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On I-convergence of nets in locally solid Riesz spaces
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Abstract. In this paper, following the line of [13] and [6], we introduce the ideas of Iτ-convergence, Iτ-
boundedness and Iτ-Cauchy condition of nets in a locally solid Riesz space endowed with a topology τ and
investigate some of its consequences.

1. Introduction

The notion of a Riesz space was first introduced by F. Riesz [17] in 1928 and since then it has found several
applications in measure theory, operator theory, optimization and also in economics (see [2]). It is well
known that a topology on a vector space that makes the operations of addition and scalar multiplication
continuous is called a linear topology and a vector space endowed with a linear topology is called a
topological vector space. A Riesz space is an ordered vector space which is also a lattice, endowed with a
linear topology. Further if it has a base consisting of solid sets at zero, then it is known as a locally solid
Riesz space.

The notion of statistical convergence, which is an extension of the idea of usual convergence, was
introduced by Fast [7] and Schoenberg [19] and its topological consequences were studied first by Fridy
[8] and Šalát [18] (also later by Maddox [15]). Recently Di Maio and Kočinac [16] introduced the concept
of statistical convergence in topological spaces and statistical Cauchy condition in uniform spaces and
established the topological nature of this convergence (see also [3, 4]). Subsequently, in a very recent
development, the idea of statistical convergence of sequences was studied by Albayrak and Pehlivan [1] in
locally solid Riesz spaces.

However if one considers the concept of nets instead of sequences (which undoubtedly plays a more
important and natural role in general structures like topological spaces, uniform spaces and Riesz spaces)
the above approach does not seem to be appropriate because of the absence of any idea of density in
arbitrary directed sets. Instead it seems more appropriate to follow the more general approach of [9] where
the notion of I-convergence of a sequence was introduced by using ideals of the set of positive integers.
One can see [5, 6, 10, 12, 13] for more works in this direction where many more references can be found.

In an interesting development, the notion of usual convergence of nets was extended to ideal convergence
of nets in [13] where the basic topological nature of this convergence was established (also continued in
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[6]). As a natural consequence, in this paper, we introduce the idea of ideal-τ-convergence of nets in a
locally solid Riesz space and study some of its properties by using the mathematical tools of the theory of
topological vector spaces. It should be noted that our paper contains all results of [1] as special cases.

2. Preliminaries

In this section we recall some of the basic concepts of Riesz spaces and ideal convergence of nets and
interested readers can look into [2, 13, 20] for details.

Definition 2.1. Let L be a real vector space and let ≤ be a partial order on this space. L is said to be an
ordered vector space if it satisfies the following properties:

(i) If x, y ∈ L and y ≤ x, then y + z ≤ x + z for each z ∈ L.
(ii) If x, y ∈ L and y ≤ x, then λy ≤ λx for each λ ≥ 0.

If in addition L is a lattice with respect to the partial ordering, then L is said to be a Riesz space (or a vector
lattice).

For an element x of a Riesz space L the positive part of x is defined by x+ = x
∨
θ, the negative part of x

by x− = (−x)
∨
θ, and the absolute value of x by |x| = x

∨
(−x), where θ is the element zero of L.

A subset S of a Riesz space L is said to be solid if y ∈ S and |x| ≤
∣∣∣y∣∣∣ imply x ∈ S.

A topology τ on a real vector space L that makes the addition and scalar multiplication continuous is
said to be a linear topology, that is when the mappings

(x, y)→ x + y (from (L × L, τ × τ)→ (L, τ))
(λ, x)→ λx (from (R × L, σ × τ)→ (L, τ))

are continuous, where σ is the usual topology on R. In this case the pair (L, τ) is called a topological vector
space.

Every linear topology τ on a vector space L has a base N for the neighborhoods of θ satisfying the
following properties:

a) Each V ∈ N is a balanced set, that is λx ∈ V holds for all x ∈ V and every λ ∈ R with |λ| ≤ 1.
b)Each V ∈ N is an absorbing set, that is for every x ∈ L, there exists a λ > 0 such that λx ∈ V.
c) For each V ∈ N there exists some W ∈ N with W +W ⊂ V.

Definition 2.2. ([2]) A linear topology τ on a Riesz space L is said to be locally solid if τ has a base at zero
consisting of solid sets. A locally solid Riesz space (L, τ) is a Riesz space L equipped with a locally solid
topology τ.

Nsol will stand for a base at zero consisting of solid sets and satisfying the properties (a),(b) and (c) in a
locally solid topology.

