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New criteria for generalized weighted composition operators from
mixed norm spaces into Zygmund-type spaces

Yong Ren?

@ School of Computer Science and Technology, Hunan International Economics University, 410205, Changsha, HuNan, China

Abstract. New criteria for the boundedness and the compactness of the generalized weighted composition
operators from mixed norm spaces into Zygmund-type spaces are given in this paper.

1. Introduction

Let ID be the open unit disk in the complex plane C and H(ID) be the space of all analytic functions on
D. Let0 <p,g < oo,y > —1. Ifan f € H(ID) such that (see, e.g., [12, 13])

1 1 27T o q/p
If1E,,, = fo (52 fo foepPdo) (1= ryidr < oo

we say that f belongs to the mixed norm space, which denoted by H,,, = H, 4, (ID).
Let B > 0. The Zygmund-type space, denoted by Z¥, consists of all f € H(D) for which

Il = LFO)] + 17O + Su]g(l —2PYPIf" ).

ZF becomes a Banach space under the above norm || - [|s. Let = 1. 21 = 2 is the classical Zygmund
space. For more information on the Zygmund space on the unit disk, see, e.g., [4].

Let ¢ : D — DD be an analytic self-map. The composition operator C,, is the linear operator on H(ID)
defined by

Co(f) = fop, feHD).

Let u be a fixed analytic function on ID. The weighted composition operator uC,,, which induced by ¢ and
u, is defined as follows.

uCpf)(2) = u2) f(p(2)), fe€H(D).

We refer [3, 11] for the theory of the composition operator on function spaces.
The generalized weighted composition operator Dg ,, which induced by Zhu (see [21-23]), is defined as
follows.

Dy, )@ = u(z) - f*(2), fe€HD), zeD.
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Here f(z) denote the n-th derivative of f. This operator includes many known operators. If n = 0, then
we get the weighted composition operator uC,. If n = 0 and u(z) = 1, then we obtain the composition
operator C,. If n = 1, u(z) = ¢’(z), then D'(fw = DC,, which was studied in [5, 8-10, 14]. When n = 1 and
u(z) = 1, then Dg’),u = C,D, which was studied in [5, 9, 14].

Composition operators and weighted composition operators between Zygmund-type spaces and some
other spaces were studied, for example, in [1, 2, 6, 7]. See [15-23] for the study of the generalized weighted
composition operator on various function spaces.

In [15], the author studied the generalized weighted composition operators Df,, from H,,, into
weighted-type spaces. In [16], the author studied the generalized weighted composition operators Dg ,
from H, ;, into the mth weighted-type space. Among others, he obtained the following result.

Theorem A Let u € H(ID), ¢ be an analytic self-map of ID and n be a nonnegative integer. Assume that
0<p,g<oo,y>-1land0 < f < co. Then the following propositions hold:
(a) The operator Dg, , : Hyq, = 2 f is bounded if and only if

(1- Izlz)ﬁlu”(z) (1 — [zP)P2u’ (z)p” (z) + u(z)(p”(z)l

M;j :=sup <oo, Mj:= 1
=D (1~ |p()P) T+ S
and
1 2P lu@)lle’ (z |2
My 1 sup P10 "
b (1 pE)P) T
(b) The operator Df; , : Hy gy = Z F is compact if and only if
(1= 1zP)Plu” )| 0 (1 = 1zP)ERu (2)@’ (z) + u(z)p” (2)| 0 )
lp@z)|—1 a- |(p(z)|2)%+%+n |<P(z)|ﬂ1 a- |(P(Z)|2)—+ Lin+1
and
(1- |2'|2)’5|M(Z)II<P’(Z)I2 o, @

lp(z)|—1 (1 |(P(Z)|2) 7 + +n+2

In this paper, motivated by [16, 20, 24], we give a new criteria for the boundedness and compactness of
the generalized weighted composition operators Df ,, from H,, 4, into 2 P

Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence
to the next. The notation a < b means that there is a positive constant C such that C'b < a < Cb.

2. Main results and proofs
In this section we give our main results and proofs. For this purpose, we need two lemmas as follows.

Lemma 2.1. [16] Assume that 0 < p,q < coand y > 1. Let f € Hy,,. Then there is a positive constant C
independent of f such that

11l

@) < C—————
(A=) T

The following criterion follows from standard arguments similar, for example, to those outlined in
Proposition 3.11 of [3].

