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Conditional integral transforms with related topics on function space

Hyun Soo Chunga, Jae Gil Choia, Seung Jun Chang∗a

aDepartment of Mathematics, Dankook University, Cheonan 330-714, Korea

Abstract. In this paper we study the conditional integral transform, the conditional convolution product
and the first variation of functionals on function space. For our research, we modify the class Sα of func-
tionals introduced in [7]. We then give the existences of the conditional integral transform, the conditional
convolution product and the first variation for functionals in Sα. Finally, we give various relationships and
formulas among conditional integral transforms, conditional convolution products and first variations of
functionals in Sα.

1. Introduction and definitions

Let C0[0,T] denote one-parameter Wiener space; that is the space of real-valued continuous functions
x on [0,T] with x(0) = 0. Let M denote the class of all Wiener measurable subsets of C0[0,T], and let m
denote Wiener measure. (C0[0,T],M,m) is a complete measure space, and we denote the Wiener integral
of a Wiener integrable functional F by∫

C0[0,T]
F(x)dm(x).

A subset B of C0[0,T] is said to be scale-invariant measurable provided ρB is M-measurable for all
ρ ≥ 0, and a scale-invariant measurable set N is said to be a scale-invariant null set provided m(ρN) = 0 for
all ρ > 0. A property that holds except on a scale-invariant null set is said to hold scale-invariant almost
everywhere (s-a.e.) [9].

Let K = K0[0,T] be the space of all complex-valued continuous functions defined on [0,T] which vanish
at t = 0 and whose real and imaginary parts are elements of C0[0,T]. In many papers [3–5, 10, 13, 14], the
authors studied the integral transform

Fγ,βF(y) ≡ Fγ,β(F)(y) ≡
∫

C0[0,T]
F(γx + βy)dm(x), y ∈ K, (1)
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and the convolution product

(F ∗ G)γ(y) =
∫

C0[0,T]
F
( y + γx
√

2

)
G
( y − γx
√

2

)
dm(x), y ∈ K (2)

for functionals in various classes. Also, they established various basic relationships between the integral
transform and the convolution product involving the first variation. In [7], the authors studied a generalized
integral transform and a convolution product by using a Gaussian process for functionals in Sα.

Now we will the useful simple formula introduced by Park and Skoug in [16].
Let F : C0[0,T] → C be a Wiener integrable functional and let X : C0[0,T] → R be a B(C0[0,T])-

measurable functional defined by

X(x) = x(T). (3)

For real number η, E[F|X](η) denotes the conditional Wiener integral of F given X. For a more detailed
study of the conditional Wiener integral, see [2, 6, 15–17].

In [16], Park and Skoug obtained a simple formula for expressing conditional Wiener integrals with
a vector-valued conditioning function in terms of ordinary Wiener integral, and then used the formula
to derive the Kac-Feynman integral equation for time dependent potential function on Wiener space. In
particular, for given conditioning function X given by (3), they gave a useful simple formula for expressing
conditional Wiener integrals in terms of ordinary Wiener integrals, namely that,

E[F|X](η) =
∫

C0[0,T]
F
(
x(·) − ·

T
x(T) +

·
T
η
)
dm(x). (4)

The integration formula (4) is called a simple formula for the conditioning function X given by (3). In [11],
using the simple formula the authors studied the conditional integral transform(CIT) and the conditional
convolution product(CCP) involving the first variation of functionals in a class E0. Also see paper [12] for
further work involving CITs and CCPs.

In this paper, we obtain various relationships among the CIT, the CCP and the first variation for
functionals in Sα which was introduced in [7].

For v ∈ L2[0,T] and x ∈ C0[0,T], let ⟨v, x⟩ denote the Paley-Wiener-Zygmund (PWZ) stochastic integral.
One can show that for each v ∈ L2[0,T], ⟨v, x⟩ exists for a.e. x ∈ C0[0,T] and if v ∈ L2[0,T] is a function of
bounded variation on [0,T], ⟨v, x⟩ equals the Riemann-Stieltjes integral

∫ T

0 v(t)dx(t) for s-a.e. x ∈ C0[0,T].
Also, ⟨v, x⟩ has the expected linearity property. Furthermore, if v , 0, then ⟨v, x⟩ is a Gaussian process with
mean 0 and variance ∥v∥22. For a more detailed study of the PWZ stochastic integral, see [3, 4, 7, 8, 10, 11, 13].

First we give the definition of the CIT of a functional F on K.

Definition 1.1. Let F be a functional defined on K and let X be given by (3). For each nonzero complex numbers γ
and β, the CIT Fγ,β(F∥X) of F given X is given by the formula

Fγ,β(F∥X)(y, η) =
∫

C0[0,T]
F
(
γ(x(·) − ·

T
x(T) +

·
T
η) + βy(·)

)
dm(x) (5)

for y ∈ K and η ∈ R if it exists.

