New criteria for generalized weighted composition operators from mixed norm spaces into Zygmund-type spaces

Yong Rena

^a School of Computer Science and Technology, Hunan International Economics University, 410205, Changsha, HuNan, China

Abstract. New criteria for the boundedness and the compactness of the generalized weighted composition operators from mixed norm spaces into Zygmund-type spaces are given in this paper.

1. Introduction

Let $\mathbb D$ be the open unit disk in the complex plane $\mathbb C$ and $H(\mathbb D)$ be the space of all analytic functions on $\mathbb D$. Let $0 < p, q < \infty, \gamma > -1$. If an $f \in H(\mathbb D)$ such that (see, e.g., [12, 13])

$$||f||_{H_{p,q,\gamma}}^{q} = \int_{0}^{1} \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{i\theta})|^{p} d\theta\right)^{q/p} (1-r)^{\gamma} dr < \infty,$$

we say that f belongs to the mixed norm space, which denoted by $H_{p,q,\gamma} = H_{p,q,\gamma}(\mathbb{D})$.

Let $\beta > 0$. The Zygmund-type space, denoted by \mathcal{Z}^{β} , consists of all $f \in H(\mathbb{D})$ for which

$$||f||_{\mathcal{Z}^{\beta}} = |f(0)| + |f'(0)| + \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |f''(z)|.$$

 \mathscr{Z}^{β} becomes a Banach space under the above norm $\|\cdot\|_{\mathscr{Z}^{\beta}}$. Let $\beta = 1$. $\mathscr{Z}^1 = \mathscr{Z}$ is the classical Zygmund space. For more information on the Zygmund space on the unit disk, see, e.g., [4].

Let $\varphi : \mathbb{D} \to \mathbb{D}$ be an analytic self-map. The composition operator C_{φ} is the linear operator on $H(\mathbb{D})$ defined by

$$C_{\varphi}(f) = f \circ \varphi, \ f \in H(\mathbb{D}).$$

Let u be a fixed analytic function on \mathbb{D} . The weighted composition operator uC_{φ} , which induced by φ and u, is defined as follows.

$$(uC_{\varphi}f)(z)=u(z)f(\varphi(z)),\ \ f\in H(\mathbb{D}).$$

We refer [3, 11] for the theory of the composition operator on function spaces.

The generalized weighted composition operator $D_{\varphi,\mu}^n$, which induced by Zhu (see [21–23]), is defined as follows.

$$(D_{\varphi,u}^n f)(z) = u(z) \cdot f^{(n)}(\varphi(z)), \ f \in H(\mathbb{D}), \ z \in \mathbb{D}.$$

2010 Mathematics Subject Classification. Primary 47B33, Secondary 30H30.

Keywords. Generalized weighted composition operators, mixed norm space, Zygmund-type space

Received: June 2, 2012; Accepted: Aug 4, 2012 Communicated by Dragana Cvetkovic Ilic

Email address: hieurenyong@163.com (Yong Ren)

Here $f^{(n)}(z)$ denote the *n*-th derivative of f. This operator includes many known operators. If n=0, then we get the weighted composition operator uC_{φ} . If n = 0 and $u(z) \equiv 1$, then we obtain the composition operator C_{φ} . If n=1, $u(z)=\varphi'(z)$, then $D_{\varphi,u}^n=DC_{\varphi}$, which was studied in [5, 8–10, 14]. When n=1 and u(z) = 1, then $D_{\varphi,u}^n = C_{\varphi}D$, which was studied in [5, 9, 14].

Composition operators and weighted composition operators between Zygmund-type spaces and some other spaces were studied, for example, in [1, 2, 6, 7]. See [15–23] for the study of the generalized weighted composition operator on various function spaces.

In [15], the author studied the generalized weighted composition operators $D_{\varphi,\mu}^n$ from $H_{p,q,\gamma}$ into weighted-type spaces. In [16], the author studied the generalized weighted composition operators $D_{\omega,u}^n$ from $H_{p,q,\gamma}$ into the mth weighted-type space. Among others, he obtained the following result.