Lemma 2.2. Letu € H(ID), ¢ be an analytic self-map of ID and n be a nonnegative integer. Assume that0 < p,q < oo,
y > —=1and 0 < B < co. The operator D(p P Hpgo — 2P is compact if and only if Dg,:Hpgy > Z B is bounded
and for any bounded sequence (fi)xew in Hy g, which converges to zero uniformly on compact subsets of ID, we have
IDG, . fill 26 — 0 as k — oo.
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Fix0<p,g<oo,y>-1 ForaeIDandb>%,set

_ 2]'1_ 2\b— -
1 |a|)( USRI -

1-az 1+b

faj(2) = (
(1 -az)

We will use these three families of functions to characterize the generalized weighted composition
operators D, , : Hyq, — 2 F. We note that since the constant function 1 belongs to H,;,, the boundedness

of uC, requires that u = uCy,1 € 2 . Thus, we shall assume throughout that u € 2 B.

Theorem 2.3. Letu € 2P, ¢ be an analytic self-map of D and n be a nonnegative integer. Assume that0 < p,q < o,
y > —1and 0 < B < oo. Then the following conditions are equivalent:
(a) The operator Dy, : Hp g, — 2 B is bounded;

(b)

Np :=sup(l = 2P lu@)llp’ @) < oo, Ny :=sup(l - [z2Y2u' (2)¢’ (2) + u(z)¢” (2)] < oo,
zeD zeD

A= max{sup“D;,uf(p(w),()”fﬁ/ SupHD(Z,uqu(w),l“Qfﬁ/ sup”DZJ,uqu(w),ZHQ"ﬂ} <o
weD weD weD

Proof. (a) = (b). Assume that D}, , : H,,, — £ f is bounded. Taking the functions z" and z"*! and using
the boundedness of D% . and the fact that |p(z)| < 1 we see that Ny, N; are finite.
For each a € D, it is easy to check that f,; € H,,,. Moreover ||fyjlln,, (j = 0,1,2), are bounded by

constants independent of 4 (see [15]). By the boundedness of Df, , : Hy 4, — 2 F, we get

Sup ||D(Z,uf(p(u),]||ffﬁ S “D(Z,unsup ||f§0({l),j||leq,y S C”D;,u“ < OO, ] = 0/ 1/2/
aeD aeD

as desired.
(b) = (a). Suppose that N1, N, and A are finite. A calculation shows that

) MG +b+pa* TG+ b+ jpa” ) [5G+ b+ jpa”
1@ = =L, S0 = =L, and @) = T (©)
(1= lap) T 7 (1= lap) T 7" (1 —laP) s ™"

Denote 2u’(z)¢’ (z) + u(z)¢" (z) by v(z). From (6), for w € D, we have

TS G+ b+ pu (@)

(D fya0)" @) = B A
(1= p(@)) T 5"
[T +b+ j)v(w)W"” TG+ b+ ) (W) o) o
(1 - pG)P) 7 7+ (1= lp@)R) T 52 '
(Dg,ufo)" () = Hy:l(%+b+j)u;(wl)mn +
(1 = lp(@)?) T 5"
[T +b+ o@p@) TG + b+ uie' @) @ o

(1= lp@)R) T3+ (1— lp@)R) T *5+"+2

and



Yong Ren /Filomat 26:6 (2012), 1171-1178

M5¢+b+ @) p@)

(D ufow2)' W) = I +
(1 - lp@)R) T+
TG + b+ po@)e@) " IS¢ +b+ ;)u(w)«p (w)) @)
+
(1= lp@)R) T 5+ (1= lp@@)R) T *5++2
Let
n+1 n+2
Po—H( +b+j), pr= H( +b+j), Pz—H( +b+j).
]O ]O ]O

Multiplying (7) by —(% + b +n)and (8) by (% + b) respectively, we get

—(% b ) (DD fono) @) + (1 +B)(DD, f(p(m,l)"(w)

—n+1 Py
; v(w)fp(wy)ﬂ 1 o u(w) (e’ (w)) qv(w)
1 - lp@)R) s 7t (1 - lp@)?) T 2

Multiplying (8) by —(% +b+n+1), (9 by (% + b + 1), we obtain

(% +0) - (% +b+ 1+ DD, fow1) @) + (l + b+ 1)(D%,, fow2) @)]