Next, we give the definition of the CCP of functionals F and G on K.

Definition 1.2. Let F and G be functionals defined on K and let X be given by (3). For each nonzero complex number
γ, the CCP ((F ∗ G)γ∥X) with respect to γ of F and G given X is given by the formula

((F ∗ G)γ∥X)(y, η) =
∫

C0[0,T]
F
( 1√

2
y(·) + γ√

2

(
x(·) − ·

T
x(T) +

·
T
η
))

· G
( 1√

2
y(·) − γ√

2

(
x(·) − ·

T
x(T) +

·
T
η
))

dm(x)
(6)

for y ∈ K and η ∈ R if it exists.
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We finish this section by giving the definition of the first variation of a functional F on K.

Definition 1.3. Let F be a functional defined on K. Then the first variation of F is defined by the formula

δF(x|u) =
∂

∂k
F(x + ku)

∣∣∣∣∣
k=0
, x,u ∈ K, (7)

if it exists.

2. A class Sα of functionals

In this section we define a modified class Sα of functionals [7].

First, we recall an integration formula which will be used several times in this paper. For each α ∈ C
and for v ∈ L2[0,T],∫

C0[0,T]
exp{α⟨v, x⟩}dm(x) = exp

{
α2

2
∥v∥22
}
. (8)

For each complex number α, let Sα be the class of functionals which has the form

F(x) =
∫

L2[0,T]
exp{α⟨v, x⟩}d f (v) (9)

and exists for s-a.e. x ∈ C0[0,T], where f is in M(L2[0,T]), the class of all complex valued countably additive
Borel measures on L2[0,T].

Remark 2.1. One can show that for each α = ip, p ∈ R, the class Sα is a Banach algebra with the norm

∥F∥ = ∥ f ∥ =
∫

L2[0,T]
|d f (v)|, f ∈M(L2[0,T]).

One can show that the correspondence f → F is injective, carries convolution into pointwise multiplication and that
for each complex number α, the space Sα is a Banach algebra. In particular, if α = i, then Si is the Banach algebra S
introduced by Cameron and Storvick in [1].

Definition 2.2. Let C be the class of all complex numbers. For each α ∈ C, let

Eα ≡ {(γ, β) ∈ C × C : Re(α2γ2) ≤ 0 and Re(α2β2) ≤ 0}.

Note that for F ∈ Sα, as we will see theorems and formulas below, when evaluate the CIT, the CCP and
the first variation we encounter the PWZ stochastic integral ⟨v, x(·) − ·

T x(T) + ·
Tη⟩. Let

bv =
1
T

∫ T

0
v(t)dt

for v ∈ L2[0,T]. Then bv is an element of L2[0,T] and

⟨v, x(·) − ·
T

x(T) +
·
T
η⟩ = ⟨v − bv, x⟩ + ηbv.

Remark 2.3. When we evaluate the CIT, the CCP and the first variation of functionals in Sα, we have to consider
the existences of some integrals as follows;



H.S. Chung, J.G. Choi and S.J. Chang / Filomat 26:6 (2012), 1151–1162 1154

(1) First we could consider the following integral,∫
L2[0,T]

exp{α⟨v, x⟩ + ζbv}d f (v), ζ ∈ C. (10)

If we assume that∫
L2[0,T]

exp
{
|ζ|
∫ T

0
|v(t)|dt

}
|d f (v)| < ∞ (11)

for all complex number ζ, then∫
L2[0,T]

exp{α⟨v, x⟩}d f (v) and
∫

L2[0,T]
exp{αγηbv}d f (v)

exist. However, the integral (10) might not exist because the product of L1-functionals might not be in L1.
(2) In view of (1) in Remark 2.3, we need a condition for f in M(L2[0,T]) to show the existence of the integral in

equation (10).
i) If v ∈ L2[0,T] is a function of bounded variation, then for each y ∈ C0[0,T],

|⟨v, x⟩| ≤ ∥x∥∞(|v(T)| + VT
0 (v)) < ∞,

where VT
0 (v) is the total variation of v on [0,T]. Hence if we assume that∫
L2[0,T]

exp
{
|ζ|
[
|v(T) + |VT

0 (v)| +
∫ T

0
|v(t)|dt

]}
|d f (v)| < ∞, (12)

then the integral the integral (10) always exists.
ii) Let v be an element of L2[0,T]. Then we note that

|⟨v, x⟩| = lim
n→∞
|⟨vn, x⟩| ≤ lim

n→∞
∥x∥∞(|vn(T)| + VT

0 (vn)) (13)

where vn(t) =
n∑

k=1
(v, αk)2αk(t), {αk} is a complete orthonormal set in L2[0,T] and (·, ·)2 is the inner product

on L2[0,T]. Hence if we add a condition

lim
n→∞

(|vn(T)| + VT
0 (vn)) (14)

exists, then we can obtain the existence of the integral (10) under the condition which is similar to the
condition (12).

iii) In fact, if ζ is a purely imaginary, then the integral (10) always exists.
(3) As mentioned above, we can give the condition (14) because the expression (13) is independent of the choice of

the complete orthonormal set {αk} and the all expressions in equation (13) exists for s-a.e. x ∈ C0[0,T]. Hence,
we assume that for f ∈M(L2[0,T]) which satisfies the condition (11) above, the integral (10) always exists.