Theorem A Let $u \in H(\mathbb{D})$, φ be an analytic self-map of \mathbb{D} and n be a nonnegative integer. Assume that $0 < p, q < \infty, \gamma > -1$ and $0 < \beta < \infty$. Then the following propositions hold:

(a) The operator $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$ is bounded if and only if

$$M_{1} := \sup_{z \in \mathbb{D}} \frac{(1 - |z|^{2})^{\beta} |u''(z)|}{(1 - |\varphi(z)|^{2})^{\frac{\gamma+1}{q} + \frac{1}{p} + n}} < \infty, \qquad M_{2} := \sup_{z \in \mathbb{D}} \frac{(1 - |z|^{2})^{\beta} |2u'(z)\varphi'(z) + u(z)\varphi''(z)|}{(1 - |\varphi(z)|^{2})^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 1}} < \infty$$

$$(1)$$

and

$$M_3 := \sup_{z \in \mathbb{D}} \frac{(1 - |z|^2)^{\beta} |u(z)| |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 2}} < \infty.$$
 (2)

(b) The operator $D_{\omega,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$ is compact if and only if

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta} |u''(z)|}{(1 - |\varphi(z)|^2)^{\frac{\gamma+1}{q} + \frac{1}{p} + n}} = 0, \qquad \lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta} |2u'(z)\varphi'(z) + u(z)\varphi''(z)|}{(1 - |\varphi(z)|^2)^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 1}} = 0$$
(3)

and

$$\lim_{|\varphi(z)| \to 1} \frac{(1 - |z|^2)^{\beta} |u(z)| |\varphi'(z)|^2}{(1 - |\varphi(z)|^2)^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 2}} = 0.$$
(4)

In this paper, motivated by [16, 20, 24], we give a new criteria for the boundedness and compactness of the generalized weighted composition operators $D^n_{\varphi,\mu}$ from $H_{p,q,\gamma}$ into \mathscr{Z}^{β} . Throughout this paper, constants are denoted by C, they are positive and may differ from one occurrence

to the next. The notation $a \times b$ means that there is a positive constant C such that $C^{-1}b \le a \le Cb$.

2. Main results and proofs

In this section we give our main results and proofs. For this purpose, we need two lemmas as follows.

Lemma 2.1. [16] Assume that $0 < p, q < \infty$ and $\gamma > -1$. Let $f \in H_{p,q,\gamma}$. Then there is a positive constant C independent of f such that

$$|f^{(n)}(z)| \le C \frac{||f||_{H_{p,q,\gamma}}}{(1-|z|^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n}}.$$

The following criterion follows from standard arguments similar, for example, to those outlined in Proposition 3.11 of [3].

Lemma 2.2. Let $u \in H(\mathbb{D})$, φ be an analytic self-map of \mathbb{D} and n be a nonnegative integer. Assume that $0 < p, q < \infty$, $\gamma > -1$ and $0 < \beta < \infty$. The operator $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$ is compact if and only if $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$ is bounded and for any bounded sequence $(f_k)_{k \in \mathbb{N}}$ in $H_{p,q,\gamma}$ which converges to zero uniformly on compact subsets of \mathbb{D} , we have $||D_{\omega,u}^n f_k||_{\mathcal{Z}^{\beta}} \to 0 \text{ as } k \to \infty.$

Fix $0 < p, q < \infty$, $\gamma > -1$. For $a \in \mathbb{D}$ and $b > \frac{\gamma + 1}{q}$, set

$$f_{a,j}(z) = \left(\frac{1 - |a|^2}{1 - \bar{a}z}\right)^j \frac{(1 - |a|^2)^{b - \frac{\gamma + 1}{q}}}{(1 - \bar{a}z)^{\frac{1}{p} + b}}, \quad j = 0, 1, 2.$$
 (5)

We will use these three families of functions to characterize the generalized weighted composition operators $D^n_{\varphi,u}: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$. We note that since the constant function 1 belongs to $H_{p,q,\gamma}$, the boundedness of uC_{φ} requires that $u = uC_{\varphi}1 \in \mathscr{Z}^{\beta}$. Thus, we shall assume throughout that $u \in \mathscr{Z}^{\beta}$.