W@ ey @) e
<1—|<p<w)|2>*+ el (1 - lp@o)P) T 52

Multiply (10) by ( +b+n+1)), we get

( +b+n+ 1)[( +B)(DL fpan)” () = (% + b+ (D2, fow0) ()]

+ , 2—n+2
1 v(w)(lﬂ(uil)+1 — 2 v+ u(w)(e (W))y(f(zi)) |
1- |(P(w)|2)7+’;+n+1 P 1- |(P(w)|2)7+;+n+2

Subtracting (12) from (11), we obtain

Zpuute)y @Fp@) - _ 1 +b+n>< b4+ DD fom) (@)
(1 _ Iqo(w)|2)%+%+n+2 p P,

—2(% + b)(% +b0+n+1)(Dg, foe,1)” (W) + (’; + b)(’; +b+ 1)(Dy, fow2)” ()

1174

(10)

(11)

(12)

(13)
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which implies that
(1 = [wP)Plu(w)(@’ (w))llp ()|
(1= lp()R) T 5442
11 1 2\8 n ”
2_171(}; +b+ ”)(i; +b+n+ 1)1 = [wl) 1D, fp),0)” W)l

IA

+1<1 + b)(1 b+ 1)1 = PP fo 1) () + 2%(% + b)(% b+ 1)1 = 0PI foay)” ()

< —( +b+n)( +b+n+1||D ool s
+_(- + b)(— +b+n+ DD, folles + il(% + b)(%7 +b + DIDG 1 fow)2ll 26 (14)
< L(1+b+n)( +b+n+1)A+—( +b)(l+b+n+1)A+L(l+b)(l+b+1)A. (15)
2p1p p pip p 2p1p p

From (12) and (13), we obtain

o)
a- |(p(w)|2)%+;—)+n+1

P1

= —(% +b+ n)(% +b+n+ 1)(% +b+n+ 2)(D(’;ruf¢(w)lo)”(w)

+(% + b)(% +b+n+ 1)(z +2b+2n+ 3)(D<’;,uf¢(w),1)"(w)
(;+b)(;+b+1)( +b+n+1(D o), ), (16)
which implies that

(1 — [w)Po(w)llp(w)"*!
(1 _ |(p(w)|2)y7+1+%+"+1

IA

pll(% +b+ n)(% +b+n+ 1)(}17 + b+ 1+ 2)(1 = WPV D}, fowo)” ()l
+1(1 v b)(1 bbrn+ D)+ 2(1 #+1+ 2)(1 ~ PP, for 1) @)

—( +b)( +b+1)( +b+n+ 1)1 = [wPY Dy, fow,2)” @)l

IA

77_1(;; +b+ n)(I; +b+n+ 1)(}; +b+n+ 2)||D(’:,,uf¢,(w),0||gﬁ

+ll(% + b)(% +b+n+1)(1+ 2(%7 +b+n+2)ID,, fow),ll 2

11 1 1
+—(=+0)(=+b+1)(=+b+n+ DD, , fow 17
Pl(P )(p )(p )” (p,uf({’( ),2”2’5 (17)

IN

11 1 1
—(=+b+n)(=+b+n+1)(=+b+n+2)A
p(p )(p )(p )

—( +b)(;+b+n+1)(1+2( +b+n+2))A+—( +b)( +b+1)( +b+n+1)A. (18)
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By (7), (13) and (16), we have
W)
(1~ lp@)P) T 7"
k1+b+nn41+b+mﬁ&1+b+n+n+1mpnf ) (w)
p p 2 p puew),0

—(% + b)(;7 +b+ n)(% +b+n+ 2)(D o)1)’ (w) + ( + b)( +b+ 1)( +b+n (D wfow)2)” (W), (19)

which implies that
(1 = [wP)Plu” (@) llp )"

(1~ lp(@)P) T+
[(%+b+n)+(:—7+b+n)2[%(%+b+n+1)+l]

