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On the edge monophonic number of a graph
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Abstract. For a connected graph G = (V, E), an edge monophonic set of G is a set M C V(G) such that every
edge of G is contained in a monophonic path joining some pair of vertices in M. The edge monophonic
number m:(G) of G is the minimum order of its edge monophonic sets and any edge monophonic set of
order m;(G) is a minimum edge monophonic set of G. Connected graphs of order p with edge monophonic
number p are characterized. Necessary condition for edge monophonic number to be p — 1 is given. It
is shown that for every two integers a and b such that 2 < a < b, there exists a connected graph G with
m(G) = a and m;(G) = b, where m(G) is the monophonic number of G.

1. Introduction

By a graph G = (V, E), we mean a finite undirected connected graph without loops or multiple edges.
The order and size of G are denoted by p and g respectively. For basic graph theoretic terminology we
refer to Harary [2]. A chord of a path ug, uy,us, ..., uy, is an edge u;uj, with j > i+ 2. An u — v path is
called a monophonic path if it is a chordless path. The monophonic path in a connected graph is intro-
duced in [8]. A monophonic set of G is a set M C V(G) such that every vertex of G is contained in a
monophonic path joining some pair of vertices in M. The monophonic number m(G) of G is the minimum
order of its monophonic sets and any monophonic set of order m(G) is a minimum monophonic set of G.
The monophonic number of a graph G is studied in [3-6]. It was shown that in [7] that determining the
monophonic number of a graph is NP-complete. The edge geodetic number of a graph is introduced in [1]
and further studied in [9]. An edge monophonic set of G is a set M € V(G) such that every edge of G is
contained in a monophonic path joining some pair of vertices in M. The edge monophonic number 1;(G)
of G is the minimum order of its edge monophonic sets and any edge monophonic set of order m;(G) is
a minimum edge monophonic set of G. The maximum degree of G, denoted by A(G), is given by A(G) =
max{degc(v) : v € V(G)}. N(v) = {u € V(G) : uv € E(G)} is called the neighborhood of the vertex v in G. For
any set S of vertices of G, the induced subgraph < S > is the maximal subgraph of G with vertex set S. A
vertex v is a simplicial vertex of a graph G if < N(v) > is complete. A vertex v is an universal vertex of a graph
G, if it is a full degree vertex of G. A graph G is geodetic if each pair of vertices in G is joined by a unique
shortest path. The join of graphs G and H, denoted by G + H, is the graph with V(G + H) = V(G) U V(H)
and E(G+H) = E(G)UEH) U {uv : u € V(G) and v € V(H)}. For the graph G given in Figure 1.1, M = {v,, v4}
is a monophonic set of G so that m(G) = 2 and S = {v1, v3, v, v7} is the minimum edge monophonic set for
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G so that my(G) = 4.

G
Figure 1.1

2. Some results on edge monophonic number of a graph

Definition 2.1. A vertex v in a connected graph G is said to be a semi-simplicial vertex of G if A(< N(v) >) =
IN(v)l - 1.

Remark 2.2. Every simplicial vertex of G is a semi-simplicial vertex of G but the converse is not true. For the graph
G given in Figure 2.1, vy and vs are semi-simplicial vertices of G and also they are simplicial vertices of G. Now, vp
and vs are semi-simplicial vertices of G but not simplicial vertices of G.

01 03 Uy Us

G
Figure 2.1

Theorem 2.3. Each semi-simplicial vertex of G belongs to every edge monophonic set of G.

Proof. Let M be an edge monophonic set of G. Let v be a semi-simplicial vertex of G. Suppose that v ¢ M.
Let u be a vertex of < N(v) > such that degnw)>(u) = IN(©)| — 1. Let uy, uy, ..., ux(k > 2) be the neighbors
of u in < N(v) >. Since M is an edge monophonic set of G, the edge uv lies on the monophonic path
P:x,x1,..,u,u,0,uj,..,y, where x,y € M. Since v is a semi-simplicial vertex of G, u and u; are adjacent in
G and so P is not a monophonic path of G, which is a contradiction. [J

Corollary 2.4. Each simplicial vertex of G belongs to every edge monophonic set of G.

