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Abstract. In this paper, parametric quintic spline method is presented to solve a linear special case sixth
order two point boundary value problems with two different cases of boundary conditions. The method
presented in this paper has been shown to be second and fourth order accurate. Boundary equations are
derived for both the cases of boundary conditions. Convergence analysis of these methods are discussed.
The presented method is tested on four numerical examples of linear sixth order boundary value problems.
Comparison is made to show the practical usefulness of the presented method.

1. Introduction

We consider a numerical solution of the following linear sixth order two point boundary value problem:

u(6)(x) + 1(x)u(x) = q(x), a ≤ x ≤ b, (1.1)

subject to the boundary conditions
Case I:

u(a) − γ0 = u′(a) − δ0 = u′′(a) − η0 = 0,
u(b) − γ1 = u′(b) − δ1 = u′′(b) − η1 = 0, (1.2a)

Case II: or

u(a) − γ0 = u′′(a) − η0 = u(4)(a) − ζ0 = 0,
u(b) − γ1 = u′′(b) − η1 = u(4)(b) − ζ1 = 0, (1.2b)

where γ j, δ j, η j and ζ j, j = 0, 1 are finite real constants. The functions 1(x) and q(x) are continuous on
the interval [a, b]. A boundary value problem of this type arises in astrophysics; the narrow convecting
layers bounded by stable layers which are believed to surround A-type stars can be modelled by sixth
order boundary value problems [2]. In [9], Glatzmaier also notes that dynamo action in some stars may
be modelled by such equations. Theorems which list the conditions for the existence and uniqueness of
solution of such problems are thoroughly discussed in a book by Agarwal [1], though no numerical methods
are contained there in.
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When an infinite horizontal layer of fluid is heated from below and is subjected to the action of rotation,
instability sets in. When this instability is as ordinary convection, the ordinary differential equation is sixth
order; when instability sets in as overstability, it is modelled by eighth order ordinary differential equation.
Suppose, now, that a uniform magnetic field is also applied across the fluid in the same direction as gravity.
When instability sets in now as ordinary convection, it is modeled by tenth order boundary value problem.
When instability sets in as overstability, it is modelled by twelfth order boundary value problem [6]. Further
discussions of sixth order boundary value problems are given in [3, 4]. Perturbation method for nonlinear
analysis of engineering problems have been given in [10].

Boutayeb and Twizell [5] and Twizell [24] developed finite difference methods for solving such boundary
value problems. Wazawz [27] used decomposition and modified domain decomposition methods to
investigate the solution of sixth order boundary value problems. Numerical solutions were introduced
implicitly by Chawla and Katti [7]. Ritz’s method based on variational theory [10] and variational iteration
methods [16] have been applied for the solution of sixth order boundary value problems. M. El-Gamel et
al. [8] used Sinc-Galerkin method, Loghmani and Ahmadinia [13] used sixth degree B-spline functions,
Ramadan et al. [17] used septic nonpolynomial spline functions and Siddiqi and Akram [21] solved linear
problem using polynomial septic spline solution for sixth order boundary value problems. Twizell and
Boutayeb [25] developed a family of numerical methods for the solutions of special and general sixth order
boundary value problems with application to Benard layer eigenvalue problems. Noor and Mohyud-Din
[15] have applied homotopy perturbation method for solving linear and nonlinear sixth order boundary
value problems. In [20], Siddiqi et al. developed quintic spline method for the numerical solution of linear
special sixth order boundary value problems. Siddiqi and Twizell [19] presented the solution of sixth order
boundary value problems using sextic spline and Siraj-Ul-Islam et al. [22] solved such problems using
nonpolynomial septic spline at mid points.

In this paper, we have developed a new spline function method for sixth order boundary value problems
by using parametric quintic spline and have solved special case linear boundary value problems. Analysis
of the method shows second and fourth order accuracy for arbitrary choices of parameters p, q and s
developed in next section.

In Section 2, we have described a parametric quintic spline method and its consistency relations and
have developed a new method for problem (1.1) subject to the boundary conditions (1.2a-1.2b). Section
3 is devoted to the development of the boundary equations for both the cases of boundary conditions.
The class of methods are discussed in Section 4. The parametric quintic spline solution approximating
the analytical solution of the sixth order boundary value problems is determined by using the consistency
relation involving the sixth order derivatives and the values of the spline along with the end conditions
in Section 5. Convergence analysis is discussed in Section 6. In Section 7, four examples are considered
for the usefulness of the method developed in the paper and numerical results are compared with existing
methods.