3. Existence theorems

In this section, we establish the existence of the CIT, the CCP and the first variation for functionals in
Sα.

In our first theorem, we obtain the formula for the CIT of functionals from Sα into Sαβ.
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Theorem 3.1. Let F ∈ Sα be given by equation (9) whose associated measure f satisfies the condition (11) above.
Then for all (γ, β) ∈ Eα, the CIT Fγ,β(F∥X) of F given X exists and is given by the formula

Fγ,β(F∥X)(y, η) =
∫

L2[0,T]
exp
{
αβ⟨v, y⟩ + α

2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v) (15)

for s-a.e. y ∈ C0[0,T] and real number η. Furthermore, the CIT Fγ,β(F∥X), as a function of y, is an element of Sαβ.
In fact,

Fγ,β(F∥X)(y, η) =
∫

L2[0,T]
exp{αβ⟨v, y⟩}dϕη1(v),

where ϕη1 is an element of M(L2[0,T]).

Proof. Using equations (5) and (8) it follows that for s-a.e. y ∈ C0[0,T],

Fγ,β(F∥X)(y, η)

=

∫
C0[0,T]

∫
L2[0,T]

exp{αγ⟨v − bv, x⟩ + αγηbv + αβ⟨v, y⟩}d f (v)dm(x)

=

∫
L2[0,T]

exp
{
αβ⟨v, y⟩ + α

2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v)

(16)

and so we have established equation (15). Since (γ, β) ∈ Eα, f satisfies the condition (11) above and by the
hypothesis of Remark 2.3, the last expression in equation (16) exists. Now let ϕη1 be a set function defined
by

ϕ
η
1(E) =

∫
E

exp
{α2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v)

for E ∈ B(L2[0,T]). Then ϕη1 is an element of M(L2[0,T]) since (γ, β) ∈ Eα and so the last expression in
equation (16) becomes∫

L2[0,T]
exp{αβ⟨v, y⟩}dϕη1(v).

Hence the CIT Fγ,β(F∥X) is an element of Sαβ.

Remark 3.2. Note that for a given α, we can take complex numbers γ and β so that Re(α2γ2) ≤ 0 and Re(α2β2) ≤ 0.
Let αγ = a + ib and αβ = c + id. Then α2γ2 = (a2 − b2) + 2iab and α2β2 = (c2 − d2) + 2icd and hence Re(α2γ2) ≤ 0
and Re(α2β2) ≤ 0 imply a2 − b2 ≤ 0 and c2 − d2 ≤ 0. Hence we can take γ so that |a| ≤ |b| and |c| ≤ |d|. For example,
if α = 1 + 2i, then we can take γ = 3 + 2i and β = 1 + 2i.

In the next theorem, we obtain the formula for the CCP of functionals from Sα into Sα.

Theorem 3.3. Let F and f be as in Theorem 3.1. Let G ∈ Sα be given by

G(x) =
∫

L2[0,T]
exp{α⟨w, x⟩}d1(w)

for s-a.e. x ∈ C0[0,T], where 1 is an element of M(L2[0,T]) which satisfies the condition (11) above. Then for all
(γ, β) ∈ Eα, the CCP ((F ∗ G)γ∥X) of F and G for given X exists and is given by the formula

((F ∗ G)γ∥X)(y, η)

=

∫
L2[0,T]

∫
L2[0,T]

exp
{
α√

2
⟨v + w, y⟩ + α

2γ2

4
∥v − w − bv−w∥22 +

αγη
√

2
bv−w

}
d f (v)d1(w)

(17)
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for s-a.e. y ∈ C0[0,T] and real number η. Furthermore, the CCP ((F ∗G)γ∥X), as a function of y, is an element of Sα.
In fact,

((F ∗ G)γ∥X)(y, η) =
∫

L2[0,T]
exp{α⟨k, y⟩}dϕη2(k),

where ϕη2 is an element of M(L2[0,T]).