Proof. Since every simplicial vertex of G is a semi-simplicial vertex of G, the result follows from Theorem
23. O
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Theorem 2.5. Let G be a connected graph, v be a cut vertex of G and let M be an edge monophonic set of G. Then
every component of G — v contains an element of M.

Proof. Let v be a cut vertex of G and M be an edge monophonic set of G. Suppose there exists a component,
say G of G — v such that G; contains no vertex of M. By Corollary 2.4, M contains all the simplicial
vertices of G and hence it follows that G; does not contains any simplicial vertex of G. Thus G; contains
at least one edge, say xy. Since M is an edge monophonic set, xy lies on the u — w monophonic path
P:u,uy,uy,...,0,..,%Y,..,01,..,0..,w. Since v is a cut vertex of G, the u — x and y — w sub paths of P both
contains v and so P is not a path, which is a contradiction. [

Theorem 2.6. No cut vertex of a connected graph G belongs to any minimum edge monophonic set of G.

Proof. Let M be a minimum edge monophonic set of G and v € M be any vertex. We claim that v is not a
cut vertex of G. Suppose that v is a cut vertex of G. Let Gy, Gy, ..., G,, (r > 2) be the components of G - v.
By Theorem 2.5, each component G;(1 < i < r) contains an element of M. We claim that M; = M — {v} is
also an edge monophonic set of G. Let xy be an edge of G. Since M is an edge monophonic set, xy lies on a
monophonic path P joining a pair of vertices u and v of M. Assume without loss of generality that u € G;.
Since v is adjacent to at least one vertex of each G;(1 <7 < r), assume that v is adjacent to z in Gi, k # 1. Since
M is an edge monophonic set, vz lies on a monophonic path Q joining v and a vertex w of M such that w
must necessarily belongs to G;. Thus w # v. Now, since v is a cut vertex of G, the union P U Q is a path
joining 1 and w in M and thus the edge xy lies on this monophonic path joining two vertices u and w of M;.
Thus we have proved that every edge that lies on a monophonic path joining a pair of vertices u and v of
M also lies on a monophonic path joining two vertices of M;. Hence it follows that every edge of G lies on
a monophonic path joining two vertices of M;, which shows that M, is an edge monophonic set of G. Since
|Mi| = |[M]| — 1, this contradicts the fact that M is a minimum edge monophonic set of G. Hence v ¢ M so
that no cut vertex of G belongs to any minimum edge monophonic set of G. [

Corollary 2.7. For any non trivial tree T, the edge monophonic number my(G) equals the number of end vertices in
T. In fact, the set of all end vertices of T is the unique minimum edge monophonic set of T.

Proof. This follows from Corollary 2.4 and Theorem 2.6. [
Corollary 2.8. For the complete graph K,(p > 2), m1(K;,) = p.

Proof. Since every vertex of the complete graph K,(p > 2) is a simplicial vertex, by Corollary 2.4, the vertex
set of K, is the unique edge monophonic set of K,,. Thus m1(Ky,) =p. O

Corollary 2.9. For every pair k,p of integers with 2 < k < p, there exists a connected graph G of order p such that
mi(G) = k.

Proof. For k = p, the result follows from Corollary 2.8. Also, for each pair of integers with 2 < k < p, there
exists a tree of order p with k end vertices. Hence the result follows from Corollary 2.7. [

Theorem 2.10. For the cycle C,(p > 4),m1(Cp) = 2.

Proof. Let C, : v1,v2,...,0p,01 be the cycle. Let x, y be two non adjacent vertices of C,. Then it is clear that
{x, y} is an edge monophonic set of C, so that m1(C,) =2. O

Theorem 2.11. For the complete bipartite graph G = K,
1) m(G)=2ifm=n=1

(i) m(G) =nifn>2,m=1

(iii) m1(G) = min{m, n} if m,n > 2.
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Proof. (i) This follows from Corollary 2.8.
(ii) This follows from Corollary 2.7.
(iii) Let m, n > 2. First assume that m < n.