Theorem 2.3. Let $u \in \mathcal{Z}^{\beta}$, φ be an analytic self-map of \mathbb{D} and n be a nonnegative integer. Assume that $0 < p, q < \infty$, $\gamma > -1$ and $0 < \beta < \infty$. Then the following conditions are equivalent:

(a) The operator $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$ is bounded;

(b)

$$N_1 := \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |u(z)| |\varphi'(z)|^2 < \infty, \quad N_2 := \sup_{z \in \mathbb{D}} (1 - |z|^2)^{\beta} |2u'(z)\varphi'(z) + u(z)\varphi''(z)| < \infty,$$

$$A:=\max\left\{\sup_{w\in\mathbb{D}}\|D^n_{\varphi,u}f_{\varphi(w),0}\|_{\mathscr{Z}^\beta},\ \sup_{w\in\mathbb{D}}\|D^n_{\varphi,u}f_{\varphi(w),1}\|_{\mathscr{Z}^\beta},\ \sup_{w\in\mathbb{D}}\|D^n_{\varphi,u}f_{\varphi(w),2}\|_{\mathscr{Z}^\beta}\right\}<\infty.$$

Proof. (a) \Rightarrow (b). Assume that $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^\beta$ is bounded. Taking the functions z^n and z^{n+1} and using the boundedness of $D_{\varphi,u}^n$ and the fact that $|\varphi(z)| \le 1$ we see that N_1, N_2 are finite.

For each $a \in \mathbb{D}$, it is easy to check that $f_{a,j} \in H_{p,q,\gamma}$. Moreover $||f_{a,j}||_{H_{p,q,\gamma}}$ (j = 0,1,2), are bounded by constants independent of a (see [15]). By the boundedness of $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$, we get

as desired.

 $(b) \Rightarrow (a)$. Suppose that N_1 , N_2 and A are finite. A calculation shows that

$$f_{a,0}^{(n)}(a) = \frac{\prod_{j=0}^{n-1} (\frac{1}{p} + b + j)\overline{a}^n}{(1 - |a|^2)^{\frac{\gamma+1}{q} + \frac{1}{p} + n}}, \quad f_{a,1}^{(n)}(a) = \frac{\prod_{j=1}^{n} (\frac{1}{p} + b + j)\overline{a}^n}{(1 - |a|^2)^{\frac{\gamma+1}{q} + \frac{1}{p} + n}}, \quad \text{and} \quad f_{a,2}^{(n)}(a) = \frac{\prod_{j=2}^{n+1} (\frac{1}{p} + b + j)\overline{a}^n}{(1 - |a|^2)^{\frac{\gamma+1}{q} + \frac{1}{p} + n}}.$$
 (6)

Denote $2u'(z)\varphi'(z) + u(z)\varphi''(z)$ by v(z). From (6), for $w \in \mathbb{D}$, we have

$$(D_{\varphi,u}^{n}f_{\varphi(w),0})''(w) = \frac{\prod_{j=0}^{n-1}(\frac{1}{p}+b+j)u''(w)\overline{\varphi(w)}^{n}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} + \frac{\prod_{j=0}^{n-1}(\frac{1}{p}+b+j)v(w)\overline{\varphi(w)}^{n+1}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+1}} + \frac{\prod_{j=0}^{n+1}(\frac{1}{p}+b+j)u(w)(\varphi'(w))^{2}\overline{\varphi(w)}^{n+2}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+2}},$$
(7)

$$(D_{\varphi,u}^{n}f_{\varphi(w),1})''(w) = \frac{\prod_{j=1}^{n}(\frac{1}{p}+b+j)u''(w)\overline{\varphi(w)}^{n}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} + \frac{\prod_{j=1}^{n+1}(\frac{1}{p}+b+j)v(w)\overline{\varphi(w)}^{n+1}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+1}} + \frac{\prod_{j=1}^{n+2}(\frac{1}{p}+b+j)u(w)(\varphi'(w))^{2}\overline{\varphi(w)}^{n+2}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+2}},$$
(8)

and

$$(D_{\varphi,u}^{n}f_{\varphi(w),2})''(w) = \frac{\prod_{j=2}^{n+1}(\frac{1}{p}+b+j)u''(w)\overline{\varphi(w)}^{n}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} + \frac{\prod_{j=2}^{n+2}(\frac{1}{p}+b+j)v(w)\overline{\varphi(w)}^{n+1}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+1}} + \frac{\prod_{j=2}^{n+3}(\frac{1}{p}+b+j)u(w)(\varphi'(w))^{2}\overline{\varphi(w)}^{n+2}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+2}}.$$
 (9)

