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Vertex-removal in a-domination
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Abstract. Let G = (V,E) be any graph without isolated vertices. For some & with 0 < @ < 1 and a
dominating set S of G, we say that S is an a-dominating set if for any v € V =S, I[N(v) N S| > a|N(v)|. The
cardinality of a smallest a-dominating set of G is called the a-domination number of G and is denoted by
74(G). In this paper, we study the effect of vertex removal on a-domination.

1. Introduction

Let G = (V(G), E(G)) be a simple graph of order n. We denote the open neighborhood of a vertex v of G by
N¢(v), or just N(v), and its closed neighborhood by Ng[v] = N[v]. For a vertex set S € V(G), N(S) = UyesN(v)
and N[S] = UyesN[v]. The degree deg(x) of a vertex x denotes the number of neighbors of x in G. The
maximum degree and minimum degree of vertices of a graph G are denoted by A(G) and 6(G), respectively. A
leaf is a vertex of degree one and a support vertex is one that is adjacent to a leaf. We denote by S(G) the
set of all support vertices of G. A set of vertices S in G is a dominating set if N[S] = V(G). The domination
number y(G) of G is the minimum cardinality of a dominating set of G. If S is a subset of V(G), then we
denote by G[S] the subgraph of G induced by S. A subdivided star is obtained from a star with at least two
edges by subdividing every edge exactly once. The corona cor(H) of a graph H is that graph obtained from
H by adding a pendant edge to each vertex of H. For notation and graph theory terminology in general we
follow [7]

Let G be a graph with no isolated vertex. For 0 < @ <1, aset S C V is said to a-dominate a graph G,
if for any vertex v € V =S, IN(v) N S| > a|N(v)|. The minimum cardinality of an a#-dominating set is the
a-domination number, denoted y,(G). We refer an a#-dominating set of cardinality y,(G) as a y,(G)-set. For
references on a-domination in graphs see, for example, [24, 6]. Dunbar et al. in [4] suggested the study of
graphs in which removing of any edge changes the a-domination number.

For a y4(G)-set S in a graph G and a vertex x € S, if S — {x} is an a-dominating set for G — x, then we
denote pn(x, S) = {x}.

We remark that a-domination could be defined for any graph G. However in the first introductory
paper [4], Dunbar et al. defined it only for graphs with no isolated vertex. So we adopt this definition in
this paper.

For many graph parameters, criticality is a fundamental question. Much has been written about
graphs where a parameter increases or decreases whenever an edge or vertex is removed or added. For the
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domination number, Brigham, Chinn, and Dutton [1] began the study of those graphs where the domination
number decreases on the removal of any vertex. They defined a graph G to be domination vertex critical, or
just y-vertex critical, if removal of any vertex decreases the domination number. This concept is now well
studied in domination theory.

In this paper we study the same concept for a-domination. We call a graph G, a-domination vertex critical
if removal of any vertex decreases the a-domination number.

Observation 1.1. For any graph G of order n, y,(G) < n.
Observation 1.2. In any graph G # P, there is a y ,(G)-set containing all support vertices of G.
Proposition 1.3. ([4])) If0 <a < ﬁ, then y,(G) = y(G).

Proposition 1.4. ([4)If1>a>1- ﬁ, then y,(G) = ap(G).

Aset S C V(G) is a 2-packing of G if for every two different vertices x, vy € S, N[x] N N[y] = 0.

2. Results

Proposition 2.1. Let G be a graph without isolated vertices. For any vertex v € V(G) — S(G), and any 0 < a < 1,
Va(G) =1 < v4(G = v) < yo(G) + deg(v) — 1 and these bounds are sharp.

Proof. Let G be a graph without isolated vertices and v € V(G) — S(G). Let Sbe a y,(G)-set. If v ¢ S, then S
is an a-dominating set for G — v, and 50 y,(G — v) < 7,(G). Thus we assume that v € S. Then S U Ng(v) — {0}
is an a-dominating set for G — v, and s0 y,(G — v) < y4(G) + deg(v) — 1. Thus the upper bound follows.

For the lower bound let D be a y,(G —v)-set. Then D U {v} is an a-dominating set for G, and so the lower
bound follows.