Let U = {uy,uy, ..., 4} and W = {wy, wy, ..., w,} be a bipartition of G.Let M = U. We prove that M is a
minimum edge monophonic set of G. Any edge w;w;(1 <i < m,1 < j < n) lies on the monophonic path
u;, wj, uy for any k # i so that M is an edge monophonic set of G. Let T be any set of vertices such that
IT| < [M|. If T C U, there exists a vertex u; € U such that u; ¢ T. Then for any edge u; w;(1 < j < n), the
only monophonic path containing w;w; are u;, wj, ux(k # i) and wj, u;, wy(l # j) and so w;w; cannot lie in a
monophonic path joining two vertices of T. Thus T is not an edge monophonic set of G. If T € W, again T
is not an edge monophonic set of G by a similar argument. If T € U U W such that T contains at least one
vertex from each of U and W, then, since |T| < |M]|, there exist vertices u; € U and w; € W such thatu; ¢ T
and w; ¢ T. Then clearly the edge u;w; does not lie on a monophonic path connecting two vertices of T so
that T is not an edge monophonic set. Thus in any case T is not an edge monophonic set of G. Hence M
is a minimum edge monophonic set so that m;(G) = |[M| = m. Now, if m = n, we can prove similarly that
M = U or W is a minimum edge monophonic set of G. Thus the theorem follows. [

Remark 2.12. For any connected graph G of order p,2 < m(G) < m1(G) < p.

Proof. A monophonic set needs at least two vertices and therefore m(G) > 2. Also every edge monophonic
setis a monophonic set of G and then m(G) < m;(G). Clearly the set of all vertices of G is an edge monophonic
set of G so that m1(G) < p. Thus 2 < m(G) < m1(G) <p. O

Remark 2.13. The bounds in Remark 2.12 are sharp. The set of the two end vertices of a path P,(p > 2) is its unique
edge monophonic set so that my(P,) = 2. For any non trivial tree T, m(T) = m1(T) = number of end vertices of T.
For the complete graph G = K,(p > 2), m1(G) = p. Also, the inequalities in the remark can be strict. For the graph G
given in Figure 2.2, m(G) = 3,m1(G) = 4,p = 5 so that 2 < m(G) < m1(G) < p.
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Figure 2.2

Corollary 2.14. Let G be a connected graph with k semi-simplicial vertices. Then max(2,k) < m1(G) < p.
Proof. This follows from Theorem 2.3 and Remark 2.12. [J

Definition 2.15. A graph G is said to be a semi-simplicial graph if every vertices of G is a semi-simplicial vertex of
G.

Remark 2.16. Complete graphs are semi-simplicial graphs. A graph with at least two universal vertex is also
semi-simplicial graph. In fact, there are certain semi-simplicial graphs without any universal vertex as the following
example shows.
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A semi-complete graph G without any universal vertex
Figure 2.3

Theorem 2.17. For a semi-simplicial graph G, m1(G) = p.
Proof. This follows from Theorem 2.3. [
The following Theorem characterizes graphs for which the edge monophonic number is p.
Theorem 2.18. Let G be a connected graph of order p. Then m1(G) = p if and only if G is a semi-simplicial graph.

Proof. If G is a semi-simplicial graph, then by Theorem 2.17, m;(G) = p. Conversely, let m1(G) = p. We claim
that G is a semi-simplicial graph. If not, let there exists a vertex v in G such that v is not a semi-simplicial
vertex of G. Then for each w € N(v), there exists z,, € [N(v) — {w}] such that wz,, ¢ E(G). Let M = V(G) — {v}.
Consider the edge wv. Since w, z,, € M, the edge wv lies on the monophonic path w, v, z,,. Then M is an edge
monophonic set of G with |M| = p — 1, which is a contradiction. Therefore, G is a semi-simplicial graph. 0O

We give below necessary conditions on a graph G for which m(G) =p — 1.