Let

$$p_0 = \prod_{j=0}^n (\frac{1}{p} + b + j), \quad p_1 = \prod_{j=0}^{n+1} (\frac{1}{p} + b + j), \quad p_2 = \prod_{j=0}^{n+2} (\frac{1}{p} + b + j).$$

Multiplying (7) by $-(\frac{1}{p}+b+n)$ and (8) by $(\frac{1}{p}+b)$ respectively, we get

$$-\left(\frac{1}{p} + b + n\right)\left(D_{\varphi,u}^{n} f_{\varphi(w),0}\right)''(w) + \left(\frac{1}{p} + b\right)\left(D_{\varphi,u}^{n} f_{\varphi(w),1}\right)''(w)$$

$$= p_{0} \frac{v(w)\overline{\varphi(w)}^{n+1}}{\left(1 - |\varphi(w)|^{2}\right)^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 1}} + 2p_{1} \frac{u(w)(\varphi'(w))^{2}\overline{\varphi(w)}^{n+2}}{\left(1 - |\varphi(w)|^{2}\right)^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 2}}.$$
(10)

Multiplying (8) by $-(\frac{1}{p} + b + n + 1)$, (9) by $(\frac{1}{p} + b + 1)$, we obtain

$$\left(\frac{1}{p}+b\right)\left[-\left(\frac{1}{p}+b+n+1\right)\left(D_{\varphi,u}^{n}f_{\varphi(w),1}\right)''(w)+\left(\frac{1}{p}+b+1\right)\left(D_{\varphi,u}^{n}f_{\varphi(w),2}\right)''(w)\right] \\
= p_{1}\frac{v(w)\overline{\varphi(w)}^{n+1}}{\left(1-|\varphi(w)|^{2}\right)^{\frac{\gamma+1}{q}+\frac{1}{p}+n+1}}+2p_{2}\frac{u(w)(\varphi'(w))^{2}\overline{\varphi(w)}^{n+2}}{\left(1-|\varphi(w)|^{2}\right)^{\frac{\gamma+1}{q}+\frac{1}{p}+n+2}}.$$
(11)

Multiply (10) by $(\frac{1}{p} + b + n + 1)$), we get

$$\left(\frac{1}{p} + b + n + 1\right) \left[\left(\frac{1}{p} + b\right) \left(D_{\varphi,u}^{n} f_{\varphi(w),1}\right)''(w) - \left(\frac{1}{p} + b + n\right) \left(D_{\varphi,u}^{n} f_{\varphi(w),0}\right)''(w) \right] \\
= p_{1} \frac{v(w) \overline{\varphi(w)}^{n+1}}{(1 - |\varphi(w)|^{2})^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 1}} + 2\left(\frac{1}{p} + b + n + 1\right) p_{1} \frac{u(w) (\varphi'(w))^{2} \overline{\varphi(w)}^{n+2}}{(1 - |\varphi(w)|^{2})^{\frac{\gamma+1}{q} + \frac{1}{p} + n + 2}}.$$
(12)

Subtracting (12) from (11), we obtain

$$\frac{2p_1 u(w)(\varphi'(w))^2 \overline{\varphi(w)}^{n+2}}{(1-|\varphi(w)|^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n+2}} = (\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)(D_{\varphi,u}^n f_{\varphi(w),0})''(w)
-2(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(D_{\varphi,u}^n f_{\varphi(w),1})''(w) + (\frac{1}{p}+b)(\frac{1}{p}+b+1)(D_{\varphi,u}^n f_{\varphi(w),2})''(w),$$
(13)

which implies that

$$\frac{(1-|w|^{2})^{\beta}|u(w)(\varphi'(w))^{2}||\varphi(w)||^{n+2}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+2}} \\
\leq \frac{1}{2p_{1}}(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)(1-|w|^{2})^{\beta}|(D_{\varphi,u}^{n}f_{\varphi(w),0})''(w)| \\
+\frac{1}{p_{1}}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(1-|w|^{2})^{\beta}|(D_{\varphi,u}^{n}f_{\varphi(w),1})''(w)| + \frac{1}{2p_{1}}(\frac{1}{p}+b)(\frac{1}{p}+b+1)(1-|w|^{2})^{\beta}|(D_{\varphi,u}^{n}f_{\varphi(w),2})''(w)| \\
\leq \frac{1}{2p_{1}}(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)||D_{\varphi,u}^{n}f_{\varphi(w),0}||_{\mathscr{Z}^{\beta}} \\
+\frac{1}{p_{1}}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)||D_{\varphi,u}^{n}f_{\varphi(w),1}||_{\mathscr{Z}^{\beta}} + \frac{1}{2p_{1}}(\frac{1}{p}+b)(\frac{1}{p}+b+1)||D_{\varphi,u}^{n}f_{\varphi(w),2}||_{\mathscr{Z}^{\beta}} \\
\leq \frac{1}{2p_{1}}(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)A + \frac{1}{p_{1}}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)A + \frac{1}{2p_{1}}(\frac{1}{p}+b)(\frac{1}{p}+b+1)A. \tag{15}$$