2. Description of the method

In order to develop the parametric quintic spline approximate solution for sixth order boundary value
problem (1.1) with (1.2a-1.2b), we discretize the interval [a, b] into N equal subintervals using the grid points
x j = a + jh, j = 0(1)N, x0 = a, xN = b and

h =
(b − a)

N
(2.1)

where N is a positive integer.
In this section, we present the formulation of the parametric quintic spline interpolant, S∆(x, τ) ∈ C4[a, b]

(see [11, 12, 18]) and derive the spline relation for our method. For this, we consider the mesh

∆ = {x j, j = 0(1)N}.
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Let S∆(x, τ) = S∆(x) be a parametric quintic spline satisfying the following differential equation in the
subinterval [x j−1, x j];

S∆(4)(x) − τ2S∆′′(x) = (F j − τ2M j)
x − x j−1

h
+ (F j−1 − τ2M j−1)

x j − x
h

= Q jz +Q j−1z̄, (2.2)

where
Q j = F j − τ2M j, S∆′′(x j) =M j, S∆(4)(x j) = F j, τ > 0.

Solving differential equation (2.2), we get

S△(x) = A1 + A2x + A3 cosh τx + A4 sinh τx − 1
τ2

[
Q j

(x − x j−1)3

6h
+Q j−1

(x j − x)3

6h

]
. (2.3)

To develop the consistency relations between the value of spline and its derivatives at knots, let

S∆(x j−1) = u j−1, S∆(x j) = u j,

S′′
∆

(x j−1) =M j−1, S′′
∆

(x j) =M j.

 (2.4)

To define spline in terms of u j’s, M j’s and F j’s, the coefficients introduced in Eq.(2.3) are calculated as

A1 =
1
h

(u j−1x j − u jx j−1) − A3

h
(x j cosh τx j−1 − x j−1 cosh τx j) −

A4

h
(x j sinh τx j−1 − x j−1 sinh τx j)

+
h

6τ2 (x jQ j−1 − x j−1Q j),

A2 =
1
h

(u j − u j−1) − A3

h
(cosh τx j − cosh τx j−1) − A4

h
(sinh τx j − sinh τx j−1) +

h
6τ2 (Q j −Q j−1),

A3 = − 1
τ2 sinh τh

(M j sinh τx j−1 −M j−1 sinh τx j) −
1

τ4 sinh τh
(Q j sinh τx j−1 −Q j−1 sinh τx j),

A4 =
1

τ2 sinh τh
(M j cosh τx j−1 −M j−1 cosh τx j) +

1
τ4 sinh τh

(Q j cosh τx j−1 −Q j−1 cosh τx j).

(2.5)

Substituting these values in Eq. (2.3), we obtain

S∆(x) = zu j + z̄u j−1 +
h2

3!
[q3(z)M j + q3(z̄)M j−1] +

( h
ω

)4[
q2(z) −

(
ω2

3!

)
q3(z)
]
F j +
( h
ω

)4[
q2(z̄) −

(
ω2

3!

)
q3(z̄)
]
F j−1,

(2.6)

where

z =
x − x j−1

h
, z̄ = 1 − z, q3(z) = z3 − z, S∆(x j) = u j,

q2(z) =
sinh(ωz)
sinh(ω)

− z, ω = τh, τ ≥ 0,

q3(0) = q2(0) = 0, q3(±1) = q2(±1) = 0.



A. Khan, T. Sultana / Filomat 26:6 (2012), 1233–1245 1236

Replacing j by j + 1 in Eq. (2.6), we get the spline valid in the interval [x j, x j+1].
Continuity of first and third derivative implies that

(i) M j+1 + 4M j +M j−1 =
6
h2 (u j+1 − 2u j + u j−1) − 6h2(α1F j+1 + 2β1F j + α1F j−1),

(ii) M j+1 − 2M j +M j−1 = h2(αF j+1 + 2βF j + αF j−1). (2.7)

From Eq. (2.7) we obtain

M j =
1
h2 (u j+1 − 2u j + u j−1) − h2(pF j+1 + p0F j + pF j−1). (2.8)

From Eqs. (2.7) and (2.8), we obtain the following useful relation

pF j−2 + qF j−1 + sF j + qF j+1 + pF j+2 =
1
h4 (u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2). (2.9)

