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Abstract. In this paper we consider the notion of 7*-uniform equal convergence introduced by Das, Dutta
and Pal [15] and two related notions of convergence, namely, 7*-uniform discrete and 7 *-strong uniform
equal convergence. We then investigate some lattice properties of @ 74, "~ and ®7 =", the classes of all
functions defined on a non-empty set X, which are J*-uniform equal limits, 7*-uniform discrete limits and
I*-strong uniform equal limits of sequences of functions belonging to a class of functions ® respectively.

1. Introduction

The concept of convergence of a sequence of real numbers had been extended to statistical convergence
independently by Fast [17], Steinhaus [30] and Schoenberg [29]. A lot of developments have been made
on this interesting notion of convergence and related areas after the pioneering works of Salat [28] and
Fridy [18]. The concept of J-convergence of real sequences was introduced by Kostyrko et. al.[20] as a
generalization of statistical convergence using the notion of ideals. In [20], the concept of 7*-convergence
was also introduced and a detailed study was carried out to explore its relation with 7-convergence. For the
last ten years several works have been done on 7-convergence (see for example [10-13, 22-24]). Recently
some significant investigations have been done on sequences of real functions by using the idea of statistical
and J-convergence (see [2, 5, 6, 15, 21, 25]).

On the other hand in [8], Csaszér and Laczkovich introduced two new types of convergence of sequences
of real valued functions under the name of Equal convergence and Discrete convergence(see also [7, 9]) and
studied the lattice properties of these classes of functions. Later Bukovska [3] also studied equal convergence
under the name of Quasi-normal convergence. In [26], Papanastassiou defined and studied the notions
of uniform equal convergence, uniform discrete convergence and strong uniform equal convergence for
sequences of real valued functions. Later Das and Papanastassiou [16] studied several properties of these
classes of functions, in particular lattice properties following the line of investigation of [8]. Very recently
the above notion of equal convergence was generalized using ideals and the notion of 7*-uniform equal
convergence of sequences of real valued functions was introduced by Das, Dutta and Pal [15].
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In the present paper we consider the notion of 7*-uniform equal convergence and introduce two related
notions of convergence, namely, 7*-uniform discrete convergence and 7 *-strong uniform equal convergence
which is stronger than 7*-uniform equal convergence for sequence of real valued functions. We then
investigate some lattice properties of these classes of functions mainly following the line of investigation of
[8] and [16].

2. Preliminaries

Throughout the paper N will denote the set of all positive integers. A family 7 c 2¥ of subsets of a
non-empty set Y is said to be an ideal in Y if ({)A, B € 1 implies AU B € 1, (ii))A € 1,B C A implies B € 7,
while an admissible ideal 7 of Y further satisfies {x} € 1 for each x € Y. If 1 is a non-trivial proper ideal in
Y (ie. Y ¢ 1,1 # {0}), then the family of sets F(J) = {M C Y : thereexists Ac 7 : M =Y\ A}isafilterin Y.
It is called the filter associated with the ideal 7.

Recall that a sequence {x,},en of real numbers is said to be 7-convergent to x € R if for each ¢ > 0 the
set A(e) = {n € N : |x, — x| > ¢} € 1 [20]. The sequence {x,},en is said to be I*-convergent to x € R if there
isasetM e F(Z), M = {m < myp < .. < my < ..} such that %i_{gxmk = x [20]. A sequence {xy},en Of real

numbers is said to be 7-divergent to co or —co if for any positive real number G, {n € N : x,, < G} € T or
{n € N:x, > -G} € 7 [24] (though in [24] the terms J-convergent to +oco and J-convergent to —co were
used).

We now recall the following types of convergence introduced in [8] which we generalized using the
notion of ideals in [15]. Let X be a non-empty setand let f, f,, n = 1,2, 3, ... be real valued functions defined
on X. f is called the discrete limit of the sequence {f,},en if for every x € X, there exists 19 = ny(x) such that
f(x) = fu(x) for n > ng. The terminology is motivated by the fact that this condition means precisely the
convergence of the sequence {f,(x)}en to f(x) with respect to the discrete topology of the real line. f is said
to be the equal limit of the sequence {f,},en if there exists a sequence of positive numbers {¢,},en tending
to zero such that for every x € X, there exists 19 = ny(x) with |f,,(x) — f(x)| < &, for n > ny.