From (12) and (13), we obtain

$$p_{1} \frac{v(w)\overline{\varphi(w)}^{n+1}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n+1}}$$

$$= -(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)(\frac{1}{p}+b+n+2)(D_{\varphi,u}^{n}f_{\varphi(w),0})''(w)$$

$$+(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(\frac{2}{p}+2b+2n+3)(D_{\varphi,u}^{n}f_{\varphi(w),1})''(w)$$

$$-(\frac{1}{p}+b)(\frac{1}{p}+b+1)(\frac{1}{p}+b+n+1)(D_{\varphi,u}^{n}f_{\varphi(w),2})''(w), \tag{16}$$

which implies that

$$\frac{(1-|w|^2)^{\beta}|v(w)||\varphi(w)|^{n+1}}{(1-|\varphi(w)|^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n+1}} \\
\leq \frac{1}{p_1}(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)(1+2(\frac{1}{p}+b+n+2)(1-|w|^2)^{\beta}|(D^n_{\varphi,\mu}f_{\varphi(w),0})''(w)| \\
+\frac{1}{p_1}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(1+2(\frac{1}{p}+b+n+2))(1-|w|^2)^{\beta}|(D^n_{\varphi,\mu}f_{\varphi(w),1})''(w)| \\
+\frac{1}{p_1}(\frac{1}{p}+b)(\frac{1}{p}+b+1)(\frac{1}{p}+b+n+1)(1-|w|^2)^{\beta}|(D^n_{\varphi,\mu}f_{\varphi(w),2})''(w)| \\
\leq \frac{1}{p_1}(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)(1+2(\frac{1}{p}+b+n+2)||D^n_{\varphi,\mu}f_{\varphi(w),0}||_{\mathscr{Z}^{\beta}} \\
+\frac{1}{p_1}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(1+2(\frac{1}{p}+b+n+2))||D^n_{\varphi,\mu}f_{\varphi(w),1}||_{\mathscr{Z}^{\beta}} \\
+\frac{1}{p_1}(\frac{1}{p}+b)(\frac{1}{p}+b+1)(\frac{1}{p}+b+n+1)||D^n_{\varphi,\mu}f_{\varphi(w),2}||_{\mathscr{Z}^{\beta}} \\
\leq \frac{1}{p_1}(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)(\frac{1}{p}+b+n+2)A \\
+\frac{1}{p_1}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(1+2(\frac{1}{p}+b+n+2)A \\
+\frac{1}{p_1}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(1+2(\frac{1}{p}+b+n+2)A + \frac{1}{p_1}(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)A. \tag{18}$$

By (7), (13) and (16), we have

$$p_{0} \frac{u''(w)\overline{\varphi(w)}^{n}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n}}$$

$$= \left[\left(\frac{1}{p}+b+n\right)+\left(\frac{1}{p}+b+n\right)^{2}\left[\frac{1}{2}\left(\frac{1}{p}+b+n+1\right)+1\right]\right]\left(D_{\varphi,u}^{n}f_{\varphi(w),0}\right)''(w)$$

$$-\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+n\right)\left(\frac{1}{p}+b+n+2\right)\left(D_{\varphi,u}^{n}f_{\varphi(w),1}\right)''(w)+\frac{1}{2}\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+1\right)\left(\frac{1}{p}+b+n\right)\left(D_{\varphi,u}^{n}f_{\varphi(w),2}\right)''(w), (19)$$