To make the system (2.9) consistent with the boundary value problem (1.1) subject to the boundary condi-
tions (1.2a-1.2b), the finite difference formula of order h4 is used, which leads to the following relation

−F j−2 + 16F j−1 − 30F j + 16F j+1 − F j+2 = 12h2u(6)
j +O(h6), j = 2(1)N − 2 (2.10)

Eqs. (2.9) and (2.10) leads to the following relation :

(16p + q)F j−1 + (−30p + s)F j + (16p + q)F j+1 =
1
h4 (u j−2 − 4u j−1 + 6u j − 4u j+1 + u j+2) + 12ph2u(6)

j + pO(h6),

j = 2(1)N − 2. (2.11)

Moreover, following Lucas [14] for quintic spline, it can be written as

F j−1 − 2F j + F j+1 = h2u(6)
j +O(h8), j = 1(1)N − 1. (2.12)

From Eqs. (2.11) and (2.12), the following relation is obtained:

(4p+q)u(6)
j−1+(−6p+s)u(6)

j +(4p+q)u(6)
j+1 =

1
h6 (u j−3−6u j−2+15u j−1−20u j+15u j+1−6u j+2+u j+3), j = 3(1)N−3. (2.13)

Remark. Our method (2.13) reduces to Siddiqi et al. [20] based on quintic spline when (p, q, s) →
1

120 (1, 26, 66).

3. Development of boundary equations

The relation (2.13) gives (N − 5) equations in (N − 1) unknowns u j, j = 1(1)N − 1.We require four more
equations, two at each end of the range of integration in order to have closed form solution for u j. For the
discretization of the boundary conditions, we define

Case I:

(i)
4∑

k=0

akuk + c1hu′0 + c2h2u′′0 + h6
5∑

k=0

dku(6)
k + t1 = 0, j = 1,

(ii)
5∑

k=1

a∗kuk + c3hu′0 + c4h2u′′0 + h6
6∑

k=1

d∗ku(6)
k + t2 = 0, j = 2,
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(iii)
N−1∑

k=N−5

a∗kuk − c3hu′N + c4h2u′′N + h6
N−1∑

k=N−6

d∗ku(6)
k + tN−2 = 0, j = N − 2,

(iv)
N∑

k=N−4

akuk − c1hu′N + c2h2u′′N + h6
N∑

k=N−5

dku(6)
k + tN−1 = 0, j = N − 1. (3.1)

Case II:

(i)
4∑

k=0

akuk + b1h2u′′0 +m1h4u(4)
0 + h6

5∑
k=0

dku(6)
k + t1 = 0, j = 1,

(ii)
5∑

k=0

a∗kuk + b∗1h2u′′0 +m∗1h4u(4)
0 + h6

6∑
k=1

d∗ku(6)
k + t2 = 0, j = 2,

(iii)
N∑

k=N−5

a∗kuk + b∗2h2u′′N +m∗2h4u(4)
N + h6

N−1∑
k=N−6

d∗ku(6)
k + tN−2 = 0, j = N − 2,

(iv)
N∑

k=N−4

akuk + b2h2u′′N +m2h4u(4)
N + h6

N∑
k=N−5

dku(6)
k + tN−1 = 0, j = N − 1. (3.2)

where ak, c1, c2, c3, c4, b1, m1, dk, a∗k, b∗1, m∗1, d∗k, b∗2, m∗2, b2 and m2 are arbitrary parameters to be determined
at j = 1, 2,N − 2,N − 1 for second and fourth order methods.

4. Class of methods

By expanding (2.13) in Taylor series about x j,we obtain the following local truncation error t j as

t j = h6(1 − 2p − 2q − s)u(6)
j + h8

(1
4
− 4p − q

)
u(8)

j + h10
(105840

10!
− 1

12
(4p + q)

)
u(10)

j

+h12
(1013760

12!
− 1

360
(4p + q)

)
u(12)

j +O(h14). (4.1)

By using the above equation and by eliminating the coefficients of the various powers of h for different
choices of parameters p, q and s, we obtain the following class of methods:

4.1. Second order methods
Case I:
The value of unknown coefficients of boundary equations for second order at each end are given by

(i)(a0, a1, a2, a3, a4) =
(
− 415

9 , 64,−24, 64
9 ,−1

)
,

(c1, c2, d0, d1, d2, d3, d4, d5) =
(
− 100

3 ,−8,− 8
35 ,

16
21 , 0, 0, 0, 0

)
.