We say that f is the T-equal limit of the sequence {f,}.en if there exists a sequence {¢,},en Of positive
reals with 7-lime, = 0 such that for any x € X, the set {n € N : |f,(x) — f(x)| > &,} € 1. f is said to be the

I”-equal limit of {f,},en if there exists a set M = {m; <my < ... <my < ...} € F(J) such that for all x € X, f(x)
is the equal limit of the subsequence {f;, (X)}en-

We also recall the following ideas of convergence of a sequence of functions from [2]. A sequence {f,}neN
of functions is said to be J-pointwise convergent to f if for all x € X the sequence {f,(x)},en is Z-convergent

to f(x) and in this case we write f, ER f. The sequence {f,},en is said to be 7-uniformly convergent to f if
for any ¢ > 0 there exists A € 7 such that for all n € A° and for all x € X, |f,(x) — f(x)| < €. f is said to be the
J*-uniform limit of {f,},en if there exists a set M = {my < myp < ... < my < ...} € F(Z) such that for all x € X,
f(x) is the uniform limit of the subsequence {f,,, (X)}xen.

3. Main results
We first recall the following definition from the recent work of Das, Dutta and Pal [15].

Definition 3.1. {f,},en is said to be I*-uniformly equally convergent to f if there exists a sequence {e,}en Of
positive reals with lim ¢, = 0, a set M = M({e,}) € F(Z) and k = k({e,}) € N such that |[{n € M : |f,(x) = f(x)| >

en}l is at most k = k({e,}) for all x € X. In this case we write f, Lo, f.

Clearly 7*-equal convergence is weaker than J*-uniform equal convergence which is again weaker than
I*-uniform convergence.
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Example 3.2. Let 7 be an admissible ideal of N and I # I ;,, the ideal of all finite subsets of N. Then I
must contain an infinite set A. Take a pairwise disjoint family {A,},en\a Of non-empty subsets of R. Let
{fu}nen be the sequence of functions on R defined by

fn Xy, foralln e N\ A
1foralln € A.

Now clearly sup|f,(x)| = 1 for all n and so {f,}sen cannot converge I*-uniformly to the constant function
xeR
f = 0. But since for any sequence {¢,},en of positive reals with lim ¢, = 0, the set {n € N\ A : f,(x) > €}
n
has cardinality at most 1 for all x € R, so {f,}sen converges J*-uniformly equally to f = 0. Clearly {f,}nen
does not converge uniformly equally to f = 0.

Example 3.3. Consider the intervals of the form [m, m + %], j=1,2,..,m—1for each m € N and {fi};en be
the enumeration of the characteristic functions of these intervals. Let A € 7. Then M = N\ A € F(J) and so
M must be infinite (since 7 is an admissible ideal). Let M = {n; < n; < n3 < ...}. Now consider the sequence
{gx}ken of functions on IR

lforallke A
fiforallieN.

Ik
In;

It is now easy to see that {gi}ren converges 7 -equally to zero function. Butif lim ¢, = 0 for a given sequence
n

{entnen, then [{n € N \ A : |g,(x)| > €,]}| = x — 1 for each x € IN which increases with x and also these n’s
overlap the whole set N \ A as x runs over IN. Hence {gx}xem cannot converge 7 -uniformly equally to f = 0.

We first observe the following equivalent condition for 7*-uniform equal convergence.
Theorem 3.4. Let f,, f : X - R, n € IN. Then f, Lo, f if and only if there exists a sequence {p,},en Of positive
integers I-divergent to co such that

pulf = f1 225 0.