Theorem 2.19. Let G be a connected graph of order p. If there exists a unique vertex v € V(G) such that v is not a
semi-simplicial vertex of G, then m(G) =p — 1.

Proof. Suppose that there exists a unique vertex v € V(G) such that v is not a semi-simplicial vertex of G.
Then by Theorem 2.3, m1(G) 2 p— 1. Let M = V(G) —v. Let f,h € V(G) such thate = fh € E(G). If f,h e M,
then the edge ¢ lies on the monophonic path fh itself. Therefore, any one of f or his v, say f = v. Since v
is not a semi-simplicial vertex of G, there exists 2 € N(v) such that ha ¢ E(G). Therefore, e = fh is an edge
of the monophonic path g, f, h. Hence M is an edge monophonic set of G and so m1(G) < p — 1. Therefore,
m1(G) = p — 1. Hence the result. [

Corollary 2.20. Let G be a connected graph of order p > 3. If G contains exactly one universal vertex, then
ml(G) =p- 1.

Corollary 2.21. For the wheel Wy p-1(p 2 4), my(Wyp-1) =p—1.

Theorem 2.22. Let G be a connected graph of order py with exactly one universal vertex and H be a connected graph
of order p, with exactly one universal vertex. Then m1(G + H) = p1 + pa.

Proof. Let u € V(G) and v € V(H) such that degg(u) = p1 — 1 and degn(v) = p» — 1. Now, it is clear that
degg+n(u) = p1 + p2 — 1 and degg+u(v) = p1 + p» — 1. Then by Theorem 2.18, mi(G + H) = p1 + po. O

For the graph G given Figure 2.1 and in Corollaries 2.20 and 2.21, we see that 1;(G) = p — 1. Also it is to
be noted that G has unique non semi-simplicial vertex. So we have the following conjecture.

Conjecture 2.23. Let G be a connected graph of order p > 3 with m1(G) = p — 1. Then there exists a unique vertex
v € V(G) such that v is not a semi-simplicial vertex of G.
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3. Edge monophonic number of a geodetic graph

Theorem 3.1. If G is a non complete connected graph such that it has a minimum cutset of G consisting of i
independent vertices, then m1(G) < p —i.

Proof. Since G is non complete, itis clear that1 <i < p—2. Let U = {v3, vy, ..., v;} be a minimum independent
cutset of vertices of G. Let G1, Gy, ..., Gy (m > 2) be the components of G — U and let M = V(G) — U. Then
every vertex v;(1 < j <) is adjacent to at least one vertex of G; for every (1 < t < m). Let uv be an edge of
G. If uv lies in one of G; for any t(1 < t < m) then clearly uv lies on the monophonic path (uv itself) joining
two vertices u and v of M. Otherwise, uv is of the form v;u(l1 < j < i), where u € G; for some t such that
1<t<m. Asm 2 2,0;is adjacent to some w in Gs for some s # t such that 1 < s < m. Thus v;u lies on the
monophonic path u,v;, w. Thus M is an edge monophonic set of G so that m;(G) < [V(G) - U|=p—i. O

Corollary 3.2. If G is a connected non complete graph such that it has a minimum cutset of G consisting of i
independent vertices, then m1(G) < p — x , where « is the vertex connectivity of G.

Proof. By Theorem 3.1, m1(G) < p —i. Since « < i, it follows that m1(G) <p—-x. O

Theorem 3.3. If G is a non complete connected geodetic graph such that U a minimum cutset, then every element of
U are independent.

Proof. Let U = {uy,uy, ..., ux} be a cut set of G. Let Gy, Gy, ..., Gy, (r = 2) be the components of G — U. Suppose
that 11 and u, are adjacent. Let x, y be the vertices of G; which are adjacent to u; and u, respectively. Let
x1, y1 be the vertices of G, which are adjacent to #; and u; respectively.