(ii)(a∗1, a
∗
2, a
∗
3, a
∗
4, a
∗
5) =
(
− 3799

415 ,
7909
415 ,− 6186

415 ,
2491
415 ,−1

)
,

(c3, c4, d∗1, d
∗
2, d
∗
3, d
∗
4, d
∗
5, d
∗
6) =
(
− 270

83 ,− 822
415 ,− 318

7295 ,
1012
1003 , 0, 0, 0, 0

)
.

(iii)(a∗N−5, a
∗
N−4, a

∗
N−3, a

∗
N−2, a

∗
N−1) =

(
− 1, 2491

415 ,− 6186
415 ,

7909
415 ,− 3799

415

)
,

(d∗N−6, d
∗
N−5, d

∗
N−4, d

∗
N−3, d

∗
N−2, d

∗
N−1) =

(
0, 0, 0, 0, 1012

1003 ,− 318
7295

)
.

(iv)(aN−4, aN−3, aN−2, aN−1, aN) =
(
− 1, 64

9 ,−24, 64,− 415
9

)
,

(dN−5, dN−4, dN−3, dN−2, dN−1, dN) =
(
0, 0, 0, 0, 16

21 ,− 8
35

)
(4.2)
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and the local truncation error is

t j =


(− 28800

3 )h8u(8)
j +O(h9), j = 1,N − 1,

( 135731
14 )h8u(8)

j +O(h9), j = 2,N − 2.
(4.3)

Case II:
The value of unknown coefficients of boundary equations for second order at each end are given by

(i)(a0, a1, a2, a3, a4) = (5,−14, 14,−6, 1),

(b1,m1, d0, d1, d2, d3, d4, d5) =
(
− 2, 5

6 ,
29

180 ,−1, 0, 0, 0, 0
)
.

(ii)(a∗0, a
∗
1, a
∗
2, a
∗
3, a
∗
4, a
∗
5) = (−4, 14,−20, 15,−6, 1),

(b∗1,m
∗
1, d
∗
1, d
∗
2, d
∗
3, d
∗
4, d
∗
5, d
∗
6) =
(
1, 1

12 ,
1

180 ,
−361
360 , 0, 0, 0, 0

)
.

(iii)(a∗N−5, a
∗
N−4, a

∗
N−3, a

∗
N−2, a

∗
N−1, a

∗
N) = (1,−6, 15,−20, 14,−4),

(b∗2,m
∗
2, d
∗
N−6, d

∗
N−5, d

∗
N−4, d

∗
N−3, d

∗
N−2, d

∗
N−1) =

(
1, 1

12 , 0, 0, 0, 0,
−361
360 ,

1
180

)
.

(iv)(aN−4, aN−3, aN−2, aN−1, aN) = (1,−6, 14,−14, 5),

(b2,m2, dN−5, dN−4, dN−3, dN−2, dN−1, dN) =
(
− 2, 5

6 , 0, 0, 0, 0,−1, 29
180

)
(4.4)

and the local truncation error is

t j =


( 9580

8! )h8u(8)
j +O(h9), j = 1,N − 1,

( 9966
8! )h8u(8)

j +O(h9), j = 2,N − 2.
(4.5)

Case 1: For (p, q, s) =
(

1
120 ,

25
120 ,

17
30

)
the truncation error is given by

t j =
( 1

120

)
h8u(8)

j +O(h10), j = 3(1)N − 3. (4.6)

Case 2: For (p, q, s) = (0, 0, 1) the truncation error is given by

t j =
(1

4

)
h8u(8)

j +O(h10), j = 3(1)N − 3. (4.7)

4.2. Fourth order methods
Case I:
The value of unknown coefficients of boundary equations for fourth order at each end are given by

(i)(a0, a1, a2, a3, a4) =
(
− 415

9 , 64,−24, 64
9 ,−1

)
,

(c1, c2, d0, d1, d2, d3, d4, d5) =
(
− 100

3 ,−8, 4
495 ,

19
63 ,

2
9 ,

1
189 , 0, 0

)
.

(ii)(a∗1, a
∗
2, a
∗
3, a
∗
4, a
∗
5) =
(
− 3799

415 ,
7909
415 ,− 6186

415 ,
2491
415 ,−1

)
,

(c3, c4, d∗1, d
∗
2, d
∗
3, d
∗
4, d
∗
5, d
∗
6) =
(
− 270

83 ,− 822
415 ,

1105
5878 ,

1415
2551 ,

1187
5551 ,

262
29529 , 0, 0

)
.

