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Sharp bounds on Zagreb indices of cacti with k pendant vertices

Shuchao Lia, Huangxu Yanga, Qin Zhaoa

aFaculty of Mathematics and Statistics, Central China Normal University, Wuhan 430079, P.R. China

Abstract. For a (molecular) graph, the first Zagreb index M1 is equal to the sum of squares of its vertex degrees,
and the second Zagreb index M2 is equal to the sum of products of degrees of pairs of adjacent vertices. A
connected graph G is a cactus if any two of its cycles have at most one common vertex. In this paper, we
investigate the first and the second Zagreb indices of cacti with k pendant vertices. We determine sharp bounds
for M1-, M2-values of n-vertex cacti with k pendant vertices. As a consequence, we determine the n-vertex
cacti with maximal Zagreb indices and we also determine the cactus with a perfect matching having maximal
Zagreb indices.

1. Introduction

A single number that can be used to characterize some property of the graph of a molecule is called a
topological index. For quite some time there has been rising interest in the field of computational chemistry
in topological indices that capture the structural essence of compounds. The interest in topological indices
is mainly related to their use in nonempirical quantitative structure-property relationships and quantitative
structure-activity relationships. One of the most important topological indices is the well-known Randić index.

In 1975, Randić proposed a structural descriptor called branching index [57] that later became well-known
Randić connectivity index, which is the most used molecular descriptor in QSPR and QSAR; see [20, 33, 34, 55, 63].
The name connectivity index that replaced the original Randić term branching index has been suggested by
Kier as stated by Randić [58]. The first paper in which the Randić connectivity index was used in QSAR
appeared soon after the original publication, also in [35]. Mathematicians also exhibited considerable interest
in the properties of the Randić connectivity index; see [6, 7, 23, 24, 38, 42, 43, 54, 56]. The Randić connectivity
index has also evolved into several variants [20, 36, 37, 55, 58, 59, 67].

The Randić connectivity index has been extended as the general Randić connectivity index and general zeroth-
order Randić connectivity index, and then the Zagreb indices appear to be the special cases of them [13, 14, 29, 43].
The Zagreb indices have been introduced in 1972 in the report of Gutman and Trinajstić on the topological
basis of the π-electron energy [25]—-two terms appeared in the topological formula for the total π-energy of
alternant hydrocarbons, which were in 1975 used by Gutman et al. [26] as branching indices, denoted by M1
and M2, and later employed as molecular descriptors in QSPR and QSAR; see [3, 4]. The name Zagreb indices
instead of the term branching indices was first used by Balaban et al. [1].

There are three groups of closed related problems which have attracted the attention of researchers for a
long time:

• How M1(G) (respectively, M2(G)) depends on the structure of G.

• Given a set of molecular graph G , find upper and lower bounds for M1(G) and M2(G) of graphs in G
and characterize the graphs in which the maximal (respectively, minimal) M1-, M2-value is attained,
respectively.
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• How M1(G) and M2(G) can be efficiently calculated, especially without the aid of a computer.

In view of these problems, it is not surprising that in the chemical literature there are numerous studies
of properties of the Zagreb indices of molecular graphs. In fact, investigation of the above problems mainly
deal with graphs whose cyclomatic number is at most 2 as the sole objects [15, 18, 31, 40, 48, 56, 62, 66];
Mathematical and computational properties of Zagreb indices have also been considered [17, 27, 28, 53, 69, 70].
The reformulation of Zagreb indices are also attract more and more researchers’ attention [22, 61]. Other
direction of investigation include studies of relation between M1(G) (respectively, M2(G)) and the corresponding
invariant of elements of the graph G (vertices, pendants, cut-edges, diameter, maximum degree, girth, perfect
matching, connectivity and cut-vertices); see [11, 15, 16, 19, 31, 39–41, 46, 47, 62, 69, 70]. For the applications of
the Zagreb indices and their variants to modelling properties of molecules, one may refer to [9, 30, 49–51, 65].

In addition to the myriad applications of the Zagreb indices in chemistry there are many situations in
communication, facility location, cryptology, etc., that are effectively modeled by a connected graph G satisfying
certain restriction. In light of the information available for M1 and M2 of trees, unicyclic graphs, bicyclic graphs,
et al., it is natural to consider other classes of graphs, and the n-vertex cactus graph with k pendant vertices is
a reasonable starting point for such an investigation. The cactus graph has been considered in mathematical
literature [2, 8, 12, 21, 32, 45, 71], whereas to our best knowledge, the Zagreb indices of n-vertex cacti with
k pendant vertices were, so far, not considered in the chemical literature. On the other hand, cacti represent
important class of molecules [44, 45].

In this paper, we determine the n-vertex cacti with k pendant vertices having extremal (maximal and
minimal) values of M1 and M2. As a consequence, we determine the n-vertex cacti having the maximal Zagreb
indices, as well we determine the n-vertex cacti with a perfect matching having the maximal Zagreb indices.
In our exposition we will use the terminology and apparatus of (chemical) graph theory (see [5, 10, 64]).