Proof. Suppose that f, Lo, f. Then there exists a sequence {¢,},en Of positive reals with lim ¢, = 0, a set
n

M = M({e,}) € F(Z) and k = k({€,,}) € N such that
{neM:|fu(x)— f(x)| = e}l <k forallx € X. (1)

Now, define a sequence {p,},en as

pu = [Vlg_n] , neM
=1 ,n¢M

Obviously {p,}nen is an Z-divergent to co. Hence from (1)

{n e M: pulfu(x) — f(x)| = Veu}l < kforallx € X

which implies p,|f, — fl =0,

Conversely, if p,|f, — fI L2, 0 where {pnlnen is a sequence of positive integers 7-divergent to co, then
there exists a sequence {A,},en of positive reals with lim A, = 0and M = M({A,}) € F(Z) and k = k({A,,}) € N
such that [{n € M : py|fu(x) — f(x)| = A,}| < k for all x € X. Define a sequence {0, },en by

0, = ﬁ , neM
Pn
1
- ,n¢M
n
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Then lim 6, = 0 and |[{n € M : |f,,(x) — f(x)| = 0,}] < k for all x € X. This completes the proof. [

Lemma3.5. Let f, : X > R, ne N. If f, T—ue 0, then f2 Ioue

Proof. By definition, there exist a sequence {¢,},en of positive reals with h,lqn e, =0,asetM = M({e,}) € F(X)
and k = k({e,,}) € N such that
l{n € M :|fu(x)| = eq}l < kforall x € X.
Then we have
lin e M: |f(x)? > e2}| < kfor all x € X.
and so

lfn € M |f3(x)l = 7}l < kforall x € X.

Therefore f2 225 0. 0O

Lemma 3.6. Let f,, f : X - R, n € N. If f is bounded and f, T—ue £, then f,.f T'—ue 3

Proof. Let B be a positive real number such that |f(x)| < B for all x € X. Since f, Lo, f, there exist a
sequence {e,},en Of positive reals with lim €, = 0, a set M = M({e,}) € F(X) and k = k({e,}) € N such that

l{neM:|fu(x) = f(x)| = ey}l <k forall x € X.
Since [f @) = FE = [(f-f)X) — 1)), we have
fneM:|(fu./)®) - fP)| = enB) € {neM:|f@)fu(x) - f(x)| = &,.B}
C {neM:|fux) - f(X)| = &)
for each x € X. Therefore |[{n € M : |(f,..f)(x) — f2(x)| > &,.B}| < k for all x € X. This proves the result. [

I*—ue

Theorem 3.7. If f, Lo, fand g, Lo, g then f,.9, —— f.g, where f and g are bounded.

I*—ue

Proof. Using Lemma 3.5, Lemma 3.6 and writing f,.g, = we can deduce that f,.9, —

fg. O

Let @ be an arbitrary class of functions defined on a non-empty set X. We denote by @7 ~*, the class of
all functions defined on X, which are 7*-uniform equal limits of sequences of functions belonging to ®. For
any class of functions ® on X we first recall the following definitions from [9].

(fn+9n)2_(ﬁz_!]n)2
4

Definition 3.8. (1) @ is called a lattice if ® contains all constants and f,g € ® implies max(f,g) € ® and
min(f, g) € ®.

(b) @ is called a translation lattice if it is a lattice and f € ®,c € R implies f + c € D.

(c) @ is called a congruence lattice if it is a translation lattice and f € @ implies —f € ©.

(d) @ is called a weakly affine lattice if it is a congruence lattice and there is a set C C (0, o) such that C is
not bounded and f € @, ¢ € C implies cf € .

(e) D is called an affine lattice if it is a congruence lattice and f € @, c € R implies cf € ®.

(f) @ is called a subtractive lattice if it is a lattice and f, g € ® implies f — g € D.

(g) @ is called an ordinary class if it is a subtractive lattice, f, g € ® implies f.g € P and f € O, f(x) # 0,
forall x € X implies 1/f € @.

Theorem 3.9. Let @ be a class of functions on X. If @ is a lattice, a translation lattice, a congruence lattice, a
weakly affine lattice, an affine lattice or a subtractive lattice, then so is ®F =, Further if f € ®F = is bounded, then
f2 c q)I*—ue.
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Proof. Let @ be a lattice. Since ® contains the constant functions, @’ = contains the constant functions. Let

fu Lo, f. Then there exist a sequence {¢,},en of positive reals with hm e, =0,asetM = M({e,,}) € F(Z) and

k = k({ex}) € N such that |{n € M : |f,(x) — f(x)| > €,}] < k for all x € X. Now ||fn I(x) — Ifl(x)( < |fn(x) f(x)).
Therefore |{n € M : [|(x) - |f| X)| > e}l < kfor cachx € Xie. [f,] =25 |fl.