(iii)(a∗N−5, a
∗
N−4, a

∗
N−3, a

∗
N−2, a

∗
N−1) =

(
− 1, 2491

415 ,− 6186
415 ,

7909
415 ,− 3799

415

)
,

(d∗N−6, d
∗
N−5, d

∗
N−4, d

∗
N−3, d

∗
N−2, d

∗
N−1) =

(
0, 0, 262

29529 ,
1187
5551 ,

1415
2551 ,

1105
5878

)
.
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(iv)(aN−4, aN−3, aN−2, aN−1, aN) =
(
− 1, 64

9 ,−24, 64,− 415
9

)
,

(dN−5, dN−4, dN−3, dN−2, dN−1, dN) =
(
0, 0, 1

189 ,
2
9 ,

19
63 ,

4
495

)
(4.8)

and the local truncation error is

t j =


(− 15552

3 )h10u(10)
j +O(h11), j = 1,N − 1,

( 30412
97 )h10u(10)

j +O(h11), j = 2,N − 2.
(4.9)

Case II:
The value of unknown coefficients of boundary equations for fourth order at each end are given by

(i)(a0, a1, a2, a3, a4) = (5,−14, 14,−6, 1),

(b1,m1, d0, d1, d2, d3, d4, d5) =
(
− 2, 5

6 ,− 323
5040 ,− 1133

2016 ,− 101
504 ,− 25

2016 , 0, 0
)
.

(ii)(a∗0, a
∗
1, a
∗
2, a
∗
3, a
∗
4, a
∗
5) = (−4, 14,−20, 15,−6, 1),

(b∗1,m
∗
1, d
∗
1, d
∗
2, d
∗
3, d
∗
4, d
∗
5, d
∗
6) =
(
1, 1

12 ,− 729
3013 ,− 444

875 ,− 1735
6991 ,

29
86688 , 0, 0

)
.

(iii)(a∗N−5, a
∗
N−4, a

∗
N−3, a

∗
N−2, a

∗
N−1, a

∗
N) = (1,−6, 15,−20, 14,−4),

(b∗2,m
∗
2, d
∗
N−6, d

∗
N−5, d

∗
N−4, d

∗
N−3, d

∗
N−2, d

∗
N−1) =

(
1, 1

12 , 0, 0,
29

86688 ,− 1735
6991 ,− 444

875 ,− 729
3013

)
.

(iv)(aN−4, aN−3, aN−2, aN−1, aN) = (1,−6, 14,−14, 5),

(b2,m2, dN−5, dN−4, dN−3, dN−2, dN−1, dN) =
(
− 2, 5

6 , 0, 0,− 25
2016 ,− 101

504 ,− 1133
2016 ,− 323

5040

)
(4.10)

and the local truncation error is

t j =


(− 13046

10! )h10u(10)
j +O(h11), j = 1,N − 1,

( (146306/3)
10! )h10u(10)

j +O(h11), j = 2,N − 2.
(4.11)

Case 1: For (p, q, s) =
(
0, 1

4 ,
1
2

)
the truncation error is given by

t j =
( 1

120

)
h10u(10)

j +O(h12), j = 3(1)N − 3. (4.12)

Case 2: For (p, q, s) =
(
− 1

12 ,
7

12 , 0
)

the truncation error is given by

t j =
( 1

120

)
h10u(10)

j +O(h12), j = 3(1)N − 3. (4.13)

5. Spline solution

The parametric quintic spline solution of the problem (1.1) subject to the boundary conditions (1.2a-1.2b)
is based on the system of linear equations given by equations (2.13) and (3.1,3.2). If U = [u1,u2, ....,uN−1]T,
U = [u1,u2, ..., uN−1, ]T, V = [v1, v2, ...., vN−1]T and T = [t1, t2, ...., tN−1]T be the column vectors.Here, U denotes
the exact solution, U the approximate solution and T denotes truncation error. Also E = (e j) = u j − u j, j =
1, 2, ...,N − 1; is the discretization error. Then we can describe the method in following matrix form
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(i) LU = V + T,
(ii) LU = V, (5.1)
(iii) LE = T.
Also, we have

L = A + h6BG and G = dia1(1 j). (5.2)

The septadiagonal matrix A is given by

A =



a1 a2 a3 a4
a∗1 a∗2 a∗3 a∗4 a∗5
−6 15 −20 15 −6 1
1 −6 15 −20 15 −6 1

. . .
. . .