We now recall the following basic facts from [12] (see also [5, 6]).
A family I of subsets of a non-empty set X is said to be an ideal if (i) A,B ∈ I implies A ∪ B ∈ I, (ii)

A ∈ I,B ⊂ A imply B ∈ I. I is called non-trivial if I ,
{
ϕ
}

and X < I. I is admissible if it contains all singletons.
If I is a proper non-trivial ideal, then the family of sets F(I) = {M ⊂ X : Mc ∈ I} is a filter on X (where c stands
for the complement.) It is called the filter associated with the ideal I.

Throughout the paper (D,≥) will stand for a directed set and I a non-trivial proper ideal of D. A net is
a mapping from D to X and will be denoted by {sα : α ∈ D} . Let for α ∈ D,Dα =

{
β ∈ D : β ≥ α}. Then the

collection F0 = {A ⊂ D : A ⊃ Dα for some α ∈ D} forms a filter in D. Let I0 = {A ⊂ D : Ac ∈ F0}. Then I0 is a
non-trivial ideal of D.

A nontrivial ideal I of D will be called D-admissible if Dα ∈ F(I) ∀α ∈ D.

Definition 2.3. A net {sα : α ∈ D} in a topological space (X, τ) is said to be I-convergent to x0 ∈ X if for any
open set U containing x0, {α ∈ D : sα < U} ∈ I.
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3. Ideal topological convergence in locally solid Riesz spaces

We first introduce our main definition.

Definition 3.1. Let (L, τ) be a locally solid Riesz space and {sα : α ∈ D} be a net in L. {sα : α ∈ D} is said to be
ideal-τ-convergent (Iτ-convergent in short) to x0 ∈ L if for any τ-neighborhood U of zero, {α ∈ D : sα − x0 < U} ∈
I. In this case we write Iτ-lim sα = x0

(
or sα →Iτ x0

)
.

When I = Id (the ideal of those subsets of N which have asymptotic density zero, see [7, 8, 16] for
detailed definitions) and D = N, the notion of ideal-τ-convergence reduces to statistical-τ-convergence of
sequences [1].

Example 3.2. In the locally solid Riesz space (R2, ∥·∥) with the Euclidean norm ∥·∥ and coordinate ordering
choose the neighborhood systemNx0 of any point x0 ∈ R2. It is known thatNx0 is itself a directed set D with
respect to inclusion. Take a proper non-trivial ideal I of D which contains I0 properly. Choose C ∈ I \ I0. Let
{sU : U ∈ D} be given by

sU ∈ U ∀ U ∈ Nx0 \ C
sU = y0 ∀ U ∈ C

where x0 , y0. Then it is easy to observe that {sU : U ∈ D} cannot converge to x0 usually but it Iτ-converges
to x0 as

{U ∈ D : sU − x0 < U} = C ∈ I

for any τ-neighborhood U of zero, which does not contain y0 − x0 (such neighborhoods exist because of
Hausdorffness of R2).

Note that the above example can be formulated in any Hausdorff locally solid Riesz space (L, τ) with a
point x0 for whichNx0 contains infinitely many members.

Definition 3.3. A net {sα : α ∈ D} is said to be ideal-τ-bounded (Iτ-bounded) if for any τ-neighborhood U of
zero there exists some λ > 0 such that {α ∈ D : λsα < U} ∈ I.

Definition 3.4. A net {sα : α ∈ D} in a locally solid Riesz space (L, τ) is said to be ideal-τ-Cauchy (Iτ-Cauchy)
if for every τ-neighborhood U of zero there exists a β ∈ D such that

{
α ∈ D : sα − sβ < U

}
∈ I.

Theorem 3.5. A locally solid Riesz space is Hausdorff if and only if every Iτ-convergent net has a unique limit point
for every D admissible ideal I.

The proof readily follows from Theorems 1 and 2 of [13].
As in [13] we can also find the equivalent characterizations of limit points of sets and continuous

mappings with respect to Iτ-convergence of nets.

Theorem 3.6. Let (L, τ) be a locally solid Riesz space and {sα : α ∈ D} , {tα : α ∈ D} be two nets in L. Then
(i) Iτ-lim sα = x0 ⇒ Iτ-lim asα = ax0 for each a ∈ R.
(ii) Iτ-lim sα = x0, Iτ-lim tα = y0 ⇒ Iτ-lim(sα + tα) = x0 + y0.