To see the sharpness of the upper bound, let x be the center of a star Ky 4 for k > 2, and a < % Let G be
obtained from Kj x by subdividing each edge of Kj  three times. Note the G has 3k vertices of degree two, k
vertices of degree one, and a vertex of degree k (the vertex x). Now it is easy to see that y,(G) = k+ 1, and
Ya(G — x) = 2k. To see the sharpness of the lower bound consider a cycle C4. [

We call a graph G, a-domination vertex critical, or just y,-vertex critical if for any v € V(G) — S(G),
Va(G - Z7) < Va(G)

We note that if for a graph G with no isolated vertex, V(G) — S(G) = 0, then G is a-domination vertex
critical. Thus P; is obviously a-domination vertex critical, since V(P,) — S(P2) = 0.

2.1. yq-vertex critical graphs
In this subsection we present our results on y,-vertex critical graphs.

Proposition 2.2. A graph G is y-vertex critical if and only if for any non-support vertex x, there is a y,(G)-set S
containing x such that pn(x, S) = {x}.

Proof. (=) Let Gbeay,-vertexcritical graph and x ¢ S(G). Then y,(G—x) = y,(G)—1. Let Sbe a y,(G—x)-set.
It is obvious that D = S U {x} is an a-dominating set for G and pn(x, D) = {x}.

(<) Let x ¢ S(G) and let S be a y,(G)-set containing x such that pn(x,S) = {x}. Then S — {x} is an
a-dominating set for G — x implying that y,(G — x) < y,(G). Thus G is y,-vertex critical. [

Since y,(Kj,,) = 1, we obtain the following.
Lemma 2.3. Ky, is y-vertex critical if and only if n = 1.

Proposition 2.4. Every support vertex in a y,-vertex critical graph is adjacent to exactly one leaf.
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Proof. Let G be a y,-vertex critical. Assume that there is a support vertex x such x is adjacent to two leaves
x1 and x;. By Lemma 2.3, we may assume that N(x) contains a vertex of degree at least two. Then x is
a support vertex in G — x;. By Observation 1.2, let S be a y,(G — x1)-set such that x € S. Then S is an
a-dominating set for G, a contradiction. [

Observation 2.5. A subdivided star is not y,-vertex critical.
Theorem 2.6. Let H be a connected graph of order at least two. Then G = cor(H) is y-vertex critical.

Proof. Since G = cor(H), each vertex x of G is either a leaf a support vertex adjacent to exactly one leaf. We
observe that y,(G) = |S(G)|. Let x be a leaf of G. We show that y,(G —x) < y(G). Let y be the support vertex
adjacent to x. Since H is connected of order at least two, there is a vertex z € N(y) such that deg(z) > 1. Then
z is a support vertex. Now S(G) — {y} is an a-dominating set for G — x, implying that y,(G — x) < y,(G).
Thus G is y,-vertex critical. O

Let 7~ be the class of all trees T such that T € 7 if and only if:
(1) T =Py, or
(2) diam(T) > 3, and for any vertex x of T either x is a leaf or x is a support adjacent to exactly one leaf.

Theorem 2.7. A tree T is y,-vertex critical for 0 < a < ﬁ, ifand only if T € T.

Proof. (&) Itis obvious that P; is y,-vertex critical. If T # P, is a tree in 7, then Theorem 2.6 implies that
T is y,-vertex critical.

= Let T be a y,-vertex critical tree. If diam(T) = 1,then T = P, and so T € 7. If diam(T) = 2, then by
Lemma 2.3, T is not y,-domination vertex critical. Thus we assume that diam(T) > 3. We show that any
vertex of T is either a leaf or a support vertex.

Let y be vertex of T such that y is neither a leaf nor a support vertex. If each leaf of T is at distance two
from y, then by Proposition 2.4, y is the center of a subdivided star, a contradiction to Observation 2.5. Thus
assume that there is a leaf x in T such that d(x,y) > 3. Letd(x,y) = tand P : x — x; —xp — ... — x; = y be the
shortest path between x and y.

If x, is not a support vertex, then by Proposition 2.2, there is a y,(T)-set S containing x, such that
pn(xz, S) = {x2}. But then {x1,x} NS # 0. Since aA(T) < 1, we see that (S — {x, x2}) U {x1} is an a-dominating set
for T, a contradiction. Thus x; is a support vertex. Let y, be a leaf adjacent to x,. If x3 is not a support vertex,
then by Proposition 2.2, there is a y,(T)-set S containing x3 such that pn(xs, S) = {x3}. But S N {xy, y2} # 0.
Then S1 = (S—{y2}) U{xz} is a yo(T)-set such that pn(xs, S1) = {x3} and x; € 51. So 51 —{x3} is an a-dominating
set for T, a contradiction. Thus x3 is a support vertex. By continuing this process we obtain that x; € S(T)
fori=1,2,..,t - 1. By Proposition 2.2, there is a y,(T)-set D containing vy such that P,(y, D) = {y}. We may
assume that x;,_1 € D, since x;_1 € S(T). Then D — {y} is an a-dominating set for T, a contradiction. [J

1

Problem 2.8. Characterize yq-vertex critical trees for a > zz.

