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The (C, a) integrability of functions by weighted mean methods
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Abstract. Let p(x) be a nondecreasing continuous function on [0, ) such that p(0) = 0 and p(t) — oo as
t — oo. For a continuous function f(x) on [0, c0), we define

s(t) = j(; f(u)du and o,(t) = fo‘ (1 - %) fu)du.

We say that a continuous function f(x) on [0, o) is (C, a) integrable to a by the weighted mean method
determined by the function p(x) for some a > —1 if the limit lim;_,, 0,(t) = a exists.

We prove that if the limit lim;_, 0,(f) = a exists for some a > —1, then the limit lim;_,o, 04 (f) = a exists
forallh > 0.

Next, we prove that if the limit lim,_, 0,(t) = a exists for some « > 0 and

LGy oo
Cp/0=00), iow,

then the limit lim;_,., 0,_1(f) = a exists.

1. Introduction

Let p(x) be a nondecreasing continuous function on [0, o) such that p(0) = 0 and p(t) — co ast — oo. For
a continuous function f(x) on [0, c0), we define

t t o
s(t) = L f(u)du and o,(t) = fo (1 - %) f(u)du.

A continuous function f(x) on [0, o) is said to be (C, &) integrable to a by the weighted mean method
determined by the function p(x) for some a > -1 if the limit lim;_,., 04(t) = a exists.

If we take p(x) = x, we have the definition of (C, @) integrability of f(x) on [0, c0) given by Laforgia [1].
The (C, 0) integrability of f(x) is convergence of the improper integral fow f)dt.

It will be shown as a corollary of our first result in this paper that convergence of the improper integral
fooo f(t)dt implies the existence of the limit lim;_, 0,(t) for @ > 0. However, there are some (C, ) integrable
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functions by the weighted mean method determined by the function p(x) which fail to converge as improper
integrals. Adding some suitable condition, which is called a Tauberian condition, one may get the converse.
Any theorem which states that convergence of the improper integral follows from the (C, @) integrability of
f(x) by the weighted mean method determined by the function p(x) and a Tauberian condition is said to be
a Tauberian theorem.

Canak and Totur [2, 3] have recently proved the generalized Littlewood theorem and Hardy-Littlewood
type Tauberian theorems for (C, 1) integrability of f(x) on [0, o) by using the concept of the general control
modulo analogous to the one defined by Dik [4]. Canak and Totur [5] have also given alternative proofs of
some classical type Tauberian theorems for (C, 1) integrability of f(x) on [0, o).

In this paper we prove that if the limit lim;. 0,(f) = a exists for some a > -1, then the limit
limy_,c0 0p4n(f) = a exists for all i > 0. As a corollary to this result, we show that if fooo f(H)dt is con-
vergent to g, then the limit lim;_,., 05(t) = a for all k > 0. But, the converse of this implication might be true
under some condition on p and f. Furthermore, we give conditions under which the limit lim;_,c, 04-1(t) = a
follows from the existence of the limit lim;_,o, 0,(t) = a.

2. Results

The next two theorems given for (C, @) integrability of functions by weighted mean methods generalize
Theorems 2.1 and 3.2 in Laforgia [1].

The following theorem shows that (C, ) integrability of f(x), where @ > —1, implies (C, a+h) integrability
of f(x), where hh > 0.

Theorem 2.1. If the limit limy_,. 04(t) = a exists for some o > =1, then the limit limy_,c 041 (f) = a exists for all
h>0.

Proof. Consider

¢
| o, )
0
where
A (p(u))“( p(u))’“
ut)= ——m— — | (1 -—= , 2
P = B o \po) ' o0 ()
where B denotes the Beta function defined by
1
B(x,y) = f F11 -ty dt,  x>0,y>0.
0
Ifweletv = % in (2), we have
¢
f o(u, t)du = 1. 3)
0
We need to prove that
¢
tlimf o, t)ou(t)dt = a. 4)
- Jy

Since

lim oq(t) =a ®)
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by the hypothesis, there exists a value ¢, for any given € > 0 such that
loa(t) —al <e,  t>te.

It follows from (3) that
¢ ¢
f o, t)ou()du —a = f o, Hou(t) — aldu.
0 0
To prove (4), it suffices to show that

(u, o (t)du — a| < 2,

provided that ¢ is large enough.