Proof. Using equations (6) and (8) it follows that for s-a.e. y ∈ C0[0,T],

((F ∗ G)γ∥X)(y, η)

=

∫
C0[0,T]

∫
L2[0,T]

∫
L2[0,T]

exp
{ αγ
√

2
⟨(v − bv − w + bw), x⟩

+
αγη
√

2
(bv − bw) +

α√
2
⟨v + w, y⟩

}
d f (v)d1(w)dm(x)

=

∫
L2[0,T]

∫
L2[0,T]

exp
{
α√

2
⟨v + w, y⟩ + α

2γ2

4
∥v − w − bv−w∥22 +

αγη
√

2
bv−w

}
d f (v)d1(w)

(18)

and so we have established equation (17). By a similar method in the proof of Theorem 3.1, we can show
that the last expression in equation (18) exists. Now, let ϕη be a set function defined by

ϕη(E) =
∫

E
exp
{α2γ2

4
∥v − w − bv−w∥22 +

αγη
√

2
bv−w

}
d f (v)d1(w)

for E ∈ B(L2[0,T] × L2[0,T]) and let ρ : L2[0,T] × L2[0,T] → L2[0,T] be a function defined by ρ(v,w) =
(v + w)/

√
2. Then ϕη2 = ϕ

η ◦ ρ−1 is an element of M(L2[0,T]) since (γ, β) ∈ Eα and so the last expression in
equation (18) becomes∫

L2[0,T]
exp{α⟨k, y⟩}dϕη2(k).

Hence the CCP ((F ∗ G)γ∥X) is an element of Sα.

Let

A =
{
u ∈ C0[0,T] : u(t) =

∫ t

0
z(s)ds for some z ∈ L2[0,T]

}
.

Note that for all w, v ∈ L2[0,T], we have

|(w, v)2| ≤ ∥w∥2∥v∥2.

Furthermore, for u ∈ A and v ∈ L2[0,T], the PWZ integral ⟨v,u⟩ exists and is given by the formula

⟨v,u⟩ =
∫ T

0
v(s)z(s)ds = (v, z)2

and hence |⟨v,u⟩| ≤ ∥v∥2∥z∥2.
The following observation below will be very useful in the development of our theorems. For F ∈ Sα,

we will assume that the associated measure f in M(L2[0,T]) of F always satisfies the following inequality∫
L2[0,T]

|α|∥v∥2|d f (v)| < ∞. (19)

In our next theorem, we obtain the formula for the first variation of functionals from Sα into Sα.
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Theorem 3.4. Let F and f be as in Theorem 3.1 and let u ∈ A. Assume that∣∣∣∣∣ ∂∂k exp{α⟨v, x + ku⟩}
∣∣∣∣∣ ≤ L(x) (20)

where L(x) is integrable on C0[0,T]. Then the first variation δF(x|u) of F exists and is given by the formula

δF(x|u) =
∫

L2[0,T]
α⟨v, u⟩ exp{α⟨v, x⟩}d f (v) (21)

for s-a.e. x ∈ C0[0,T]. Furthermore, as a function of x, δF is an element of Sα. In fact,

δF(x|u) =
∫

L2[0,T]
exp{α⟨v, x⟩}dϕ3(v),

where ϕ3 is an element of M(L2[0,T]).

Proof. Using equation (7) it follows that for s-a.e. x ∈ C0[0,T],

δF(x|u) =
∂

∂k
F(x + ku)

∣∣∣∣∣
k=0

=
∂
∂k

(∫
L2[0,T]

exp{α⟨v, x⟩ + αk⟨v,u⟩}d f (v)
)∣∣∣∣∣

k=0

=

∫
L2[0,T]

α⟨v,u⟩ exp{α⟨v, x⟩}d f (v).

(22)

The third equality of (22) follows from condition (20) and so by a similar method in the proof of Theorem
3.1, the last expression in equation (22) exists. Thus we have established equation (21). Now let ϕ3 be a set
function defined by

ϕ3(E) =
∫

E
α⟨v,u⟩d f (v)

for E ∈ B(L2[0,T]). Then we see that ϕ3 is an element of M(L2[0,T]) by using equation (19) and the last
expression in equation (22) becomes∫

L2[0,T]
exp{α⟨v, x⟩}dϕ3(v).

Hence δF is an element of Sα.

4. Relationships involving exactly two operations

In this section we consider the relationships involving exactly two of the three operations CIT, CCP and
first variation for functionals in Sα. These relationships and formulas, as well as alternative expressions for
some of them are given by equations (23), (25), (26), (27) and (28) below.

In our first theorem we obtain the relationship involving the CIT and the CCP, that is to say, the CIT of
the CCP is the product of their CITs.