2. Preliminaries

Let G = (VG,EG) be a simple graph with vertex set VG = {v1, v2, . . . , vn} and edge set EG. n = |G| (= |VG|) is
the order of G. Throughout the paper we denote by Pn and Cn the n-vertex graph equals to the path and cycle,
respectively. G − v, G − uv denote the graph obtained from G by deleting a vertex v ∈ VG, or an edge uv ∈ EG,
respectively (this notation is naturally extended if more than one vertex, or edge, is deleted). Similarly, G + v
and G + uv are obtained from G by adding a vertex v < VG, or an edge uv < EG, respectively (note, if a vertex v
is added to G, then its neighbours in G should be specified somehow). For a vertex x of the graph G, we denote
the neighborhood and the degree of x by NG(x) and dG(x) (or N(x) and d(x) for short), respectively. In particular,
let N[x] = N(x) ∪ {x}. For u, v ∈ VG, let d(u, v) denote the distance between u and v in G. In the whole of our
context denote by Cn,k the set of all connected cacti on n vertices with k pendants. The Randić connectivity index
[57] R = R(G) of G is defined as

R = R(G) =
∑

uv∈EG

(dG(u)dG(v))−1/2.

The zeroth order Randić connectivity index [42, 43] R′ = R′(G) is defined as

R′ = R′(G) =
∑
u∈VG

(dG(u))−1/2.

The first Zagreb index M1 =M1(G) and the second Zagreb index M2 =M2(G) [17, 25–27, 53] of the graph G are
given by

M1 =M1(G) =
∑
u∈VG

dG(u)2, M2 =M2(G) =
∑

uv∈EG

dG(u)dG(v).

Further on we will need the following lemmas.

Lemma 2.1. Let u, v be two distinct vertices of a connected graph G. Suppose that {v1, v2, . . . , vs} ⊆ N(v) \N[u], where
1 6 s 6 dG(v). Let G∗ = G − {vv1, vv2, . . . , vvs} + {uv1,uv2, . . . ,uvs}. If dG(u) + s > dG(v), then M1(G∗) >M1(G).

Proof. Note that dG∗ (u) = dG(u) + s, dG∗(v) = dG(v) − s and dG∗(x) = dG(x) for any x ∈ VG \ {u, v}. Hence, by the
definition of the first Zagreb index we have

M1(G∗) −M1(G) = dG∗ (u)2 + dG∗ (v)2 − d(u)2 − d(v)2 = 2s2 + 2s(d(u) − d(v)) = 2s(d(u) + s − d(v)) > 0,

where the last inequality follows by s > 1 and dG(u) + s > dG(v). Hence, we have M1(G∗) >M1(G).
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Lemma 2.2. Let u, v be two distinct vertices of a connected graph G with dG(u) > dG(v). Suppose that N(v) \
N[u] = {v1, v2, . . . , vs, vs+1, . . . , v j}, 1 6 j 6 d(v), N(u) \ N[v] = {u1,u2, . . . , ut} with

∑t
i=1 dG(ui) >

∑ j
i=s+1 dG(vi). Let

G∗ = G − {vv1, vv2, . . . , vvs} + {uv1,uv2, . . . ,uvs}.
(i) If uv < EG, then M2(G∗) >M2(G).

(ii) If uv ∈ EG, then M2(G∗) >M2(G).

Proof. For convenience, suppose that N(v)
∩

N(u) = {v j+1, v j+2, . . . , vd(v)}. Note that dG∗(u) = dG(u) + s, dG∗ (v) =
dG(v) − s and dG∗(x) = dG(x) for any x ∈ VG \ {u, v}. For convenience, let d(u) = dG(u) for any u ∈ VG.

(i) Note that uv < EG, hence by the definition of the second Zagreb index we have

M2(G∗) −M2(G) = dG∗(v)
d(v)∑

i=s+1

d(vi) + dG∗ (u)
d(v)∑

i= j+1

d(vi) + dG∗(u)
s∑

i=1

d(vi) + dG∗(u)
t∑

i=1

d(ui)

− d(u)
t∑

i=1

d(ui) − d(u)
d(v)∑

i= j+1

d(vi) − d(v)
d(v)∑
i=1

d(vi)

= (dG∗(u) − d(v))
s∑

i=1

d(vi) + (dG∗ (v) − d(v))
d(v)∑

i= j+1

d(vi) + (dG∗(u) − d(u))
t∑

i=1

d(ui)

+ (dG∗ (u) − d(u))
d(v)∑

i= j+1

d(vi) + (dG∗(v) − d(v))
j∑

i=s+1

d(vi)

= (dG∗(u) − d(v))
s∑

i=1

d(vi) − s
d(v)∑

i= j+1

d(vi) + s
t∑

i=1

d(ui) + s
d(v)∑

i= j+1

d(vi) − s
j∑

i=s+1

d(vi)

= (dG∗(u) − d(v))
s∑

i=1

d(vi) + s(
t∑

i=1

d(ui) −
j∑

i=s+1

d(vi))

> (d(u) − d(v))
s∑

i=1

d(vi) + s(
t∑

i=1

d(ui) −
j∑

i=s+1

d(vi))

≥ 0.