. . .
. . .

. . .
. . .

1 −6 15 −20 15 −6 1
1 −6 15 −20 15 −6

a∗N−5 a∗N−4 a∗N−3 a∗N−2 a∗N−1
aN−4 aN−3 aN−2 aN−1



(5.3)

and the matrix B has the form:

B =



−d1 −d2 −d3 −d4 −d5
−d∗1 −d∗2 −d∗3 −d∗4 −d∗5 −d∗6

0 4p + q −6p + s 4p + q 0 0
0 0 4p + q −6p + s 4p + q 0 0

. . .
. . .

. . .
. . .

. . .
. . .

0 0 4p + q −6p + s 4p + q 0 0
0 0 4p + q −6p + s 4p + q 0

−d∗N−6 −d∗N−5 −d∗N−4 −d∗N−3 −d∗N−2 −d∗N−1
−dN−5 −dN−4 −dN−3 −dN−2 −dN−1



. (5.4)

Moreover,
Case I:

v1 = −a0γ0 − c1hδ0 − c2h2η0 − h6d0(q0 − 10γ0) − h6(d1q1 + d2q2 + d3q3 + d4q4 + d5q5), j = 1,
v2 = −c3hδ0 − c4h2η0 − h6(d∗1q1 + d∗2q2 + d∗3q3 + d∗4q4 + d∗5q5 + d∗6q6), j = 2,

Case II:

v1 = −a0γ0 − b1h2η0 −m1h4ζ0 − h6d0(q0 − 10γ0) − h6(d1q1 + d2q2 + d3q3 + d4q4 + d5q5), j = 1,
v2 = −a∗0γ0 − b∗1h2η0 −m∗1h4ζ0 − h6(d∗1q1 + d∗2q2 + d∗3q3 + d∗4q4 + d∗5q5), j = 2,

Case I and II:

v3 = −γ0 + h6[(4p + q)q2 + (−6p + s)q3 + (4p + q)q4], j = 3,
v j = h6[(4p + q)q j−1 + (−6p + s)q j + (4p + q)q j+1], j = 4(1)N − 4,

vN−3 = −γ1 + h6[(4p + q)qN−4 + (−6p + s)qN−3 + (4p + q)qN−2], j = N − 3,

Case I:

vN−2 = c3hδ1 − c4h2η1 − h6(d∗N−6qN−6 + d∗N−5qN−5 + d∗N−4qN−4 + d∗N−3qN−3 + d∗N−2qN−2 + d∗N−1qN−1), j = N − 2,

vN−1 = −aNγ1 + c1hδ1 − c2h2η1 − h6dN(qN − 1Nγ1) − h6(dN−5qN−5 + dN−4qN−4 + dN−3qN−3

+dN−2qN−2 + dN−1qN−1), j = N − 1,



A. Khan, T. Sultana / Filomat 26:6 (2012), 1233–1245 1241

Case II:

vN−2 = −a∗Nγ1 − b∗2h2η1 −m∗2h4ζ1 − h6(d∗N−6qN−6 + d∗N−5qN−5 + d∗N−4qN−4 + d∗N−3qN−3

+d∗N−2qN−2 + d∗N−1qN−1), j = N − 2,

vN−1 = −aNγ1 − b2h2η1 −m2h4ζ1 − h6dN(qN − 1Nγ1) − h6(dN−5qN−5 + dN−4qN−4 + dN−3qN−3

+dN−2qN−2 + dN−1qN−1), j = N − 1.

(5.5)

6. Convergence analysis

In this section, we investigate the convergence analysis of the presented method along with (3.1,3.2)
based on parametric quintic spline. To derive the error bound ∥E∥∞, the error Eq.(5.1)(iii) can be rewritten
in the following form

E = L−1T = (A + h6BG)−1T = (I + A−1h6BG)−1A−1T.