Next we show that if f, Lo, £ gn Lo, gand a,B € R, then af, + g, Lo, af + pg. Indeed, by
definition there exist My, M, € F(I), lim ¢, = 0, lim A, = 0 and ny = n¢({e,}), ny; = ny({An}) € IN such that

l{n € My = |fu(x) = f(O] = en}l < nf
and
[{n € My : |gu(x) — g(x)] = Au}| < 1y
Let us assume that 6,, = max{2|ale,, 2|f|A,} and k = nf + n,;. Hence we have
l{n € My O M, : la(fu = F)(x) + p(gn = 9)] 2 Bull < k
where My N M, € F(I) and lim 0, = 0. Hence af, + g Lo, af +pg.

Next observe that if f,g € X%, f, Lo, fand g, Lo g, then, in view of above,

fn+gn ‘fn_gnl I"—ue f+g |f_g| —
7t 7ty =max(fg)

which implies that max(f, g) € ®* . Similarly we can show that min(f, g) € ®¥ ~*. Thus ®’ "~ is a lattice.
The proofs of the remaining assertions are straightforward. The last assertion follows from Lemma 3.6. [J

Theorem 3.10. Let ® be an ordinary class of functions on X. Let f € ®F =" be bounded and f(x) # 0 for each x € X.
If Jl[ is bounded on X, then Jl{ € @li-ue,

Proof. Assume that % is bounded on X. Then there exists a A > 0 be such that f?(x) > A for each x € X. Since

f € @7 and f is bounded then f? € @'~ Hence there exist a sequence {f,},en of D, a set M € F(I) and
k € N such that |{n € M : |f,(x) — f2(x)| > 5 | < kforall x € X. Let g,(x) = max{f,(x), %} for x € X. Then
gn € ® for each n € IN. Therefore

€ M: gu(x) = fu(x),1g(x) = ()] = L} <

and
fneM:g,(x) =1, 1g.(x) - f2(x)| > L}

= eMig =2 00~ 002 )

Ulne M : gu(x) = %, — gn(x) +f2(x) > %}

S {”EMifz(x)S%—%}U{HEM:fZ(x)an(xH%}
< {nEM:fz(x)<%}U{neM:fz(x)zfn(xH%}

Therefore |{n € M : gu(x) = 1, |ga(x) — f2(x)| = 5}| <K’ + k = ky(say) where K’ = [1] + 1. Hence
(1€ M:1g,() = P12 1 = b1 € M 3,0 = £, 1920) - 01 = )

Ul & M g(0) = 11900~ 1001 2 ).
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This implies that |{n € M : |g,,(x) — f(x)| > N<ki+k=k (say). Therefore

T P R FP@-gl 1 1
I{neM.Ign(x) fz(x)lan.n.A}l = |lneM: I =M. }|
< e M: g - f001 2 %n
< k.

Hence f2e @ andso f.f2=fled/ . [
We now introduce the following notion.

Definition 3.11. {f,},en is said to be I -uniformly discretely convergent to f if there exist a set M € F(J) and a
natural number k € IN such that |{n € M : |f,(x) — f(x)| > 0}] is at most k for all x € X. In this case we write
I~ud
fo — f.
We denote by ' the class of all functions defined on X, which are 7*-uniform discrete limits of
sequences of functions belonging to ®.
Now, we study some properties of the class ® .

Theorem 3.12. Let @ be a class of functions on X. If @ is a lattice, a translation lattice, a congruence lattice, a weakly
affine lattice, an affine lattice or a subtractive lattice, then so is ®F "4,

Proof. This theorem readily follows from Definition 3.11. [J

Theorem 3.13. Let ® be an ordinary class of functions on X. Then f,g € ®F' " implies f.g € ®F . Also if
f e @~ is such that f(x) # 0 for each x € X and 1 is bounded on X, then ¢ € &7,

Proof. Let f,g € &'~ Then there exist sequences {fulunen and {gu}nen in @ such that f, Lo, f and

In Lo, g. Then from definition, we can prove that f,.g, Lo f.g.