(i) Let U be a τ-neighborhood of zero. Choose V ∈ Nsol such that V ⊂ U. Since I-lim sα = x0,

{α ∈ D : sα − x0 ∈ V} ∈ F(I).

Let |a| ≤ 1. Since V is balanced, sα − x0 ∈ V implies that a (sα − x0) ∈ V.
Hence we have

{α ∈ D : sα − x0 ∈ V} ⊂ {α ∈ D : asα − ax0 ∈ V} ⊂ {α ∈ D : asα − ax0 ∈ U}
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and so

{α ∈ D : asα − ax0 ∈ U} ∈ F (I) .

Now let |a| > 1 and as usual let [|a|] be the smallest integer greater than or equal to |a|. There exists a W ∈ Nsol
such that [|a|] W ⊂ V. Since Iτ-lim sα = x0,

A = {α ∈ D : sα − x0 ∈W} ∈ F (I) .

Then we have

|ax0 − asα| = |a| |x0 − sα| ≤ [|a|] |x0 − sα| ∈ [|a|] W ⊂ V ⊂ U

for each α ∈ A. Since the set V is solid, we have asα − ax0 ∈ V and so asα − ax0 ∈ U for each α ∈ A. So we get

{α ∈ D : asα − ax0 ∈ U} ⊃ A

and so it belongs to F(I). Hence Iτ-lim asα = ax0 for every a ∈ R.
(ii) Let U be an arbitrary τ-neighborhood of zero. Choose V ∈ Nsol such that V ⊂ U. Choose W ∈ Nsol

such that W +W ⊂ V. Since Iτ-lim sα = x0 and Iτ-lim tα = y0 so

A = {α ∈ D : sα − x0 ∈W} ∈ F (I)

and

B =
{
α ∈ D : tα − y0 ∈W

} ∈ F (I) .

Then A ∩ B ∈ F(I) and clearly

(sα + tα) −
(
x0 + y0

)
= (sα − x0) +

(
tα − y0

) ∈W +W ⊂ V ⊂ U

for each α ∈ A ∩ B. Hence we have

A ∩ B ⊂ {α ∈ D : (sα + tα) −
(
x0 + y0

) ∈ U
}

and so the set on the right hand side belongs to F(I). Hence Iτ-lim (sα + tα) = x0 + y0.

Theorem 3.7. Let (L, τ) be a locally solid Riesz space. Let {sα : α ∈ D} , {tα : α ∈ D} , {vα : α ∈ D} be three nets such
that sα ≤ tα ≤ vα for each α ∈ D. If Iτ-lim sα = Iτ-lim vα = x0, then Iτ-lim tα = x0.

Proof. Let U be an arbitrary τ-neighborhood of zero. Choose V,W ∈ Nsol such that W +W ⊂ V ⊂ U. Now
by our assumption

A = {α ∈ D : sα − x0 ∈W} ∈ F(I)

and

B = {α ∈ D : vα − x0 ∈W} ∈ F(I).

Then A ∩ B ∈ F(I) and for each α ∈ A ∩ B

sα − x0 ≤ tα − x0 ≤ vα − x0

and so |tα − x0| ≤ |sα − x0| + |vα − x0| ∈W +W ⊂ V. Since V is solid so

tα − x0 ∈ V ⊂ U.

Hence A ∩ B ⊂ {α ∈ D : tα − x0 ∈ U} which implies that {α ∈ D : tα − x0 ∈ U} ∈ F(I) and this completes the
proof of the theorem.
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Theorem 3.8. If a net {sα : α ∈ D} in a locally solid Riesz space (L, τ) is Iτ-convergent, then it is Iτ-bounded.

Proof. Let Iτ-lim sα = x0. Let U be an arbitrary τ-neighborhood of zero. Choose V,W ∈ Nsol such that
W +W ⊂ V ⊂ U. Now we have

C = {α ∈ D : sα − x0 <W} ∈ I.

Since W is absorbing, there exists a λ > 0 such that λx0 ∈ W.We can take λ ≤ 1 since W is solid. Since W is
balanced, sα − x0 ∈W implies that λ (sα − x0) ∈W. Then we have

λsα = λ (sα − x0) + λx0 ∈W +W ⊂ V ⊂ U

for every α ∈ D \ C. Hence

{α ∈ D : λsα < U} ∈ I

which shows that {sα : α ∈ D} is Iτ-bounded.

Theorem 3.9. If a net {sα : α ∈ D} in a locally solid Riesz space is Iτ-convergent, then it is Iτ-Cauchy.