The last second inequality follows by dG∗(u) > d(u); whereas the last inequality follows by
∑t

i=1 d(ui) >
∑ j

i=s+1 d(vi)
and d(u) > d(v). Hence, M2(G∗) >M2(G).

(ii) Note that uv ∈ EG, hence by direct computing we have

M2(G∗) −M2(G) = (dG∗(u) − d(v))
s∑

i=1

d(vi) + s(
t∑

i=1

d(ui) −
j∑

i=s+1

d(vi)) + dG∗(u)dG∗(v) − d(u)d(v)

= (t + s − j)
s∑

i=1

d(vi) + s(
t∑

i=1

d(ui) −
j∑

i=s+1

d(vi)) + (d(u) + s)(d(v) − s) − d(u)d(v)

= (t + s − j)
s∑

i=1

d(vi) + s(
t∑

i=1

d(ui) −
j∑

i=s+1

d(vi)) + s(d(v) − d(u)) − s2

> (t + s − j)s + s(
t∑

i=1

d(ui) −
j∑

i=s+1

d(vi)) + s( j − t) − s2

= s(
t∑

i=1

d(ui) −
j∑

i=s+1

d(vi))

> 0.

The last inequality follows by
∑t

i=1 dG(ui) >
∑ j

i=s+1 dG(vi). Hence, M2(G∗) >M2(G).
This completes the proof.
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Remark 1. The proof of Lemma 2.2 (ii) implies that if there exists a vertex vi with d(vi) ≥ 2, i ∈ {1, 2, . . . , s}, or∑t

i=1 d(ui) >
∑ j

i=s+1 d(vi), then we can obtain M2(G∗) >M2(G).

The following result follows directly by the definition of the first and second Zagreb indices.

Lemma 2.3. Let G be a connected graph and G′ is a proper subgraph of G. Then Mi(G) >Mi(G′) for i = 1, 2.

Let G1(resp. G2) be the graph with n vertices and k pendant vertices which, as shown in Fig. 1, is obtained
from a connected subgraph H by attaching a path Pm+1 (resp. a path Pm−1 and a cycle C3) to a vertex u0 of H;
H1 (resp. H2) be the graph with n vertices and k pendant vertices which, as shown in Fig. 1, is obtained from
a connected subgraph H by attaching m−1

2 C3’s and a path P2 (resp. m−2
2 C3’s and a P3) to u0 when m is odd

(resp. even), where |VH | > 3 and m > 3.
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Figure 1: Graphs G1, G2, H1 and H2.

Lemma 2.4. Let G1,G2,H1 and H2 be the graphs as depicted in Fig. 1. Then, for i = 1, 2, we have

(i) Mi(G1) <Mi(G2);
(ii) Mi(G1) <Mi(H1) if m is odd, otherwise Mi(G1) <Mi(H2).

Proof. (i) In G1 denote the path Pm+1 by u0u1 . . .um. Let G′ = G1 − u2u3 + u0u3. Note that d(u0) > d(u2), hence by
Lemmas 2.1 and 2.2, we get M1(G1) < M1(G′) and M2(G1) < M2(G′). Note that G′ is a proper subgraph of G2,
hence by Lemma 2.3 Mi(G′) <Mi(G2) for i = 1, 2. This completes the proof of (i).

(ii) From (i) we know that our result holds for m = 3, 4. So in what follows we consider the case m > 5. By
repeated using the similar discussion as in (i) on G2, we finally get the graph H1 if m is odd or, the graph H2 if
m is even. So, Mi(G1) < Mi(H1) if m is odd, otherwise Mi(G1) < Mi(H2) for i = 1, 2. This completes the proof of
(ii).
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Figure 2: Graphs G3 and G4.

Let W be a connected (n − 4)-vertex graph with k − 2 pendant vertices. Let G3 be the graph obtained from
W by attaching two paths of length 2 to a vertex, say u0, of W; see Fig. 2. Set G4 = G3 − zw + {u0w,u0t} (see Fig.
2). It is easy to see that G3 (resp. G4) is an n-vertex graph with k pendant vertices.

Lemma 2.5. Let G3 and G4 be the graphs with n vertices and k pendant vertices as shown in Fig. 2. Then M1(G3) <
M1(G4) and M2(G3) <M2(G4).

Proof. Let G′ = G3 − {st, zw} + {u0t,u0w}, by Lemmas 2.1 and 2.2 we obtain that M1(G3) < M1(G′) and M2(G3) 6
M2(G′). Note that G′ is a proper subgraph of G4. By Lemma 2.3, we get M1(G′) <M1(G4) and M2(G′) <M2(G4).
Hence, Mi(G3) <Mi(G4) for i = 1, 2.