Proposition 2.9. ([4]) If 1 < a <1, then:
(1) Va(Pn) = I.%J
(2) ya(Cy) =351

Proposition 2.10. ([4]) If0 < a < 3, then ya(Py) = ya(Cy) = [4].

Proposition 2.11. (1) For 0 < a < 1, the path P, is y,-vertex critical if and only if n € {2,4}.
(2) For 3 < a <1, the path P, is y,-vertex critical if and only if n = 2k .
Proof. 1f 0 < a < 1, then the result follows from Theorem 2.7.

Assume next that % < a < 1. By Proposition 2.9, y4(P,) = |53]. Let n = 2k for some integer k > 1. It is
easy to see that P, and Py are y,-vertex critical. Thus we assume now that n > 6. Let x be a vertex such that
x is not a support vertex. If x is a leaf then by Proposition 2.9,

n n

Va(Pn = x) = Ya(Pn-1) = V ; 1J = bJ -1< EJ
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Thus assume now that x is not a leaf. Let G = P, — x. Then G has two components P,, and P,,. Clearly we
may assume that 71 is even and #; is odd. Then

YalG) = 7alPu) + 7alPu) = | 5 | +| 2]

A simple calculation shows that I_%]J + I_%J < 5]. Thus P, is y,-vertex critical.
Finally, we show that P, is not y,-vertex critical if n is odd. Let n be odd and let x be a leaf. Then
Ya(Pn) = Ya(Py-1), since [ 2] = | %51, as desired. [J

Using Propositions 2.9 and 2.10, we obtain the following proposition similarly.

Proposition 2.12. (1) For 0 < a < 1, the cycle C, is yq-vertex critical if and only if n = 1 (mod 3).
(2) For 3 < a <1, the cycle Cy, is always y-vertex critical.

Observation 2.13. ([4]) If K, is the complete graph of order n, then y,(K,) = [a(n — 1)].

Proposition 2.14. A complete graph K,, of order n > 2 is y,-vertex critical if and only if

Lo Tan-21
n—1

Proof. By Observation 2.13, the complete graph K, is y,-vertex critical if and only if [a(n — 2)] < [a(n — 1)].
This is equivalent with [a(n — 2)] < a(n — 1), and this is equivalent with @ > [a(n - 2)1/(n = 1). O

Proposition 2.15. ([4]) If K., is a complete bipartite graph with 1 < m < n, then y o(Ky, n) = min{m, [am] +[an]}.

Proposition 2.16. If2 < m < n, then Ky, , is y,-vertex critical if and only if m > [am] + [an],

as 2= DT g s = DT

Proof. Let X and Y be the partite sets of G = K, , with |X| = m and |Y| = n. First assume thatm < [am]+[an].
By Proposition 2.15, y,(G) = m. Let S be a (G — y)-set, where y € Y. Then Proposition 2.15 implies

|S| = 7/0¢(G - y) = Ya(Km,n—l)
= min{m, [am] + [a(n — 1)1}

\%

min{m, [am] + [an] — 1} > m,

and therefore G is not y,-vertex critical in that case.

Next assume that m > [am] + [an]. Then y,(G) = [am] + [an]. Let S; be a y4(G — y)-set, where y € Y,
and let S, be a 7, (G — x)-set, where x € X. Then similar to the proof of Proposition 2.14, we observe that G
is y,-vertex critical if and only if a > [a(m — 1)]/m and a > [a(n — 1)]/n. O

Proposition 2.17. If2 < m, then K, ,, is y,-vertex critical if and only if m < 2[am] or m > 2[am] and
-1
L fam=11
m

Proof. Let G = K, ,. First assume that m < 2[am]. By Proposition 2.15, y,(G) = m. Let S be a y,(G — x)-set,
where x € V(G). Then Proposition 2.15 implies

5] = ya(G = x)

Va(Km—l,m)
min{m — 1,[am]| + [a(m - 1))} <m - 1.

and therefore G is y,-vertex critical in that case.
Next assume that m > 2[am]. Then y,(G) = 2[am]. Let S be a y,(G —x)-set, where x € V(G). Then similar
to the proof of Proposition 2.14, we observe that G is y,-vertex critical if and only if @ > [a(m — 1)]/m. O
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Proposition 2.18. There is no induced-subgraph characterization for y,-vertex critical graphs.