< po (1 - |w| )ﬁ|(D(p uf(p(w),O)N(w)l
(%+b)(%+b+n)(%+b+n+2) ,
- o (1 = [wPYPID}, , fo 1) (@)
(%+b)(%+b+1)(%+b+ 1)
+ > (1 = [P IDy, . fow)2)” (@)
Po
|G +b+m)+ G +b+nP3E +b+n+1)+1]]
S pO ”D(p,uf(p(w),OHQ”ﬁ
(%+b)(%+b+n)(;—7 +b+n+2)
Do ”D(p,uf(p(w),l”fﬂ
( +b)(1+b+1)( +b+n)
+ 29, IDG 1 fo(w) 2l 26 (20)
[A+b+m)+ G +b+nP3E +b+n+1)+1]]
< o
(%+b)(%+b+n)(’17+b+n+2) (%+b)(%+b+1)(’1—]+b+n)
+ A+ A (21)
Po 2p0

Fix r € (0,1). If |p(w)| > r, then from (21) we obtain

(1 - PP _ k%+b+m+«%+b+m%aé+b+n+n+1ﬂA

(1 - lp@)R) 7" por"
(1+b)( +b+n)(1+b+n+2) (1+b)(1+b+1)( +b+n)
A < 0. (22)
por™ 2por"
On the other hand, if |p(w)| < 7, we get
_ 2\B14,""
(1 |w| ) |1/l (w)| — - Sup(l _ |Z|2)ﬁ|ul/(z)| < 0. (23)

(1= lp@)R) T " (1 =) T +3*" 2D

From (22) and (23) we see that M; is finite. Using similar arguments, (15) and (18) we can obtain that M,
and M3 are finite as well. By Theorem A, we complete the proof of this theorem.
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Theorem 2.4. Let u € 2P, ¢ be an analytic self-map of D and n be a nonnegative integer. Assume that p,q > 0,
y > —land 0 < B < oo. Suppose that the operator Dy, : Hy gy — & F is bounded, then the following conditions are
equivalent:
E}e;; The operator Dy, : Hpq) — 2 B is compact;
li D} = i D} s = i D} =0.
. (zlur)|n—>1 DG, fowyoll 2 |(p(zlvl)1\1>l DG, fo)ll 25 l@(;]I)P_)l 1D, fo(w) 2l 26

Proof. (a) = (b). Assume that Dg, : Hyqy = Z F is compact. Let {wy}ren be a sequence in ID such that
]}im lp(wy)| = 1. Since the sequences {fyw,),}, j = 0,1,2, are bounded in H,,, and converge to 0 uniformly

on compact subsets of ID, by Lemma 2.2, we get IIDQu fowy,jllze = 0, j=0,1,2,as k — oo, which means
that (b) holds.
(b) = (a). Suppose that the limits in (b) are 0. Using the inequality (20), we get

(1 = [Pyl (w)|
(1~ lp@)R) T "
[A+b+m)+ G +b+nP3E +b+n+1)+1]]

polp(@w)|"
(%+b)(%+b+n)(;—)+b+n+2) (%+b)(%+b+l)(’17+b+n)

Dy +
Pol@(w)ln ” qg,ufqa(w),1||§"/3 2P0|§0(w)|"
as |p(w)| — 1. Using the inequality (17), we get

IDG,. fo@)oll 20 +

”Dg,ufq)(w)Q”&"“ﬁ -0

(1 = [wP)Plow)|

(1 _ |(P(w)|2)7+%+ﬂ+l
(117 +b+n)(%+b+n+1)(%+b+n+2)

”Dg,uf(p(w),onfﬁ

. pilp@)
G+DG+b+n+DA+2(G+b+n+2)
’ pilp(w)|+1 HD(P,uf(P(w),l”fXﬁ
G+DE+b+ D) +b+n+1)
pilp(w)r+ ”Dz,uﬁﬂ(w)z”yﬁ -0

as |p(w)| — 1. Moreover, using (14), we deduce

(1 = [l ) lu(w)(@’ (w))’|
(1= lp(@)?) T2
(%+b+n)(%+b+n+1) (%+b)(%+b+n+1)
D! w +
2oz Dewfewolzr pilpo)2

1 1 1
201 o) +2 \ p - 1)||D? 2|2
+2p1|§0(w)|n+2(}7 * b)(p +o+ 1l (p,uf(p( ),2”;;";3 -0

as |(p(;u)| — 1. By Theorem A, we see that Df, , : Hpq, — 2 F is compact. The proof of this theorem is
complete.

IDg, 1 fo)ll 2
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