Let Y be a connected (n − m + 1)-vertex graph with k pendants and u0 ∈ VY. Let G5 (resp. G6) be an n-vertex
graph obtained from Y by attaching Cm (resp. Cm−2 and C3) to u0 (see Fig. 3); G7 (resp. G8) be an n-vertex graph
obtained from Y by attaching m−1

2 C3’s (resp. m−4
2 C3’s and a C4) to u0 when m is odd (resp. even), where

m > 5. Graphs G7 and G8 are depicted in Fig. 3.

Lemma 2.6. Let G5,G6,G7 and G8 be the graphs defined as above (see Fig. 3). Then, for i = 1, 2, we have
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Figure 3: Graphs G5,G6,G7 and G8.

(i) Mi(G5) <Mi(G6);
(ii) Mi(G5) <Mi(G7) if m is odd; otherwise Mi(G5) <Mi(G8).

Proof. (i) Denote by Cm = u0u1u2 . . .um−1u0. Let G′ = G5−u2u3+u0u2. Note that d(u0) ≥ d(u3), hence by Lemmas
2.1 and 2.2, we get M1(G5) <M1(G′) and M2(G5) <M2(G′). Notice that G′ is a proper subgraph of G6, hence by
Lemma 2.3, we have Mi(G′) <Mi(G6). Thus, we get Mi(G5) <Mi(G6) for i = 1, 2.

(ii) From (i) we know that our result holds for m = 5, 6, so in what follows we consider the case for m > 7.
In this case, by repeated using the similar discussion as in (i) on G6, we, finally, get the graph G7 if m is odd or,
the graph G8 if m is even. Hence, Mi(G5) <Mi(G7) if m is odd; otherwise, Mi(G5) <Mi(G8) for i = 1, 2.
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Figure 4: Graphs H3 and H4.

Lemma 2.7. Let H3 and H4 be the graphs as depicted in Fig. 4, where U is a connected (n − 6)-vertex graph with k
pendants. Then, Mi(H3) <Mi(H4) for i = 1, 2.

Proof. Let H′ = H3 − u2u3 + u0u2. Note that dH3 (u0) ≥ dH3 (u3), hence by Lemmas 2.1 and 2.2, we have
M1(H3) < M1(H′) and M2(H3) 6 M2(H′). Furthermore, let H′′ = H′ − u5u6 + u0u5, by Lemmas 2.1 and 2.2, we
have M1(H3) < M1(H′′) and M2(H3) 6 M2(H′′). Note that H′′ is a proper subgraph of H4, by Lemma 2.3, we
have Mi(H′′) <Mi(H4) for i = 1, 2. This completes the proof.

Lemma 2.8. Let H5 and H6 be the graphs with n vertices and k pendant vertices as shown in Fig. 5. Then M1(H5) <
M1(H6) and M2(H5) <M2(H6).
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Figure 5: Graphs H5 and H6.

Proof. Let H′ = H5 − u2u3 + u0u2. Note that dH5 (u0) ≥ dH5 (u3), hence by Lemmas 2.1 and 2.2, we have
M1(H5) < M1(H′) and M2(H5) 6 M2(H′). Since H′ is a proper subgraph of H6, by Lemma 2.3, M1(H′) < M1(H6)
and M2(H′) <M2(H6). Hence, Mi(H5) <Mi(H6) for i = 1, 2.

Lemma 2.9. Let H7 and H8 be the n-vertex graphs as shown in Fig. 6, where Z is a connected subgraph with k − 1
pendants. Then, M1(H7) =M1(H8) and M2(H7) <M2(H8).
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Figure 6: Graphs H7 and H8.

Proof. Note that dH7 (z) = dH8 (z) for any z ∈ VZ, hence by the definition of the first and second Zagreb indices
we have

M1(H8) −M1(H7) = 0,
M2(H8) −M2(H7) = dH7 (u0) − 2 > 0.

Hence, we have M1(H7) =M1(H8) and M2(H7) <M2(H8).

Lemma 2.10. Let C be a cycle of graph G ∈ Cn,k with u, v ∈ VC satisfying min{dG(u), dG(v)} > 2. Then there exists a
graph G∗ ∈ Cn,k such that M2(G) <M2(G∗).

Proof. Note that u, v ∈ VC, hence there exist two paths, say P and P′, connecting u and v. For convenience, let
P = u1u2 . . .up and P′ = u1v1 . . . up with |EP| 6 |EP′ |. We distinguish the following three possible cases to prove
our result.

Case 1. |EC| = 3, i.e. P = u1u2 and P′ = u1v1u2. Assume, without loss of generality, that dG(u1) 6 dG(u2). Let
G′ = G − {u1y|y ∈ N(u1) \ {v1, u2}} + {u2y|y ∈ N(u1) \ {v1,u2}}. Then G′ ∈ Cn,k. By Lemma 2.2 and Remark 1, we
get M2(G) <M2(G′), as desired.