Proof. Let G be an arbitrary graph, and H = cor(G). Clearly, G is an induced subgraph of H. Then
va(H) = |V(G)|, and V(G) is a y,(H)-set. Let vbe aleaf of H and u € N(v). Then V(G) —{u} is an a-dominating
set for H — v, implying that y,(H — v) < y,(H). Thus H is y,-vertex critical. [

Theorem 2.19. ([5]) If G is a y-vertex critical graph of order n = (y(G) — 1)(A(G) + 1) + 1, then G is regular.

Theorem 2.20. If G is a y,-vertex critical graph of order n, then n < (yo(G) — 1)(A(G) + 1) + 1. Furthermore, if
0(G) > 1 and equality holds, then G is regular.

Proof. Let G be a y,-vertex critical graph of order n, and let S be a y,(G — v)-set, where v € V(G) — 5(G).
Any vertex of S dominates at most 1 + A(G) vertices of G including itself. Thus S dominates at most
(7a(G) = 1)(A(G) + 1) = n — 1 vertices of G, as desired.

Now assume that 11 = (y,(G) — 1)(A(G) + 1) + 1. Thus any vertex of S dominates exactly 1+ A(G) vertices
of G, and so has degree A(G). Furthermore S is a 2-packing. Let u € N(v) — S. Since 6(G) > 1, the vertex
u & V(G) — S(G). Let D be a y,(G — u)-set. Then |D| = y,(G) — 1, and, as before, we obtain that any vertex
of D is of degree A(G), and D is a 2-packing. Since S is a y,(G — v)-set, u is adjacent to a vertexa € S, and
now degc—y(a) < A(G), and soa ¢ D. We deduce that D — S # 0. Also clearly v ¢ D. Letw € D — S. Since
Sis a y,(G — v)-set, we obtain that 1 = [N(w) N S| > adeg(w) = aA(G), and so a < ﬁ. By Proposition 1.3,
Ya(G) = y(G), and also y(G — a) = (G —a) for any vertex a. Thus G is y-vertex critical. By Theorem 2.19, G
isregular. [

Fulman et al. [5] proved that if G is a y-vertex critical graph, then diam(G) < 2(y(G) — 1). However with
a similar proof we obtain the following.

Proposition 2.21. If G is a y,-vertex critical graph, then diam(G) < 2(yo(G) — 1).

Theorem 2.22. If G is a y,-vertex critical graph of order n, then for any vertex v € V(G) — S(G),

ad(G —v)n + A(G)}

ya(©) 2 { 20(G —0) + AG)

Proof. Let G be a y,-vertex critical graph of order 1, and let v € V(G) — S(G). Let H = G- v and let Sbe a
va(H)-set. Then |S| = y,(G) — 1. Let M be the set of edges between S and V(H) — S. By counting the edges
from S to V(H) — S, we obtain that

M < Y deg(v) < ISIAG).

veS

On the other hand, since S is an a-dominating set for H, we find that

Mz ) adegu(e) 2 ad(H)V(H)| = IS]).
veV(H)-S

Now we obtain
ISIA(G) = ad(H)(n — 1 —|S]).

Since |S| = ¥4(G) — 1 and H = G — v, a simple calculation imply that

ad(G —v)n + A(G)
val0) 2 S G = T A 0)

O

Proposition 2.23. ([4]) If 0 < a < 1, then for any graph G, yo(G) + y1-4(G) < n.
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Theorem 2.24. If G is a y,-vertex critical graph of order n and size m, then

2am — aAG) + A(G)}

valG) 2 [ AG) @ +1)

Proof. Let G be a y,-vertex critical graph of order n and size m. Letv € V(G) — S(G) and H = G —v. Let S be
aya(H)-set. Then ). ,cs degr(v) = Y yey)-s adegu(v). Now

@+1ISIAG) = a Z degp(v) + Z degp(v)
veS veS
> aZdegH(v) + Z adegr(v)
ves veV(H)-S
> o« Z degr(v)
veV(H)

= a@2m —2deg;(v)) = a(2m — 2A(G)).
Since |S| = y4(G) — 1, a simple calculation completes the proof. [
By Proposition 2.23, we have the following.

Corollary 2.25. Let 0 < o < 1. If G is a y,-vertex critical graph of order n and size m, then

1 + @)AG)n + aAG) - 2am — A(G)) J

yl—a(G) < \‘ A(G)((X + 1)
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