We get

∥E∥∞ ≤
∥A−1∥∞∥T∥∞

1 − h6∥A−1∥∞∥B∥∞∥G∥∞
(6.1)

provided that ∥A−1∥∞∥B∥∞∥G∥∞ < 1.
Case I:
It is shown in [2] that

∥A−1∥∞ =
83(b − a)6 − 1088h4(b − a)2 + 19344h5(b − a)

3824640h6 = O(h−6). (6.2)

Case II:
Twizell [24] have shown that

∥A−1∥∞ ≤
(b − a)6

512h6 = O(h−6). (6.3)

Lemma 6.1: The matrix L given by Eq.(5.2) is nonsingular provided that

∥B∥∞|1(x)|ϖ < 1. (6.4)

where ϖ = 83(b−a)6−1088h4(b−a)2+19344h5(b−a)
3824640h6 for case I, ϖ = (b−a)6

512 for case II and ∥B∥∞ is a finite number.
The proof of this lemma follows from the following statement [26]:

If T is a square matrix of order N and ∥T∥ < 1, then (I + T) is nonsingular.
As a consequence of lemma 6.1, the discrete boundary value problem (5.1)(ii) has a unique solution if

∥B∥∞|1(x)|ϖ < 1.
Now from Eqs.(4.2-4.13), we investigate the following two cases:

Case 1: Second order methods

We have from the Eqs. (4.2-4.7)
∥T∥∞ = K2h8M8, (6.5)

where
M8 = max

a≤x≤b
|u(8)(x)|

and K2 is a finite number. It follows that

∥E∥∞ ≤
K2ϖM8h2

[1 − ϖ∥B∥∞|1(x)|] = G2(h2) (6.6)
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where G2 =
K2ϖM8

[1−ϖ∥B∥∞ |1(x)|] .

Case 2: Fourth order methods

We have from the Eqs. (4.8-4.13)
∥T∥∞ = K4h10M10, (6.7)

where
M10 = max

a≤x≤b
|u(10)(x)|

and K4 is a finite number. It follows that

∥E∥∞ ≤
K4ϖM10h4

[1 − ϖ∥B∥∞|1(x)|] = G4(h4) (6.8)

where G4 =
K4ϖM10

[1−ϖ∥B∥∞ |1(x)|] .

We summarize the above results in the following theorem:

Theorem 6.1. If U = [u1,u2, ...., uN−1]T, U = [u1,u2, ..., uN−1, ]T, V = [v1, v2, ...., vN−1]T and T = [t1, t2, ...., tN−1]T

be the column vectors. Here, U denotes the exact solution, U the approximate solution and T denotes truncation error.
Further, if E = (e j) = u j − u j, j = 1(1)N − 1; is the discretization error, then
(i) ∥ E ∥= O(h2) is a second order method which is given by (6.6),
(ii) ∥ E ∥= O(h4) is a fourth order method which is given by (6.8).

7. Numerical examples and results

In this section, we consider four numerical examples for linear sixth order boundary value problems
illustrating the comparative performance of our scheme (2.13) over other existing methods. Series of
numerical experiments are carried out using various values of h. All calculations are performed in MATLAB
7.

Example 1. Consider the following boundary value problem [20]:

u(6) − u = −6 exp(x), 0 ≤ x ≤ 1,

u(0) = 1, u(1) = 0,
u′(0) = 0, u′(1) = −e,

u′′(0) = −1, u′′(1) = −2e

 (7.1)

with the analytical solution
u(x) = (1 − x) exp(x). (7.2)

Example 2. Consider the following boundary value problem [20]:

u(6) + u = −6 cos(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 0,
u′(0) = −1, u′(1) = sin 1,

u′′(0) = 2, u′′(1) = 2 cos 1,

 (7.3)

with the analytical solution
u(x) = (x − 1) sin(x). (7.4)
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These examples have been solved by using our scheme (2.13) with different values of h = 2−m,m = 3, 4, 5, 6
for second and fourth order methods. The maximum absolute errors in solution and comparison with [20]
for Example 1 and Example 2 are tabulated in Table 1 and 2 respectively.