Theorem 4.1. Let F,G, f and 1 be as in Theorem 3.3. Then for all (γ, β) ∈ Eα,

Fγ,β(((F ∗ G)γ∥X)(·, η1)∥X)(y, η2) = Fγ,β(F∥X)(
y
√

2
,
η2 + η1√

2
)Fγ,β(G∥X)(

y
√

2
,
η2 − η1√

2
) (23)

as elements of Sαβ. Also, both sides of the expression in equation (23) are given by the formula∫
L2[0,T]

∫
L2[0,T]

exp
{ αβ
√

2
⟨v + w, y⟩ + α

2γ2

2
(∥v − bv∥22 + ∥w − bw∥22) +

αγ
√

2
(η2bv+w + η1bv−w)

}
d f (v)d1(w).
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Proof. The left hand side of equation (23) exists by Theorems 3.1 and 3.3, while the right hand side of
equation (23) exists by Theorem 3.1. Hence equation (23) immediately follows from Theorem 2.1 in [11].
Furthermore, using equations (17) and (15) it follows that for s-a.e. y ∈ C0[0,T] and real numbers η1, η2 and
η3,

Fγ,β(((F ∗ G)γ∥X)(·, η1)∥X)(y, η2)

=

∫
C0[0,T]

∫
L2[0,T]

∫
L2[0,T]

exp
{ αβ
√

2
⟨v + w, y⟩ + αγ√

2
⟨v + w − bv+w, x⟩

+
α2γ2

4
∥v − w − bv−w∥22 +

αγη2bv+w√
2

+
αγη1bv−w√

2

}
d f (v)d1(w)dm(x)

=

∫
L2[0,T]

∫
L2[0,T]

exp
{ αβ
√

2
⟨v + w, y⟩ + α

2γ2

4
∥v + w − bv+w∥22

+
α2γ2

4
∥v − w − bv−w∥22 +

αγη2bv+w√
2

+
αγη1bv−w√

2

}
d f (v)d1(w)

=

∫
L2[0,T]

∫
L2[0,T]

exp
{ αβ
√

2
⟨v + w, y⟩ + α

2γ2

2
(∥v − bv∥22 + ∥w − bw∥22) +

αγ
√

2
(η2bv+w + η1bv−w)

}
d f (v)d1(w).

(24)

The second equality in equation (24) follows immediately from equation (8) and the last equality in equation
(24) follows from the parallelogram law of the norm. Hence we have the desired result.

In our next theorem we obtain a formula relating the CIT and the first variation, that is to say, the CIT
of the first variation is the first variation of the CIT.

Theorem 4.2. Let F, f and u be as in Theorem 3.4. Assume that F satisfies the hypothesis of Theorem 3.4. Then for
all (γ, β) ∈ Eα,

βFγ,β(δF(·|u)∥X)(y, η) = δFγ,β(F∥X)(y|u, η) (25)

as elements of Sαβ. Also, both sides of the expression in equation (25) are given by the formula∫
L2[0,T]

αβ⟨v,u⟩ exp
{
αβ⟨v, y⟩ + α

2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v).

Proof. Both sides of equation (25) exists by Theorems 3.4 and 3.1. Furthermore, using equations (21), (15)
and (8), it follows that for s-a.e. y ∈ C0[0,T] and real number η,

Fγ,β(δF(·|u)∥X)(y, η)

=

∫
C0[0,T]

∫
L2[0,T]

α⟨v,u⟩ exp
{
αβ⟨v − bv, x⟩ + αβ⟨v, y⟩ + αγηbv

}
d f (v)dm(x)

=

∫
L2[0,T]

α⟨v,u⟩ exp
{
αβ⟨v, y⟩ + α

2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v).

On the other hand, using equations (15), (7) and (8), it follows that for s-a.e. y ∈ C0[0,T] and real number η,

δFγ,β(F∥X)(y|u, η)

=
∂

∂k

[∫
L2[0,T]

exp
{
αβ⟨v, y⟩ + αβk⟨v,u⟩ + α

2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v)

]
k=0

=

∫
L2[0,T]

αβ⟨v,u⟩ exp
{
αβ⟨v, y⟩ + α

2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v),

which completes the proof of Theorem 4.2.
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Remark 4.3. From Theorems 3.1 thru 4.2 above, we gave some conditions for existences of all operations. In the
similar method, we can give appropriate conditions for existence of all operations for the rest theorems and formulas in
Sections 3 and 4. Now, to simplify the expressions, we will only state the formulas without conditions for existences.