Case 2. |EC| = 4. In this case, if P = u1u2u3 and P′ = u1v1u3, then assume, without loss of generality, that
dG(u1) 6 dG(u3), then let G′ = G − {u1y|y ∈ N(u1) \ {v1,u2}} + {u3y|y ∈ N(u1) \ {v1,u2}}. It is easy to see that
G′ ∈ Cn,k and by Lemma 2.2, we get M2(G) < M2(G′), a contradiction. In order to complete the proof of this
case, it suffices to consider that P = u1u2 and P′ = u1v1v2u2.

• dG(v1) = dG(v2) = 2. Let w be a pendant vertex of G. Set G∗ = G−{v1v2, v2u2}+ {v1u2,wv2}. By direct computing,
we obtain M2(G) 6 M2(G∗). By Case 1, there exists a cactus G0 ∈ Cn,k such that M2(G∗) < M2(G0). Hence, we
obtain M2(G) <M2(G0), as required.

• max{dG(v1), dG(v2)} > 2. Assume, without loss of generality, that dG(v1) > 3. If dG(v1) 6 dG(u2), then let
G′ = G−{v1y|y ∈ N(v1)\{u1, v2}}+{u2y|y ∈ N(v1)\{u1, v2}}; otherwise let G′′ = G−{u2y|y ∈ N(u2)\{u1, v2}}+{v1y|y ∈
N(u2)\{u1, v2}}. It is easy to see that G′,G′′ ∈ Cn,k and by Lemma 2.2, we get M2(G) <M2(G′) or, M2(G) <M2(G′′),
as required.

Case 3. |EC| > 5. In this case, if dG(v2) 6 dG(u1), then let G∗ = G−{v2y|y ∈ NG(v2)\{v1}}+{u1y|y ∈ NG(v2)\{v1}};
otherwise let G∗∗ = G−{u1y|y ∈ NG(u1)\{v1}}+ {v2y|y ∈ NG(u1)\{v1}}. It is straightforward to check that G∗+v2u1
(resp. G∗∗ + u1v2) is in Cn,k and by Lemmas 2.2 and 2.3 we get M2(G) <M2(G∗) or, M2(G) <M2(G∗∗), as required.

This completes the proof.

3. Characterization of graphs in Cn,k with maximal Zagreb indices

We call G a cactus if it is connected and any two of its cycles have at most one common vertex. If all cycles of
the cactus G have exactly one common vertex, we say that they form a bundle. In the following, we determine
the graphs with the largest M1-, M2-values in the class Cn,k, respectively.

Theorem 3.1. Let G be a graph in Cn,k.

(i) If n − k ≡ 1 (mod 2), then M1(G) 6 n2 + 2n − 3k − 3, with equality if and only if G � C1(n, k), where C1(n, k) is
depicted in Fig. 7.

(ii) If n − k ≡ 0 (mod 2), then M1(G) 6 n2 − 3k, with equality if and only if G � C2(n, k) or, C3(n, k), where C2(n, k)
and C3(n, k) are depicted in Fig. 7.

Proof. Choose G ∈ Cn,k such that its M1-value is as large as possible. First we prove that all the cycles contained
in G forms a bundle.
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Figure 7: Graphs C1(n, k), C2(n, k) and C3(n, k).

Claim 3.2. Any two cycles of graph G have one common vertex.

Proof. Assume, on the contrary, that there are two disjoint cycles contained in G. We can choose two such
cycles, say C1 and C2, such that the path P connecting C1 and C2 is as short as possible. For convenience, let
P = u1u2 . . . up with VP ∩ VC1 = {u1} and VP ∩ VC2 = {up}. In what follows, we consider two possible cases to
prove our result.

Case 1. The path P (connecting C1 and C2) has no common edge with any other cycle(s) contained in G.
Assume, without loss of generality, that dG(u1) > dG(up). Let y be a neighbor of up which belongs to C2. Set

G′ = G − {upy} + {u1y}. It is easy to see that G′ ∈ Cn,k. By Lemma 2.1, we have M1(G′) >M1(G), a contradiction.
Case 2. The path P (connecting C1 and C2) has common edge(s) with some other cycle, say C3, contained

in G. Note that, from the choice of C1 and C2, it suffices to consider that u1 is just the common vertex of
C3 and C1, whereas up is the only common vertex of C3 and C2. Assume that VC3 ∩ N(up) = {up−1, y}, then
let G′ = G − {upx|x ∈ N(up) \ {up−1, y}} + {u1x|x ∈ N(up) \ {up−1, y}}. By Lemma 2.1, we get M1(G) < M1(G′), a
contradiction.

This completes the proof.

Claim 3.3. Any three cycles contained in G have exactly one common vertex.

Proof. In the opposite case the graph G is not a cactus, because there exist cycles which have at least one
common edge.

By Claim 1 and Claim 2, all cycles of the graph G have exactly one common vertex, i.e. they form a bundle. Let
us denote by v0 the common vertex of all cycles in this bundle.

Next we show that if G contains a tree T attached to a cycle at a vertex v (we call v the root of T), then the
root of T is v0.

Claim 3.4. Any pendant tree T contained in G is attached to the common vertex v0 of all cycles of the bundle.