Proof. Let Iτ-lim sα = x0 and let U be an arbitrary τ−neighborhood of zero. Choose V,W ∈ Nsol such that
W +W ⊂ V ⊂ U. Since Iτ-lim sα = x0,we have

C = {α ∈ D : sα − x0 <W} ∈ I.

Then for any α, β ∈ D \ C,

sα − sβ = sα − x0 + x0 − sβ ∈W +W ⊂ V ⊂ U.

Hence it follows that{
α ∈ D : sα − sβ < U

}
⊂ C

where β ∈ D \ C is fixed. This shows the existence of β ∈ D for which{
α ∈ D : sα − sβ < U

}
∈ I.

As this holds for each τ-neighborhood U of zero, {sα : α ∈ D} is Iτ-Cauchy.

Theorem 3.10. For a net {sα : α ∈ D} in a locally solid Riesz space L, the following are equivalent:
(1) {sα : α ∈ D} is an Iτ-Cauchy net.
(2) For every τ-neighborhood U of zero, there exists A ∈ I such that β, α < A implies that sβ − sα ∈ U.
(3) For every τ-neighborhood U of zero, {β ∈ D : Eβ(U) < I} ∈ I where Eβ(U) = {α ∈ D : sα − sβ < U}.

Proof. (1) =⇒ (2) Let {sα : α ∈ D} be an Iτ-Cauchy net and let U be any τ-neighborhood of zero. Choose
V,W ∈ Nsol such that W +W ⊂ V ⊂ U. There exists a β ∈ D such that {α ∈ D : sα − sβ < W} ∈ I. Then
{α ∈ D : sα − sβ ∈ W} ∈ F(I). Write A = {α ∈ D : sα − sβ < W}. Clearly A ∈ I and γ, α < A implies that
sγ − sβ ∈W and sα − sβ ∈W and hence sγ − sα ∈W +W ⊂ V ⊂ U.

(2)⇒ (3) Let U be any τ-neighborhood of zero. By (2) there exists an A ∈ I such that ν, α < A implies
sν − sα ∈ U. We shall show that

{
β ∈ D : Eβ (U) < I

}
⊂ A. Let β ∈ D be such that Eβ (U) < I. If possible let

β < A. Since A ∈ I but Eβ (U) < I, so Eβ (U) is not a subset of A. Take α ∈ Eβ (U) \ A. Then sα − sβ < U by the
definition of Eβ (U) . But α, β < A implies sα − sβ ∈ U, a contradiction. This proves (3).

(3)⇒ (1) Let U be any τ-neighborhood of zero. By (3)
{
β ∈ D : Eβ (U) < I

}
∈ I. Then

{
β ∈ D : Eβ (U) ∈ I

}
∈

F(I). Since ϕ < F(I), so
{
β ∈ D : Eβ (U) ∈ I

}
, ϕ. Choose β0 ∈

{
β ∈ D : Eβ (U) ∈ I

}
. Then β0 ∈ D is such that

Eβ0 (U) =
{
α ∈ D : sα − sβ0 < U

}
∈ I. This proves (1).
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Definition 3.11. A point y ∈ L is called an I-cluster point of a net {sα : α ∈ D} if for any τ-neighborhood U of
zero,

{
α ∈ D : sα − y ∈ U

}
< I.

Theorem 3.12. If an Iτ-Cauchy net {sα : α ∈ D} in a locally solid Riesz space (L, τ) has an I-cluster point x0, then
{sα : α ∈ D} is Iτ-convergent to x0.

Proof. Let U be any τ-neighborhood of zero. Choose V,W ∈ Nsol such that W + W ⊂ V ⊂ U. Let
B = {α ∈ D : sα − x0 ∈W} . Since x0 is an I-cluster point of {sα : α ∈ D} so B < I. Again from the Iτ-Cauchy
condition of {sα : α ∈ D} we can find A ∈ I such that ν, α < A implies sν − sα ∈ W (by Theorem 3.6). Clearly
B ∩ Ac , ϕ for otherwise B ⊂ A and so B ∈ I. Choose β ∈ B ∩ Ac. Then sβ − x0 ∈ W. Now α ∈ Ac implies
sα − sβ ∈W and so

sα − x0 = sα − sβ + sβ − x0 ∈W +W ⊂ V ⊂ U.

This shows that Ac ⊂ {α ∈ D : sα − x0 ∈ U} . Since Ac ∈ F(I), {α ∈ D : sα − x0 ∈ U} ∈ F(I) which implies that
{sα : α ∈ D} is Iτ-convergent to x0.
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