Now, we consider relationships involving the CIT, the CCP and the first variation.
In our first formula, we obtain a relationship for the CCP of CITs. Equation (26) follows from Theorems

3.1, 3.3 and equation (8).
(1) A formula for the CCP with respect to the first argument of the CIT : Let F,G, f and 1 be as in

Theorem 4.1. Then ((Fγ,β(F∥X)(·|η1) ∗ Fγ,β(G∥X)(·|η2))γ)∥X)(y, η3) exists as an element of Sαβ and is given by
the formula

((Fγ,β(F∥X)(·|η1) ∗ Fγ,β(G∥X)(·|η2)γ)∥X)(y, η3)

=

∫
L2[0,T]

∫
L2[0,T]

exp
{ αβ
√

2
⟨v + w, y⟩ +

α2γ2β2

4
(∥v − w − bv−w∥22

+
α2γ2

2
(∥v − bv∥22 + ∥w − bw∥22) +

αβγη3√
2

bv−w + αγ(η1bv + η2bw)
}
d f (v)d1(w)

(26)

for s-a.e. y ∈ C0[0,T] and real numbers η1, η2 and η3.
In our next formula, we obtain a relationship for CCP with respect to the first argument of the first

variations. Equation (27) immediately follows from equations (21), (17) and (8).
(2) A formula for the CCP with respect to the first argument of functionals : Let F,G, f and 1 be as in

Theorem 4.1 and let u be as in Theorem 3.4. Then ((δF(·|u) ∗ δG(·|u)γ)∥X)(y, η) exists as an element of Sα and
is given by the formula

((δF(·|u) ∗ δG(·|u)γ)∥X)(y, η)

=

∫
L2[0,T]

∫
L2[0,T]

α2⟨v, u⟩⟨w,u⟩ exp
{
α√

2
⟨v + w, y⟩ + α

2γ2

4
(∥v − w − bv−w∥22 +

αγη
√

2
bv−w

}
d f (v)d1(w)

(27)

for s-a.e. y ∈ C0[0,T] and real number η.
In our next formula, we obtain a relationship for the first variation of the CCP. Equation (28) immediately

follows from equations (21), (17) and (8).
(3) A formula for the first variation of the CCP : Let F,G, f and 1 be as in Theorem 4.1 and let u be as in

Theorem 3.4. Then δ((F ∗ G)γ∥X)(·, η)(y|u) exists as an element of Sα and is given by the formula

δ((F ∗ G)γ∥X)(·, η)(y|u)

=

∫
L2[0,T]

∫
L2[0,T]

αγ
√

2
⟨v + w,u⟩ exp

{
α√

2
⟨v + w, y⟩ + α

2γ2

4
∥v − w − bv−w∥22 +

αγη
√

2
bv−w

}
d f (v)d1(w)

(28)

for s-a.e. y ∈ C0[0,T] and real number η.

5. Relationships involving all three concepts

In this section we establish various relationships involving the CIT, the CCP and the first variation where
each operation is used exactly once. It turns out that there are five distinct formulas, and these are given by
equation (30) through (35) below. Equations (23) and (25) are very useful relationships for developments
of this section.

Note that for F,G ∈ Sα whose associated measures f and 1 satisfy inequality (19), we have that

δ(FG)(x|u) = δF(x|u)G(x) + F(x)δG(x|u) (29)

for s-a.e. x ∈ C0[0,T] and u ∈ A.
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In our first formula below, we obtain a relationship for taking the first variation of equation (23) and
using equation (29).

(1) A formula for the first variation of CIT of the CCP : Let F,G, f and 1 be as in Theorem 4.1 and let u
be as in Theorem 3.4. Then

δ[Fγ,β(((F ∗ G)γ∥X))(·, η1)∥X)(·, η2)](y|u)

= δFγ,β(F∥X)(·, η2 + η1√
2

)(
y
√

2
| u√

2
)Fγ,β(G∥X)(

y
√

2
,
η2 + η1√

2
)

+ Fγ,β(F∥X)(
y
√

2
,
η2 + η1√

2
)δFγ,β(G∥X)(·, η2 − η1√

2
)(

y
√

2
| u√

2
)

(30)

as elements of Sαβ.
In our second formula, we obtain a relationship using equation (25) with Fγ,β(δF(·|u)∥X) replaced with

Fγ,β(δ(F ∗ G)γ(·|u)∥X).
(2) Formulas for the CIT with respect to the first argument of the first variation of CCP : Let F,G, f

and 1 be as in Theorem 4.1 and let u be as in Theorem 3.4. Then

βFγ,β(δ((F ∗ G)γ∥X))(·, η1)(·|u)∥X)(y, η2) = δ[Fγ,β((((F ∗ G)γ∥X))(·, η1)∥X)(·, η2)](y|u) (31)

as elements of Sαβ. Furthermore using equation (30), we get another relationship

βFγ,β(δ((F ∗ G)γ∥X))(·, η1)(·|u)∥X)(y, η2)

= δFγ,β(F∥X)(·, η2 + η1√
2

)(
y
√

2
| u√

2
)Fγ,β(G∥X)(

y
√

2
,
η2 + η1√

2
)