Proof. In the opposite case there exists a tree T attached to a vertex u (u , v0) on a cycle C of G. Let y1, y2, . . . , yt
be the neighbors of vertex u in T. If d(v0) > d(u), let G′ = G−{uy1,uy2, . . . ,uyt}+ {v0y1, v0y2, . . . , v0yt}; otherwise,
let G′ = G− {v0y|y ∈ N(v0) \VC}+ {uy|y ∈ N(v0) \VC}. In either case, we have G′ ∈ Cn,k. By Lemma 2.1, we have
M1(G) <M1(G′), a contradiction.

Claim 3.5. Let T be the tree attached to the common vertex v0 of all cycles of the bundle G, then dG(v) 6 2 for v ∈ VT \{v0}.

Proof. In the opposite case, assume that u ∈ VT \ {v0} is of degree r ≥ 3 furthest from the root v0. If d(v0) ≥ d(u),
let y1, y2, . . . , yr−2 be r−2 neighbors in T and each yi is further from v0 than u, and G′ = G−{uy1,uy2, . . . , uyr−2}+
{v0y1, v0y2, . . . , v0yr−2}. If d(v0) < d(u), let y be a neighbor of v0 which belongs to a cycle and G′ = G−{v0y}+ {uy}.
Then, in either case, G′ ∈ Cn,k, and by Lemma 2.1, we have M1(G) <M1(G′), a contradiction.

By Lemmas 2.4 and 2.5, the length of all paths attached to the common vertex v0 are 1 or 2, and at most one
of them has length 2. By Lemma 2.6 and 2.7, the length of all cycles in G are 3 or 4, and at most one of them
has length 4. By Lemma 2.8, G can not have both a cycle with length 4 and a path attached to v0 with length 2.
Hence, if n − k ≡ 1 (mod 2), then G � C1(n, k); otherwise, G � C2(n, k) or, C3(n, k). By Lemma 2.9, we know that
M1(C2(n, k)) = M1(C3(n, k)). Hence, if n − k ≡ 0 (mod 2), then G � C2(n, k) or, C3(n, k). By direct computing, we
have

M1(C1(n, k)) = n2 + 2n − 3k − 3, M1(C2(n, k)) =M1(C3(n, k)) = n2 − 3k.

This completes the proof.
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Theorem 3.6. Let G be a graph in Cn,k.

(i) If n − k ≡ 1 (mod 2), then M2(G) 6 2n2 − (k + 2)n − k, with equality if and only if G � C1(n, k), where C1(n, k) is
depicted in Fig. 7.

(ii) If n − k ≡ 0 (mod 2), then M2(G) 6 2n2 − (k + 5)n + 4, with equality if and only if G � C2(n, k), where C2(n, k) is
depicted in Fig. 7.

Proof. Choose G ∈ Cn,k such that its M2-value is as large as possible. First we prove that all the cycles contained
in G forms a bundle.

Fact 1. Any two cycles of the graph G have one common vertex.

Proof. Assume, on the contrary, that there are two disjoint cycles contained in G. We can choose two such
cycles, say C1 and C2, so that the path P connecting C1 and C2 is as short as possible. For convenience, let
P = u1u2 . . . up with VP ∩ VC1 = {u1} and VP ∩ VC2 = {up}. In what follows, we consider two possible cases to
prove our result.

Case 1. The path P (connecting C1 and C2) has no common edge with any other cycle(s) contained in G.
In this case, it is easy to see that if the length of P is at least 2, then let G′ = G + u1up. We get G′ ∈ Cn,k and

by Lemma 2.3, we have M2(G) < M2(G′), a contradiction. Hence, we only consider that P is of length 1, i.e.,
P = u1u2. Assume, without loss of generality, that dG(u1) > dG(u2).

For convenience, let C2 = u2v1v2 . . .u2. By Lemma 2.10, we have dG(v1) = 2. Let G′ = G − {u2y|y ∈
N(u2)\{u1, v1}}+{u1y|y ∈ N(u2)\{u1, v1}}. Then, G′ ∈ Cn,k. By Lemma 2.2 and Remark 1, we have M2(G) <M2(G′),
a contradiction.

Case 2. The path P (connecting C1 and C2) has common edge(s) with some other cycle, say C3, contained in
G. By the choice of C1 and C2, it suffices to consider that u1 is just the common vertex of C3 and C1, whereas up
is the only common vertex of C3 and C2. It is easy to see that dG(u1), dG(up) > 3, hence by Lemma 2.10, there
exists a graph G′ ∈ Cn,k such that M2(G) <M2(G′), a contradiction.

By Cases 1 and 2, we complete the proof of Fact 1.

Fact 2. Any three cycles have exactly one common vertex.

Proof. In the opposite case the graph G is not a cactus, because there exist cycles which have at least one
common edge.

By Facts 1 and 2, all cycles contained in G have exactly one common vertex, i.e. they form a bundle. Denote by
v0 the common vertex of all cycles in this bundle.