which implies that

$$\frac{(1-|w|^{2})^{\beta}|u''(w)||\varphi(w)|^{n}}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} \\
\leq \frac{\left[\left(\frac{1}{p}+b+n\right)+\left(\frac{1}{p}+b+n\right)^{2}\left[\frac{1}{2}\left(\frac{1}{p}+b+n+1\right)+1\right]\right]}{p_{0}}(1-|w|^{2})^{\beta}|(D_{\varphi,u}^{n}f_{\varphi(w),0})''(w)| \\
-\frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+n\right)\left(\frac{1}{p}+b+n+2\right)}{p_{0}}(1-|w|^{2})^{\beta}|(D_{\varphi,u}^{n}f_{\varphi(w),1})''(w)| \\
+\frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+1\right)\left(\frac{1}{p}+b+n\right)}{2p_{0}}(1-|w|^{2})^{\beta}|(D_{\varphi,u}^{n}f_{\varphi(w),2})''(w)| \\
\leq \frac{\left[\left(\frac{1}{p}+b+n\right)+\left(\frac{1}{p}+b+n\right)^{2}\left[\frac{1}{2}\left(\frac{1}{p}+b+n+1\right)+1\right]\right]}{p_{0}}\|D_{\varphi,u}^{n}f_{\varphi(w),0}\|_{\mathscr{Z}^{\beta}} \\
+\frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+n\right)\left(\frac{1}{p}+b+n+2\right)}{2p_{0}}\|D_{\varphi,u}^{n}f_{\varphi(w),1}\|_{\mathscr{Z}^{\beta}} \\
+\frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+1\right)\left(\frac{1}{p}+b+n\right)}{2p_{0}}\|D_{\varphi,u}^{n}f_{\varphi(w),2}\|_{\mathscr{Z}^{\beta}} \\
\leq \frac{\left[\left(\frac{1}{p}+b+n\right)+\left(\frac{1}{p}+b+n\right)^{2}\left[\frac{1}{2}\left(\frac{1}{p}+b+n+1\right)+1\right]\right]}{p_{0}}A \\
+\frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+n\right)\left(\frac{1}{p}+b+n\right)^{2}\left[\frac{1}{2}\left(\frac{1}{p}+b+n+1\right)+1\right]}{p_{0}}A \\
+\frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+n\right)\left(\frac{1}{p}+b+n\right)^{2}\left[\frac{1}{p}\left(\frac{1}{p}+b+n+1\right)+1\right]}{p_{0}}A . \tag{21}$$

Fix $r \in (0, 1)$. If $|\varphi(w)| > r$, then from (21) we obtain

$$\frac{(1-|w|^{2})^{\beta}|u''(w)|}{(1-|\varphi(w)|^{2})^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} \leq \frac{\left[\left(\frac{1}{p}+b+n\right)+\left(\frac{1}{p}+b+n\right)^{2}\left[\frac{1}{2}\left(\frac{1}{p}+b+n+1\right)+1\right]\right]}{p_{0}r^{n}}A + \frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+n\right)\left(\frac{1}{p}+b+n+2\right)}{p_{0}r^{n}}A + \frac{\left(\frac{1}{p}+b\right)\left(\frac{1}{p}+b+1\right)\left(\frac{1}{p}+b+n\right)}{2p_{0}r^{n}}A < \infty. (22)$$

On the other hand, if $|\varphi(w)| \le r$, we get

$$\frac{(1-|w|^2)^{\beta}|u''(w)|}{(1-|\varphi(w)|^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} \le \frac{1}{(1-r^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} \sup_{z \in \mathbb{D}} (1-|z|^2)^{\beta}|u''(z)| < \infty.$$
(23)

From (22) and (23) we see that M_1 is finite. Using similar arguments, (15) and (18) we can obtain that M_2 and M_3 are finite as well. By Theorem A, we complete the proof of this theorem.

Theorem 2.4. Let $u \in \mathcal{Z}^{\beta}$, φ be an analytic self-map of \mathbb{D} and n be a nonnegative integer. Assume that p, q > 0, $\gamma > -1$ and $0 < \beta < \infty$. Suppose that the operator $D^n_{\varphi,u} : H_{p,q,\gamma} \to \mathcal{Z}^{\beta}$ is bounded, then the following conditions are equivalent:

(a) The operator $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$ is compact;

b)

$$\lim_{|\varphi(w)|\to 1}\|D^n_{\varphi,u}f_{\varphi(w),0}\|_{\mathscr{Z}^\beta}=\lim_{|\varphi(w)|\to 1}\|D^n_{\varphi,u}f_{\varphi(w),1}\|_{\mathscr{Z}^\beta}=\lim_{|\varphi(w)|\to 1}\|D^n_{\varphi,u}f_{\varphi(w),2}\|_{\mathscr{Z}^\beta}=0.$$