+ Fγ,β(F∥X)(
y
√

2
,
η2 + η1√

2
)δFγ,β(G∥X)(·, η2 − η1√

2
)(

y
√

2
| u√

2
)

(32)

as elements of Sαβ.
In our third formula, we obtain a relationship using equation (23) with F and G replaced with δF and

δG, respectively and using equation (25).
(3) Formulas for the CIT of the CCP with respect to the first argument of the first variation : Let F,G, f

and 1 be as in Theorem 4.1 and let u be as in Theorem 3.4. Then

β2Fγ,β(((δF(·|u) ∗ δG(·|u))γ∥X)(·, η1)∥X)(y, η2)

= β2Fγ,β(δF(·|u)∥X)(
y
√

2
,
η2 + η1√

2
)Fγ,β(δG(·|u)∥X)(

y
√

2
,
η2 − η1√

2
)

= δFγ,β(F∥X)(·, η2 + η1√
2

)(
y
√

2
|u)δFγ,β(G∥X)(·, η2 − η1√

2
)(

y
√

2
|u)

(33)

as elements of Sαβ.
In our next formula, we obtain a relationship using equation (25) with respect to each arguments.
(4) A formula for the CCP of the CIT of the first variation : Let F,G, f and 1 be as in Theorem 4.1 and

let u be as in Theorem 3.4. Then

β2(Fγ,β((δF(·|u)∥X)(·, η1) ∗ Fγ,β(δG(·|u)∥X)(·, η2)γ)∥X)(y, η3)
= ((δFγ,β(F∥X)(·, η1)(·|u) ∗ δFγ,β(G∥X)(·, η2)γ)(·|u)∥X)(·, η2)∥X)(y, η3)

(34)

as elements of Sαβ.
In our last formula in this section, we obtain a relationship using the linearity of CIT, equation (29) and

equation (25) with replaced F with FG.
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(5) Formulas for the first variation of the CIT of the product functional : Let F,G, f and 1 be as in
Theorem 4.1. Then

β[Fγ,β(δF(·|u)G(·)∥X)(y, η) + Fγ,β(F(·)δG(·|u)∥X)(y, η)]
= βFγ,β(δ(FG)(·|u)∥X)(y, η)
= δFγ,β(FG∥X)(·, η)(y|u)

(35)

as elements of Sαβ.

6. Further results

See the four remarks below for some additional information and related results.

Remark 6.1. We obtain some observations for the CIT, the CCP and the first variation as below:
(1) Let r(t) = 1√

T
for all t ∈ [0,T] and let v be an element of L2[0,T] such that (r, v)2 = 0. Then we have

bv =
1
T

∫ T

0 v(t)dt = 1√
T

∫ T

0 r(t)v(t)dt = 0 and so

⟨v, x(·) − ·
T

x(T) +
·
T
η⟩ = ⟨v, x⟩.

Hence the CIT reduces the integral transform Fγ,β defined by (1), that is to say,

Fγ,β(F∥X)(y, η) = Fγ,β(F)(y)

for s-a.e. y ∈ C0[0,T] and real number η.
(2) The convolution product (F ∗ G)γ defined by (2) is commutative. While the CCP is not commutative because

((F ∗ G)γ∥X)(y, η) = ((G ∗ F)γ∥X)(y,−η)

for s-a.e. y ∈ C0[0,T] and real number η. However the usual additive distribution held for the CCP as see above
theorems and formulas in Sections 3 and 4.

(3) Note that for F ∈ Sα, the first variation δF(x|u) acts like a directional derivative in the direction of u.

To get an interesting relationship, let

Aα ≡ {(γ, β) ∈ Eα : γ2 + β2 = 1}.

Remark 6.2. Let F and f be as in Theorem 3.1, and let (γ1, β1) and (γ2, β2) be elements of Aα with (γ1, β1) ∈ Aαβ2

and (γ2, β2) ∈ Aαβ1 . Then

Fγ2,β2 (Fγ1,β1 (F∥X)(·, η2)∥X)(y, η1) = Fγ1,β1 (Fγ2,β2 (F∥X)(·, η1)∥X)(y, η2) (36)

as elements of Sαβ1β2 if and only if γ1η1 = γ2η2. Also, both sides of the expression in equation (36) are given by the
formula∫

L2[0,T]
exp
{
αβ1β2⟨v, y⟩ +

α2

2
(γ2

1 + β
2
1γ

2
2)∥v − bv∥22 + αbv(γ1 + β2 + γ2η2)

}
d f (v).