Next we show that if G contains a tree T attached to a cycle at a vertex v, then the root of T is v0. That is:

Fact 3. Any tree T of the graph G is attached to the common vertex v0 of all cycles of the bundle.

Proof. In the opposite case there exists a tree T attached to a vertex u (u , v0) on a cycle Cm of G. Note that u, v0
are on Cm with dG(u), dG(v0) > 3, hence by Lemma 2.10 there exists a graph G′ ∈ Cn,k such that M2(G) <M2(G′),
a contradiction.

Fact 4. Let T be the tree attached to the common vertex v0 of all cycles of the bundle G, then dG(v) 6 2 for v ∈ VT \ {v0}.

Proof. In the opposite case, assume that u ∈ VT\{v0} is of degree r > 3 furthest from the root v0. If d(u, v0) > 2, then
let G′ = G+ uv0. Then G′ ∈ Cn,k and by Lemma 2.3 we have M2(G) <M2(G′), a contradiction. Then d(u, v0) = 1.
Let y0, y1, y2, . . . , yr−2 be r − 1 neighbors of u in T and each yi is further from v0 than u. By Lemmas 2.4 and 2.5,
there exists at most one vertex, say y0, in {y0, y1, y2, . . . , yr−2} such that d(y0) = 2. Here, it is easy to see that there
does not exist such y0; otherwise let G′′ = G+v0y0. Then G′′ ∈ Cn,k and by Lemma 2.3 we have M2(G) <M2(G′′),
a contradiction. If dG(v0) > dG(u), then let G∗ = G−{uy1,uy2, . . . , uyr−2}+{v0y1, v0y2, . . . , v0yr−2}; otherwise choose
a neighbor, say w, of v0 on a cycle of G and let G∗∗ = G − {v0x|x ∈ N(v0) \ {w,u}} + {ux|x ∈ N(v0) \ {w,u}}. Then
G∗,G∗∗ ∈ Cn,k. By Lemma 2.2 and Remark 1, we have M2(G) <M2(G∗) or, M2(G) <M2(G∗∗), a contradiction.

Finally, by Lemmas 2.4 and 2.5, the length of all paths attached to the common vertex v0 are 1 or 2, and at
most one of them has length 2. By Lemmas 2.6 and 2.7, the length of all cycles in G are 3 or 4, and at most
one of them has length 4. By Lemma 2.8, G can not have both a cycle with length 4 and a path attached to
v0 with length 2. So, G is C1(n, k) when the parities of n and k are different; G is one of C2(n, k) and C3(n, k)
when the parities of n and k are same, where C1(n, k),C2(n, k) and C3(n, k) are depicted in Fig. 7. By Lemma 2.9,
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M2(C2(n, k)) >M2(C3(n, k)). Hence, G � C1(n, k) if n − k ≡ 1 (mod 2); otherwise, G � C2(n, k). By an elementary
calculation, we have

M2(C1(n, k)) = 2n2 − (k + 2)n − k, M2(C2(n, k)) = 2n2 − (5 + k)n + 4.

This completes the proof of Theorem 3.2.

Denote by Cn the set of all connected cacti with n vertices. Let C1
n,C2

n,C3
n and C4

n be the cacti with n vertices
depicted in Fig. 8.
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Figure 8: Graphs C1
n,C2

n,C3
n and C4

n.

Note that C3(n, k) is a spanning subgraph of C3
n or, C4

n, hence by Lemma 2.3, if n is even, then M1(C3(n, k)) <
M1(C3

n) and M1(C3(n, k)) < M1(C4
n) otherwise. Denote the unique 4-cycle in C3

n by v0v1v2v3v0. Then C2
n �

C3
n − v1v2 + v0v2. By Lemma 2.1, we get M1(C2

n) > M1(C3(n)). Similarly, in C4
n let C4 = v0u1u2u3v0 be the unique

cycle, u4 be the unique pendant vertex. Set C4∗
n = C4

n − u1u2 + v0u2. By Lemma 2.1, M1(C4∗
n ) >M1(C4

n). Note that
C1

n � C4∗
n + u1u4, hence by Lemma 2.3, we have M1(C1

n) >M1(C4
n). So we have the following result.

Corollary 3.7. Let G be a graph in Cn. Then

(i) M1(G) 6 n2 + 2n − 3 for odd n, and the equality holds if and only if G � C1
n;

(ii) M1(G) 6 n2 + 2n − 6 for even n, and the equality holds if and only if G � C2
n.

If n is odd, then C1(n, k) (resp. C2(n, k)) is a spanning subgraph of C1
n; if n is even, then C1(n, k) (resp. C2(n, k))

is a spanning subgraph of C2
n. By Lemma 2.3, M2(C1(n, k)) < M2(C1

n) and M2(C2(n, k)) < M2(C2
n). Hence, we

have the following result.

Corollary 3.8. Let G be a graph in Cn. Then,

(i) M2(G) 6 2n2 − 2n for odd n, and the equality holds if and only if G � C1
n.

(ii) M2(G) 6 2n2 − 3n − 1 for even n, and the equality holds if and only if G � C2
n.

