G) = p. We claim
that G is a semi-simplicial graph. If not, let there exists a vertex v in G such that v is not a semi-simplicial
vertex of G. Then for each w ∈ N(v), there exists zw ∈ [N(v) − {w}] such that wzw < E(G). Let M = V(G) − {v}.
Consider the edge wv. Since w, zw ∈M, the edge wv lies on the monophonic path w, v, zw. Then M is an edge
monophonic set of G with |M| = p− 1, which is a contradiction. Therefore, G is a semi-simplicial graph.

We give below necessary conditions on a graph G for which m1(G) = p − 1.

Theorem 2.19. Let G be a connected graph of order p. If there exists a unique vertex v ∈ V(G) such that v is not a
semi-simplicial vertex of G, then m1(G) = p − 1.

Proof. Suppose that there exists a unique vertex v ∈ V(G) such that v is not a semi-simplicial vertex of G.
Then by Theorem 2.3, m1(G) ≥ p − 1. Let M = V(G) − v. Let f , h ∈ V(G) such that e = f h ∈ E(G). If f , h ∈ M,
then the edge e lies on the monophonic path f h itself. Therefore, any one of f or h is v, say f = v. Since v
is not a semi-simplicial vertex of G, there exists a ∈ N(v) such that ha < E(G). Therefore, e = f h is an edge
of the monophonic path a, f , h. Hence M is an edge monophonic set of G and so m1(G) ≤ p − 1. Therefore,
m1(G) = p − 1. Hence the result.

Corollary 2.20. Let G be a connected graph of order p ≥ 3. If G contains exactly one universal vertex, then
m1(G) = p − 1.

Corollary 2.21. For the wheel W1,p−1(p ≥ 4), m1(W1,p−1) = p − 1.

Theorem 2.22. Let G be a connected graph of order p1 with exactly one universal vertex and H be a connected graph
of order p2 with exactly one universal vertex. Then m1(G +H) = p1 + p2.

Proof. Let u ∈ V(G) and v ∈ V(H) such that de1G(u) = p1 − 1 and de1H(v) = p2 − 1. Now, it is clear that
de1G+H(u) = p1 + p2 − 1 and de1G+H(v) = p1 + p2 − 1. Then by Theorem 2.18, m1(G +H) = p1 + p2.

For the graph G given Figure 2.1 and in Corollaries 2.20 and 2.21, we see that m1(G) = p − 1. Also it is to
be noted that G has unique non semi-simplicial vertex. So we have the following conjecture.

Conjecture 2.23. Let G be a connected graph of order p ≥ 3 with m1(G) = p − 1. Then there exists a unique vertex
v ∈ V(G) such that v is not a semi-simplicial vertex of G.
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3. Edge monophonic number of a geodetic graph

Theorem 3.1. If G is a non complete connected graph such that it has a minimum cutset of G consisting of i
independent vertices, then m1(G) ≤ p − i.

Proof. Since G is non complete, it is clear that 1 ≤ i ≤ p−2. Let U = {v1, v2, ..., vi} be a minimum independent
cutset of vertices of G. Let G1,G2, ...,Gm (m ≥ 2) be the components of G − U and let M = V(G) − U. Then
every vertex v j(1 ≤ j ≤ i) is adjacent to at least one vertex of Gt for every t(1 ≤ t ≤ m). Let uv be an edge of
G. If uv lies in one of Gt for any t(1 ≤ t ≤ m) then clearly uv lies on the monophonic path (uv itself) joining
two vertices u and v of M. Otherwise, uv is of the form v ju(1 ≤ j ≤ i), where u ∈ Gt for some t such that
1 ≤ t ≤ m. As m ≥ 2, v j is adjacent to some w in Gs for some s , t such that 1 ≤ s ≤ m. Thus v ju lies on the
monophonic path u, v j,w. Thus M is an edge monophonic set of G so that m1(G) ≤ |V(G) −U| = p − i.

Corollary 3.2. If G is a connected non complete graph such that it has a minimum cutset of G consisting of i
independent vertices, then m1(G) ≤ p − κ , where κ is the vertex connectivity of G.

Proof. By Theorem 3.1, m1(G) ≤ p − i. Since κ ≤ i, it follows that m1(G) ≤ p − κ.

Theorem 3.3. If G is a non complete connected geodetic graph such that U a minimum cutset, then every element of
U are independent.