Proof. (a) \Longrightarrow (b). Assume that $D^n_{\varphi,\mu}: H_{p,q,\gamma} \to \mathscr{Z}^\beta$ is compact. Let $\{w_k\}_{k \in \mathbb{N}}$ be a sequence in \mathbb{D} such that $\lim_{k \to \infty} |\varphi(w_k)| = 1$. Since the sequences $\{f_{\varphi(w_k),j}\}, j = 0,1,2$, are bounded in $H_{p,q,\gamma}$ and converge to 0 uniformly on compact subsets of \mathbb{D} , by Lemma 2.2, we get $\|D^n_{\varphi,\mu}f_{\varphi(w_k),j}\|_{\mathscr{Z}^\beta} \to 0$, j = 0,1,2, as $k \to \infty$, which means that (b) holds.

 $(b) \Longrightarrow (a)$. Suppose that the limits in (b) are 0. Using the inequality (20), we get

$$\begin{split} &\frac{(1-|w|^2)^{\beta}|u''(w)|}{(1-|\varphi(w)|^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n}} \\ &\leq &\frac{\left[(\frac{1}{p}+b+n)+(\frac{1}{p}+b+n)^2[\frac{1}{2}(\frac{1}{p}+b+n+1)+1]\right]}{p_0|\varphi(w)|^n} \|D^n_{\varphi,u}f_{\varphi(w),0}\|_{\mathscr{Z}^{\beta}} + \\ &\frac{(\frac{1}{p}+b)(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+2)}{p_0|\varphi(w)|^n} \|D^n_{\varphi,u}f_{\varphi(w),1}\|_{\mathscr{Z}^{\beta}} + \frac{(\frac{1}{p}+b)(\frac{1}{p}+b+1)(\frac{1}{p}+b+n)}{2p_0|\varphi(w)|^n} \|D^n_{\varphi,u}f_{\varphi(w),2}\|_{\mathscr{Z}^{\beta}} \to 0 \end{split}$$

as $|\varphi(w)| \to 1$. Using the inequality (17), we get

$$\begin{split} &\frac{(1-|w|^2)^{\beta}|v(w)|}{(1-|\varphi(w)|^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n+1}} \\ &\leq &\frac{(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)(\frac{1}{p}+b+n+2)}{p_1|\varphi(w)|^{n+1}} \|D^n_{\varphi,u}f_{\varphi(w),0}\|_{\mathscr{Z}^{\beta}} \\ &+ \frac{(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)(1+2(\frac{1}{p}+b+n+2))}{p_1|\varphi(w)|^{n+1}} \|D^n_{\varphi,u}f_{\varphi(w),1}\|_{\mathscr{Z}^{\beta}} \\ &+ \frac{(\frac{1}{p}+b)(\frac{1}{p}+b+1)(\frac{1}{p}+b+n+1)}{p_1|\varphi(w)|^{n+1}} \|D^n_{\varphi,u}f_{\varphi(w),2}\|_{\mathscr{Z}^{\beta}} \to 0 \end{split}$$

as $|\varphi(w)| \to 1$. Moreover, using (14), we deduce

$$\begin{split} &\frac{(1-|w|^2)^{\beta}|u(w)(\varphi'(w))^2|}{(1-|\varphi(w)|^2)^{\frac{\gamma+1}{q}+\frac{1}{p}+n+2}} \\ &\leq &\frac{(\frac{1}{p}+b+n)(\frac{1}{p}+b+n+1)}{2p_1|\varphi(w)|^{n+2}} \|D^n_{\varphi,u}f_{\varphi(w),0}\|_{\mathscr{Z}^{\beta}} + \frac{(\frac{1}{p}+b)(\frac{1}{p}+b+n+1)}{p_1|\varphi(w)|^{n+2}} \|D^n_{\varphi,u}f_{\varphi(w),1}\|_{\mathscr{Z}^{\beta}} \\ &+ \frac{1}{2p_1|\varphi(w)|^{n+2}} (\frac{1}{p}+b)(\frac{1}{p}+b+1) \|D^n_{\varphi,u}f_{\varphi(w),2}\|_{\mathscr{Z}^{\beta}} \to 0 \end{split}$$

as $|\varphi(w)| \to 1$. By Theorem A, we see that $D_{\varphi,u}^n: H_{p,q,\gamma} \to \mathscr{Z}^{\beta}$ is compact. The proof of this theorem is complete.