In [4, 7], the authors obtained a formula

Fγ2,β2 (Fγ1,β1 F)(y) = Fγ0,β0 (F)(y)

for some complex numbers γ0 and β0 where Fγ,β is the integral transform defined by equation (1). Unfortunately we
can see that there is no pair (γ0, β0) ∈ Eα (or Aα) such that

Fγ2,β2 (Fγ1,β1 (F∥X)(·, η2)∥X)(y, η1) = Fγ0,β0 (F∥X)(y, η3).
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Remark 6.3. Let F ∈ Sα be given by equation (9) and let v ∈ L2[0,T] be a function of bounded variation. Let
{(γn, βn)} be a sequence in Eα with γn → γ , 0 and βn → β , 0 as n → ∞ for some (γ, β) ∈ Eα. Suppose that
|α| ≤M for some positive real number M. Then using the dominated convergence theorem,

lim
n→∞
Fγn,βn (F∥X)(y, η)

= lim
n→∞

∫
L2[0,T]

exp
{
αβn⟨v, y⟩ +

α2γ2
n

2
∥v − bv∥22 + αγnηbv

}
d f (v)

=

∫
L2[0,T]

exp
{
αβ⟨v, y⟩ + α

2γ2

2
∥v − bv∥22 + αγηbv

}
d f (v)

= Fγ,β(F∥X)(y, η).

We finish this paper by stating the inverse CIT.

Remark 6.4. In many paper [3, 4, 7, 10, 14], the author gave the existence of the inverse integral transform for the
integral transform Fγ,β defined by (1). That is to say, they obtained the following equation

Fi γβ ,
1
β
(Fγ,βF)(y) = F(y) = Fγ,β(Fi γβ ,

1
β
F)(y).

Also, they established several relationships involving the inverse integral transform. Unlike the integral transform,
the inverse CIT does not exist because

Fi γβ ,
1
β
(Fγ,β(F∥X)(·, η1)∥X)(y, η2)

=

∫
L2[0,T]

exp
{
α⟨v, y⟩ + αγbv(η1 + iη2)

}
d f (v)

, F(y).

Acknowledgement. The authors would like to express their gratitude to the referees for their valuable
comments and suggestions which have improved the original manuscript.

References

[1] R.H. Cameron and D.A. Storvick, Some Banach algebras of analytic Feynman integrable functionals, in Analytic Functions,
Springer Lecture Notes in Mathematics, 798 (1980), 18–67.

[2] S.J. Chang and D. Skoug, Parts formulas involving conditional Feynman integrals, Bull. Austral. Math. Soc. 65 (2002), 353–369.
[3] S.J. Chang, H.S. Chung and D. Skoug, Convolution products, integral transforms and inverse integral transforms of functionals

in L2(C0[0,T]), Integral Transforms and Special Functions 21 (2010), 143–151.
[4] S.J. Chang, H.S. Chung and D. Skoug, A Fubini theorem for integral transforms and convolution products, to appear in Int. J.

Math.
[5] K.S. Chang, B.S. Kim and I. Yoo, Integral transform and convolution of analytic functionals on abstract Wiener space, Numer.

Funct. Anal. Optim. 21 (2000), 97–105.
[6] D.M. Chung and D. Skoug, Conditional analytic Feynman integrals and a related Schroedinger integral equation, Siam. J. Math.

Anal. 20 (1989), 950–965.
[7] H.S. Chung and V.K. Tuan, Generalized integral transforms and convolution products on function space, Integral Transforms

and Special Functions 22 (2011), 573–586.
[8] H.S. Chung and V.K. Tuan, Fourier-type functionals on Wiener space, Bull. Korean Math. Soc. 49 (2012), 609–619.
[9] G.W. Johnson and D.L. Skoug, Scale-invariant measurability in Wiener space, Pacific J. Math. 83 (1979), 157–176.

[10] B.J. Kim, B.S. Kim and D. Skoug, Integral transforms, convolution products and first variations, Int. J. Math. Math. Soc. 11 (2004),
579–598.

[11] B.J. Kim, B.S. Kim and D. Skoug, Conditional integral transforms, conditional convolution products and first variations, Pan
Amer. Math. J. 14 (2004), 27–47.

[12] B.J. Kim, Conditional integral transforms, conditional convolution products and first variations for some conditioning functions,
East J. Math. Sci. 19 (2005), 259–272.

[13] B.S. Kim and D. Skoug, Integral transforms of functionals in L2(C0[0,T]), Rocky Mountain J. Math. 33 (2003), 1379–1393.
[14] Y.J. Lee, Integral transforms of analytic functions on abstract Wiener spaces, J. Funct. Anal. 47 (1982), 153–164.
[15] C. Park and D. Skoug, Conditional Fourier-Feynman transforms and conditional convolution products, J. Korean Math. Soc. 38

(2001), 61–76.
[16] C. Park and D. Skoug, A simple formula for conditional Wiener integrals with applications, Pacific J. Math. 135 (1988), 381–394.
[17] J. Yeh, Inversion of conditional Wiener integral, Pacific J. Math. 59 (1975), 623–638.