Proof. Let U = {u1,u2, ..., uk} be a cut set of G. Let G1,G2, ...,Gr, (r ≥ 2) be the components of G−U. Suppose
that u1 and u2 are adjacent. Let x, y be the vertices of G1 which are adjacent to u1 and u2 respectively. Let
x1, y1 be the vertices of G2 which are adjacent to u1 and u2 respectively.

Case 1. x1 = y1.
Subcase 1a. x = y . Then x,u2, x1,u1, x is an even cycle of length four, which is a contradiction to G is a
geodetic graph.
Subcase1b. xy is an edge. Then u1, u2, y, x,u1 is an even cycle of length four, which is a contradiction to G
is a geodetic graph.
Subase 1c. x − y is a path of length at least two in G1. Let the x − y path be P : x,w1,w2, ...,w, y. Then either
x1,u1, x,w1,w2, ...,wn, y,u2, x1 or u1, x,w1,w2, ...,wn, y, u2,u1 is an even cycle, which is a contradiction.

Case 2. x− y is a path of length at least two in G1 and x1 − y1 is a path of length at least two in G2. Then
by similar argument we get a contradiction. In all cases we get a contradiction. Therefore every element of
U are independent.

Theorem 3.4. If G is a connected non complete geodetic graph, then m1(G) ≤ p − κ.

Proof. This follows from Theorems 3.2 and 3.3.

The following theorem shows that in a geodetic graph only the complete graph has the edge monophonic
number p.

Theorem 3.5. If G is a geodetic graph. Then m1(G) = p if and only if G = Kp.

Proof. Let G be a geodetic graph and let G = Kp. Then it is clear that m1(G) = p. Now, let m1(G) = p. If
G , Kp, then by Theorem 3.4, m1(G) ≤ p − κ, which is a contradiction. Therefore G = Kp.

In view of Remark 2.12, we have the following realization theorem.

Theorem 3.6. For any positive integers 2 ≤ a ≤ b, there exists a connected graph G such that m(G) = a and
m1(G) = b.
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Proof. If a = b, take G = K1,a. Then it is clear that the set of end vertices of G is the unique monophonic set
of G so that m(G) = a. By Corollary 2.7, m1(G) = a. If a = 2, b = 3, then for the graph G given in Figure 3.1,
m(G) = 2 and m1(G) = 3. If a = 2, b ≥ 4, let G be the graph given in Figure 3.2 obtained from the path on
three vertices P : u1,u2,u3 by adding b − 2 new vertices v1, v2, ..., vb−2 and joining each vi(1 ≤ i ≤ b − 2) with
u1,u2,u3. It is clear that u1,u3 is a monophonic set of G so that m(G) = 2 = a. Since u2 is the only universal
vertex of G, it follows from Corollary 2.20 that m1(G) = b − 2 + 3 − 1 = b.
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If a ≥ 3, b ≥ 4, b , a + 1, let G be the graph given in Figure 3.3 obtained from the path on three vertices
P : u1,u2, u3 by adding the new vertices v1, v2, ..., vb−a−1 and w1,w2, ...,wa−1 and joining each vi(1 ≤ i ≤ b−a−1)
with u1,u2,u3 and also joining each wi(1 ≤ i ≤ a − 1) with u1 and u2. First we show that m(G) = a. Since
each wi(1 ≤ i ≤ a − 1) is a simplicial vertex of G, it is clear that each wi(1 ≤ i ≤ a − 1) belongs to every
monophonic set of G. Let W = {w1,w2, ...,wa−1}. Then W is not a monophonic set of G. However, W∪ {u3} is
a monophonic set of G and so m(G) = a. Next we show that m1(G) = b. Since u2 is the only universal vertex
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of G, it follows from Corollary 2.20 that m1(G) = b − a − 1 + a − 1 + 3 − 1 = b.
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If a ≥ 3, b ≥ 4 and b = a + 1, consider the graph G given in Figure 3.4. Let W = {w1,w2, ...,wa−1, v3} be
the set of simplicial vertices of G. It is clear that W is contained in every monophonic set of G. It is easily
seen that W is a monophonic set of G and so m(G) = a. By Theorem 2.3, W is contained in every edge
monophonic set of G. But W is not an edge monophonic set of G. However, W∪{v2} is an edge monophonic
set of G so that m1(G) = b = a + 1.
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