References

- [1] B. Choe, H. Koo and W. Smith, Composition operators on small spaces, Integr. Equ. Oper. Theory, 56 (2006), 357-380.
- [2] F. Colonna and S. Li, Weighted composition operators from H^{∞} to the Zygmund spaces, preprint.

- [3] C. C. Cowen and B. D. MacCluer, Composition Operators on Spaces of Analytic Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1995.
- [4] P. Duren, Theory of H^p Spaces, Academic Press, New York, 1970.
- [5] R. A. Hibschweiler and N. Portnoy, Composition followed by differentiation between Bergman and Hardy spaces, Rocky Mountain J. Math. 35 (2005), 843-855.
- [6] S. Li and S. Stević, Generalized composition operators on Zygmund spaces and Bloch type spaces, J. Math. Anal. Appl. 338 (2008), 1282–1295.
- [7] S. Li and S. Stević, Weighted composition operators from Zygmund spaces into Bloch spaces, Appl. Math. Comput. 206 (2008), 825–831.
- [8] S. Li and S. Stević, Composition followed by differentiation from mixed-norm spaces to β-Bloch spaces, Sb. Math. 199 (2008), 1847-1857.
- [9] S. Li and S. Stević, Composition followed by differentiation between H^{∞} and α -Bloch spaces, Houston J. Math. 35 (2009), 327-340.
- [10] Y. Liu and Y. Yu, Composition followed by differentiation between H^{∞} and Zygmund spaces, Complex Anal. Oper. Theory, 6 (2012), 121–137.
- [11] J. H. Shapiro, Composition Operators and Classical Function Theory, Springer-Verlag, New York, 1993.
- [12] J. Shi, Inequalities for the integral means of holomorphic functions and their derivatives in the unit ball of \mathbb{C}^n , Trans. Amer. Math. Soc. 328 (1991), 619-637.
- [13] S. Stević, Weighted composition operators between mixed norm spaces and H_{α}^{∞} spaces in the unit ball, J. Inequal. Appl. Vol 2007, Article ID 28629, (2007), 9 pages.
- [14] S. Stević, Products of composition and differentiation operators on the weighted Bergman space, Bull. Belg. Math. Soc. Simon Stevin, 16 (2009), 623-635.
- [15] S. Stević, Weighted differentiation composition operators from mixed-norm spaces to weighted-type spaces, Appl. Math. Comput. 211 (2009), 222-233.
- [16] S. Stević, Weighted differentiation composition operators from mixed-norm spaces to the *n*th weighted-type space on the unit disk, Abstr. Appl. Anal. Vol. 2010, Article ID 246287, (2010), 15 pages.
- [17] S. Stević, Weighted differentiation composition operators from H^{∞} and Bloch spaces to nth weighted-type spaces on the unit disk, Appl. Math. Comput. 216 (2010), 3634–3641.
- [18] W. Yang and W. Yan, Generalized weighted composition operators from area Nevanlinna spaces to weighted-type spaces, Bull. Korean Math. Soc. 48 (2011), 1195–1205.
- [19] Y. Yu and Y. Liu, Weighted differentiation composition operators from H^{∞} to Zygmund spaces, Integ. Trans. Spec. Funct. 22 (2011), 507–520.
- [20] Y. Zhang, New criteria for generalized weighted composition operators from mixed norm spaces into Bloch-type spaces, Bull. Math. Anal. Appl. to appear.
- [21] X. Zhu, Products of differentiation, composition and multiplication from Bergman type spaces to Bers type space, Integ. Tran. Spec. Funct. 18 (2007), 223-271.
- [22] X. Zhu, Generalized weighted composition operators from Bloch-type spaces to weighted Bergman spaces, Indian J. Math. 49 (2007), 139-149.
- [23] X. Zhu, Generalized weighted composition operators on weighted Bergman spaces, Numer. Funct. Anal. Opt. 30 (2009), 881-893.
- [24] X. Zhu, Weighted composition operators from mixed norm spaces to Bloch-type spaces, Utilitas Math. to appear.