Case 1. x1 = y1.
Subcase 1a. x = y . Then x,uy, x1,u1, x is an even cycle of length four, which is a contradiction to G is a
geodetic graph.
Subcaselb. xy is an edge. Then uy, uy, y, x, 41 is an even cycle of length four, which is a contradiction to G
is a geodetic graph.

Subase 1c. x — y is a path of length at least two in G;. Let the x — y path be P : x, wy, wy, ..., w, y. Then either
X1, U1, X, W1, Wy, ..., Wy, Y, Uz, X1 OF U1, X, W1, W, ..., Wy, Y, Uz, U1 is an even cycle, which is a contradiction.

Case 2. x — y is a path of length at least two in G; and x; — y; is a path of length at least two in G,. Then
by similar argument we get a contradiction. In all cases we get a contradiction. Therefore every element of
U are independent. [

Theorem 3.4. If G is a connected non complete geodetic graph, then m;(G) < p — x.
Proof. This follows from Theorems 3.2 and 3.3. O

The following theorem shows that in a geodetic graph only the complete graph has the edge monophonic
number p.

Theorem 3.5. If G is a geodetic graph. Then m(G) = p if and only if G = K,,.

Proof. Let G be a geodetic graph and let G = K,. Then it is clear that m:(G) = p. Now, let m1(G) = p. If
G # K,, then by Theorem 3.4, m1(G) < p — x, which is a contradiction. Therefore G = K,. O

In view of Remark 2.12, we have the following realization theorem.

Theorem 3.6. For any positive integers 2 < a < b, there exists a connected graph G such that m(G) = a and
m(G) = b.
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Proof. If a = b, take G = Kj,. Then it is clear that the set of end vertices of G is the unique monophonic set
of G so that m(G) = a. By Corollary 2.7, m;(G) = a. If a = 2,b = 3, then for the graph G given in Figure 3.1,
m(G) = 2 and m(G) = 3. If a = 2,b > 4, let G be the graph given in Figure 3.2 obtained from the path on
three vertices P : u1, uy, u3 by adding b — 2 new vertices v1, v, ..., Up—2 and joining each v;(1 < i < b —2) with
uq, Uz, us. Itis clear that 1y, u3 is a monophonic set of G so that m(G) = 2 = a. Since u; is the only universal
vertex of G, it follows from Corollary 2.20 that m;(G) =b—-2+3-1=0.

U1

U4 U2

U3

G
Figure 3.1

Ui Uz [2%]

G
Figure 3.2

Ifa>3,b>4,b+a+1,let G be the graph given in Figure 3.3 obtained from the path on three vertices
P : uy,uy,u3 by adding the new vertices vy, vy, ..., Up—o—1 and wq, wy, ..., w,—1 and joining each v;(1 <i < b—a-1)
with u3, up, u3 and also joining each w;(1 < i < a — 1) with u; and u,. First we show that m(G) = a. Since
each wi(1 < i < a—1) is a simplicial vertex of G, it is clear that each w;(1 < i < a — 1) belongs to every
monophonic set of G. Let W = {wy, wy, ..., w,-1}. Then W is not a monophonic set of G. However, W U {u3} is
a monophonic set of G and so m(G) = a. Next we show that m;(G) = b. Since u, is the only universal vertex
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of G, it follows from Corollary 2.20 that m;(G) =b—-a—-1+a-1+3-1=0.

Wa-1

Up—a-1

G
Figure 3.3

Ifa>3,b>4and b =a+1, consider the graph G given in Figure 3.4. Let W = {wq, wy, ..., w,-1,v3} be
the set of simplicial vertices of G. It is clear that W is contained in every monophonic set of G. It is easily
seen that W is a monophonic set of G and so m(G) = a. By Theorem 2.3, W is contained in every edge
monophonic set of G. But W is not an edge monophonic set of G. However, WU {v,} is an edge monophonic
setof Gsothatm(G)=b=a+1. O

U U3

(%1

G
Figure 3.4
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