Table 1. Maximum absolute errors for example 1

Methods h = 1
8 h = 1

16 h = 1
32 h = 1

64
(p, q, s)

Fourth order methods
(0, 1

4 ,
1
2 ) 6.64 × 10−9 1.04 × 10−9 7.66 × 10−11 9.39 × 10−11

(− 1
12 ,

7
12 , 0) 6.64 × 10−9 1.04 × 10−9 7.66 × 10−11 9.39 × 10−11

Second order methods
( 1

120 ,
25
120 ,

17
30 ) 2.37×10−7 1.27×10−8 2.29×10−9 6.44 × 10−10

(0, 0, 1) 1.06×10−6 2.66×10−7 6.66×10−8 1.66 × 10−8

[20] 3.65×10−6 3.02×10−7 2.14×10−8 1.23 × 10−9

Table 2. Maximum absolute errors for example 2

Methods h = 1
8 h = 1

16 h = 1
32 h = 1

64
(p, q, s)

Fourth order methods
(0, 1

4 ,
1
2 ) 2.95 × 10−9 4.5 × 10−10 3.65 × 10−11 5.92 × 10−11

(− 1
12 ,

7
12 , 0) 2.95 × 10−9 4.5 × 10−10 3.65 × 10−11 5.92 × 10−11

Second order methods
( 1

120 ,
25

120 ,
17
30 ) 1.29×10−7 6.92×10−9 1.29×10−9 2.70 × 10−10

(0, 0, 1) 6.05×10−7 1.51×10−7 3.78×10−8 9.51 × 10−9

[20] 1.84×10−6 1.40×10−7 9.48×10−9 5.63 × 10−10

Example 3. Consider the following boundary value problem [22]:

u(6) + xu = −(24 + 11x + x3) exp(x), 0 ≤ x ≤ 1,

u(0) = 0, u(1) = 0,
u′′(0) = 0, u′′(1) = −4e,

u(4)(0) = −8, u(4)(1) = −16e,

 (7.5)

with the analytical solution
u(x) = x(1 − x) exp(x). (7.6)

Example 4. We consider the following boundary value problem [22]:

u(6) + u = 6[2x cos(x) + 5 sin(x)], − 1 ≤ x ≤ 1,

u(−1) = 0, u(1) = 0,
u′′(−1) = −4 cos(−1) + 2 sin(−1), u′′(1) = 4 cos(1) + 2 sin(1),

u(4)(−1) = 8 cos(−1) − 12 sin(−1), u(4)(1) = −8 cos(1) − 12 sin(1)

 (7.7)

with the analytical solution
u(x) = (x2 − 1) sin(x). (7.8)

Examples 3 and 4 have been solved by using our scheme (2.13) with different values of h = 2−m,m =
3, 4, 5, 6 for second and fourth order methods. The maximum absolute errors in solution and comparison
with [22] for examples 3 and 4 are tabulated in Table 3 and 4 respectively.
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Table 3. Maximum absolute errors for example 3

Methods h = 1
8 h = 1

16 h = 1
32 h = 1

64
(p, q, s)

Fourth order methods
(0, 1

4 ,
1
2 ) 2.25 × 10−7 2.19 × 10−8 1.94 × 10−9 1.35 × 10−9

(− 1
12 ,

7
12 , 0) 2.25 × 10−7 2.19 × 10−8 1.94 × 10−9 1.35 × 10−9

[22] 2.39×10−4 3.43×10−6 7.34×10−8 -
Second order methods

( 1
120 ,

25
120 ,

17
30 ) 2.31×10−4 1.86×10−5 1.97×10−6 3.26 × 10−7

(0, 0, 1) 5.01×10−4 1.24×10−4 3.09×10−5 7.71 × 10−6

[22] 2.99×10−2 7.00×10−3 1.80×10−3 -

Table 4. Maximum absolute errors for example 4

Methods h = 1
4 h = 1

8 h = 1
16 h = 1

32
(p, q, s)

Fourth order methods
(0, 1

4 ,
1
2 ) 2.60 × 10−6 1.65 × 10−7 1.02 × 10−8 3.47 × 10−9

(− 1
12 ,

7
12 , 0) 2.60 × 10−6 1.65 × 10−7 1.02 × 10−8 3.47 × 10−9

[22] 6.97×10−4 3.60×10−5 7.44×10−7 -
Second order methods

( 1
120 ,

25
120 ,

17
30 ) 6.15×10−4 5.84×10−5 5.09×10−6 5.97 × 10−7

(0, 0, 1) 7.31 × 10−4 1.74×10−4 4.29×10−5 1.07×10−5

[22] 1.23×10−2 2.80×10−3 1.60×10−3 -

8. Conclusion

Parametric quintic spline method is developed for the approximate solution of sixth order two point
boundary value problems. A class of methods are presented for solving such problems. This shows that
our methods are better in the sense of accuracy and applicability. These have been verified by the maximum
absolute errors given in tables 1-4 for four examples.
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