At last, based on the results obtained as above, we determine the sharp upper bound, respectively, for Zagreb
indices of cacti with a perfect matching. Let C̃2k be the set of all 2k-vertex cacti with a perfect matching.

Based on Corollaries 3.3 and 3.4, we get

Corollary 3.9. Let G be a graph in C̃2k. Then, Mi(G) 6Mi(C2
2k) for i = 1, 2, and the equality holds if and only if G � C2

2k.

4. Characterization of graphs in Cn,k with minimal Zagreb indices

In this section, we determine sharp lower bounds for M1- and M2-values of graphs in Cn,k. Here we assume
that for all G in Cn,k, G contains at lease one cycle. Recall that unicyclic graphs are connected graphs with n
vertices and n edges. For convenience, denote

Un,k = {G : G is a unicyclic graph with n vertices and k pendant vertices}.
U ∗

n,k = {G ∈ Un,k : ∆(G) ≤ 3 and the number of vertices with degree 3 is equal to the number of pendant
vertices k}.

U +
n,k = {G ∈ Un,k : ∆(G) ≤ 3, each pendant vertices of G is adjacent to another vertex of degree 3 and every

pair of vertices of degree 3 are nonadjacent}.

Proposition 4.1. Let G ∈ Un,k, 0 ≤ k ≤ n−3, then M1(G) ≥ 4n+2k. Equality holds if and only if n ≥ 2k and G ∈ U ∗
n,k.
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Proof. Since G is a unicyclic graph with k pendant vertices, then we have

2n =
∑
v∈VG

d(v) = k +
n−k∑
i=1

(2 + xi)

where d(vi) = 2 + xi, vi is non-pendant vertex and xi is a nonnegative integer, i = 1, 2, . . . ,n − k.
Then we get

∑n−k
i=1 xi = k. Hence,

∑n−k
i=1 x2

i ≥ k and

M1(G) =
∑
v∈VG

d(v)2 = k · 12 +

n−k∑
i=1

(2 + xi)2

= k + 4(n − k) + 4
n−k∑
i=1

xi +

n−k∑
i=1

x2
i

≥ k + 4(n − k) + 4k + k (4.1)
= 4n + 2k.

Equality in (4.1) holds if and only if
∑n−k

i=1 x2
i = k which implies n ≥ 2k and x1 = x2 = · · · = xk = 1, xk+1 = xk+2 =

· · · = xn−k = 0. That is G ∈ U ∗
n,k.

The following result characterize the unicyclic graph with k pendant vertices having the minimal second
Zagreb index (see [66]).

Proposition 4.2. Let G ∈ Un,k, 0 ≤ k ≤ n − 3. Then

M2(G) ≥ 4n + 3k.

Equality holds if and only if n ≥ 3k and G ∈ U +
n,k.

Theorem 4.3. Let G ∈ Cn,k, 0 ≤ k ≤ n − 3. Then

M1(G) ≥ 4n + 2k.

Equality holds if and only if n ≥ 2k and G ∈ U ∗
n,k.

Proof. Since G ∈ Cn,k, we assume that C1,C2, . . . ,Cs are cycles in G and e1, e2, . . . , es are edges of theirs, respec-
tively. Let G∗ be the unicyclic graph obtained from G by deleting e2, e3, . . . , es, then we have G∗ ∈ Un,m ⊂ Cn,m
where m ≥ k. By Lemma 2.3 and Proposition 4.1, we have

M1(G) ≥M1(G∗) ≥ 4n + 2m ≥ 4n + 2k.

Hence, M1(G) = 4n + 2k holds if and only if n ≥ 2m = 2k and G � G∗ ∈ U ∗
n,k. And by direct computing, we

have, for any G∗ ∈ U ∗
n,k, M1(G∗) = 4n + 2k.

This completes the proof.

Similarly, we get the following theorem.

Theorem 4.4. Let G ∈ Cn,k, 0 ≤ k ≤ n − 3. Then

M2(G) ≥ 4n + 3k.

Equality holds if and only if n ≥ 3k and G ∈ U +
n,k.
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156 (10) (2008) 1725-1735.
[45] H.Q. Liu, M. Lu, A unified approach to extremal cacti for different indices. MATCH Commun. Math. Comput. Chem.

58 (1) (2007) 183-194.
[46] B. Liu, Some estimations of Zagreb indices, Util. Math. 74 (2007) 239-245.
[47] B. Liu, I. Gutman, Upper bounds for Zagreb indices of connected graphs, MATCH Commun. Math. Comput. Chem.

55 (2006) 439-446.
[48] H. Liu, M. Lu, F. Tian, Tree of extremal connectivity index, Discrete Appl. Math. 154 (2006) 106-119.
[49] A. Milićević, S. Nikolić, N. Trinajstić, On reformulated Zagreb indices, Molecular Diversity 8 (2004) 393-399.
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[56] J. Rada, C. Uzcátegui, Randić ordering of chemical trees, Discrete. Appl. Math. 150(2005) 232-250.
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