Let f € @' be such that f(x) # 0 for each x € X and is bounded on X. Choose u > 0 such that

fz(x) > u > Oforeachx € X. Let {f,}nen be a sequence in ®@ such that f, EimlN f. Since @ is an ordinary class,

f? € @ for each n € N. Let {A,},en be a sequence of positive reals converging to zero and g, = max{f2, A
Then g,, € ®. Since f, Lo, f, then by definition
[{neM: fu(x) # f(x)}| <kforallx € X
which implies that
[{n € M : g,(x) # max{f*(x), A }}| <k forallx € X
ie.,
1 ” 1
gn(x) ~ max{f2(x), Ay}
Now since lirrln An = 0, there exists a k¥’ € IN such that A, < y for all n € M such that n > k’. Therefore (2)

{neM: | <kforall x € X. (2)

becomes

{neM: }|<k+k’foreachx€X

(x) # fz(x
Hence f~2 € ® 7" and consequently f.f 2= fle ®/ . g

Finally we introduce the following notion of convergence for a sequence of real valued functions.
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Definition 3.14. {f,},en is said to be I-strongly uniformly equally convergent to f if there exist a sequence
{enlnen of positive reals with Zen < o0, aset M = M({e,}) € F(Z) and k = k({e,}) € IN such that |[{n € M :

n=1
[fu(x) = f(x)] = &,}] is at most k = k({e,,}) for all x € X. In this case we write f, Losue, f.
We denote by @7 =, the class of all 7*-strong uniform equal limits of a class of functions ® defined on X.

Example 3.15. Let 1 be a non-trivial proper admissible ideal. So there exists an infinite set M € F(1). Let
{fu}new be the sequence of functions on R defined by

1
fulx) = Z,neM
= 0,ne¢M
forall x € X. Thenfn—”e>0butfnj 5 0.

From the definition and the above example it follows that 7*-strong uniform equal convergence is
stronger than J*-uniform equal convergence. As in the case of 7*-uniform equal convergence we can easily
prove the following results.

I*—sue

Lemma 3.16. Let f,: X > R, n € N. If f, —— 0, then f> —— Liosue

Lemma 3.17. Let f,, f : X = R, n € IN. If f is bounded and f, Lo, f, then f,.f Lo, 12

—sue

Theorem 3.18. If f, Lote, fand g, Lo, g then f,.g, Lo, f.g, where f and g are bounded.

Theorem 3.19. Let @ be a class of functions on X. If @ is a lattice, a translation lattice, a congruence lattice, a weakly
affine lattice, an affine lattice or a subtractive lattice, then so is ®F ~su,

Proof. Let @ be a lattice. Since @ contains the constant functions, @ = also contains the constant functions.

—sue

Let f, Loy f. Then there exist a sequence {¢,},eN of positive reals with Zen < oo,asetM = M({e,}) € F(T)

n=1
and k = k({e,,}) € N such that [{n € M : |f,(x)— f(x)| = €,}| < kforallx € X. Now “f,,l(x)—lfl(x)) < Ifn(x)—f(x)).
Therefore |{n € M : “fnl(x) L£I( x)| > gyl < kforeachx € Xie. |fy| — L sue, If].

Lo i gn fosne gandaﬁe]R thenafn+ﬁgnﬂ>af+ﬁg To see this, by

Now we show that if f,

definition there exist My, M, € F(I), Zen < oo, ZAn < coand 1y = ns({en), 1y = ng({Aa)) € N such that
n=1 n=1

l{n € My = |fu(x) = (O] = en}l < nf
and

[{n € My :|gn(x) — g(x)] = Ay}l < 1y
Let us choose 0, = max{2|ale,, 2|f|A,} and k = nf + n,. Then we have

l{n € Mg O M, : |a(fu = F)x) + B(gn — )] 2 O} < k
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where
ZQ” = Zmax{ZIalen,Zlﬁl/\n}
n=1 n=1
< Z(2|alsn+2|ﬁ|)\n)
n=1
< o0

and My N M, € F(I). Hence af, + fgx Lo, af +pg.

“—sue

Therefore f, g € ®L =, f, Lo, fand g, SN g implies that

fn‘*'yn |fn_gn| 1" —sue f+.q |f_.q| —
5+ 7+ =max(f,g)

ie. max(f,g) € @', Similarly, min(f,g) € O =". Thus ®L =" is a lattice. It is easy to check the
remaining assertions. [J
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