We notice that by the hypothesis, the function o,(t) is bounded on [0, o), that is,

loa(t) —al <K, 0<t<oo

for some constant K. Using the inequalities (3) and (6), we obtain, by (7),

t
‘ fo (u, Dloa(t) — aldu

t ;
= f @(u, t)|oa(t) — aldu + ef o(u, t)du
0 b

t t
< Kf o(u, t)du + gf o(u, t)du
0 0

te
= Kf @, tydu + €.
0

_ pQw)
v= I0)

p'(u) (p(u) p(u)\"™"
f(”(””d” B(a+1h>f (t)( )(l_%) a

p(te)/p(t)

By the substitution and (2), we have

ot h-1
B(a+l,h) (1 =0y do

which tends to zero when t — oo for any fixed t.. Thus, there exists a E such that

te _
Kf o, tdt <e, t>t,.
0

Hence, we have (8) for t > E-, and this proves (4). We obtain

| it Do = | ', [ (1—@) Fe)ds
ff(s)fcp(ut( p())) duds

= f f(s)I(s, t)ds.
0

1211

(8)
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Here, we write I(s, t) as

M - 2] o 1 25
0= 30 +1h>fp<t>(<t> 2w PO )

1 1 t p(u) h-1 ) X
- B(a + 1,h) (p(t))*+! ]; (1 - %) p () (p(u) — p(s))*du

by using (2). Substituting p(u) = p(t) — (p(t) — p(s))x in I(s, t), we have

1
B(a +1,h) (p(t))**h

1 (e =pe)t ot o
SBa Ll () fo SR

_ _@ a+h
‘(1 p(t)) ‘

which shows that

+ _ t _w a+h
foqo(u,t)aa(t)du—f(l (t)) f(u)du.

This completes of the proof of Theorem 2.1. [

I(s, t) =

Corollary 2.2. If fooo f(t)dt converges to a, then the limit limy_, o,(t) = a for all h > 0.

Proof. Take a@ = 0in Theorem 2.1. [J

1
fo (p(t) = ()" (p(t) = p(s))* (1 = x)*(p(t) — p(s))dx

1212

The next theorem is a Tauberian theorem for (C, ) integrability of f(x) continuous on [0, o) by the

weighted mean method determined by the function p(x) for some a > —1.

Theorem 2.3. If the limit lim,_,, 04(t) = a exists for some a > 0 and

p(t)
p'(t)

then the limit lim;_,, 04—1(t) = a exists.

fH=0Q1), t— oo,

Proof. Let the function 6(f) be defined by

_L t _M a-1
o0 = fo (1 p(t)) punfindi

Then we have

Oa-1(t) = 0a(t) + O(1).

(10)

To prove Theorem 2.3, it suffices to show that 6(f) — 0 as t — co. By the definition of 0,(t), we obtain

(" (u))‘“ p(u)p’(t)
@ity = | “(1 o) eor /O

P ‘(t) 1 t( ~ M)a—l
o o Jo (L Pefdu
A

p()
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We also have

to
[ty = 0,6 - a0
3]

A0
= ft a0

Inp(tz)
a [ e explu

Inp(ty)

Inp(tz)
=a f n(u)du.

Inp(t)

Here, we used the substitution p(t) = exp(u) and n(u) = 0(p~(exp())).

We now need to show that lim,_,. (1) = 0.
By the simple calculation, we have

’ _ eXp(H) 70 a—1 — p(t) ’
n(u)_—p’(p‘l(exp(u)))e(p (exp() = o560 ().
By (10),
~ t ~ p(u))a—l
p(Ho(t) = fo (1 ) peosed.

Differentiating the both sides of (11) gives

(t) ) B ~ t _M)Q—Z(M)Z ;
po 0= ”fo (1 W) \p) S

For the first term on the left-hand side of (12), we have

p
o) +
() p,

_L t _M a-1
o0 = fo (1 p(t)) P

K (' pw)\*
S%fo(l—m) p’(u)du

0
=-K f v*do
1
plw) _

where we used the substitution 1 — b =0
By (9), we have

‘P(t)f (®) <
p'(h)
For the term on the right-hand side of (12), we have

K

t a=2 1
@-1)— fo (1—@) () faydu < C— DK fo (1

(p(5)? p(t) (p(5)?

_K
a

7

p(u)

p(t)

a-=2
) P’ (Wp(u)du

1213

(11)

(12)
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where we used the substitution 1 - ’% =0.
Finally, we have |y ()| < 2, which shows that 1/(f) is bounded. Since g,(t) is convergent, given any
€ > 0 there exists a t. such that
loa(t1) — da(f2)l <€, (13)

when fq,t; > t..
Suppose & > Inp(te) and (&) > 0. Then n(t) > 0for E —1p <t < fand & <t < £+ 1) and, where ¢ =
If we integrate 1(11) between & — ¢ and & + ¢, we have

an(é)
2K °

S+ a
fgw n(u)du = Enz(é).

Furthermore, we have, by (13),

E+Y
RO = [ = 2 (oul e~ 00—ty (exple + 9) <

which implies that

nE) < e

This completes the proof of Theorem 2.3. [

In the case that « is a positive integer in Theorem 2.3, we have the following corollary.

Corollary 2.4. If the limit lim;_,., 04(t) = a exists for some positive integer « and the condition (9) holds, then the
improper integral fooo f(t)dt converges.

Proof. Assume that the limit lim; ., 04(f) = a exists for some positive integer a . By Theorem 2.3, the limit
lim;_,c0 04-1(F) = a also exists, provided that the condition (9) is satisfied. Again by Theorem 2.3, the limit

lim;_,0 04—2(t) = a exists. Continuing in this way, we obtain the convergence of fooo fhdt. O
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