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Abstract. In this paper we consider the notion of I∗-uniform equal convergence introduced by Das, Dutta
and Pal [15] and two related notions of convergence, namely, I∗-uniform discrete and I∗-strong uniform
equal convergence. We then investigate some lattice properties ofΦI∗−ue,ΦI∗−ud andΦI∗−sue, the classes of all
functions defined on a non-empty set X, which are I∗-uniform equal limits, I∗-uniform discrete limits and
I∗-strong uniform equal limits of sequences of functions belonging to a class of functions Φ respectively.

1. Introduction

The concept of convergence of a sequence of real numbers had been extended to statistical convergence
independently by Fast [17], Steinhaus [30] and Schoenberg [29]. A lot of developments have been made
on this interesting notion of convergence and related areas after the pioneering works of Šalát [28] and
Fridy [18]. The concept of I-convergence of real sequences was introduced by Kostyrko et. al.[20] as a
generalization of statistical convergence using the notion of ideals. In [20], the concept of I∗-convergence
was also introduced and a detailed study was carried out to explore its relation withI-convergence. For the
last ten years several works have been done on I-convergence (see for example [10–13, 22–24]). Recently
some significant investigations have been done on sequences of real functions by using the idea of statistical
and I-convergence (see [2, 5, 6, 15, 21, 25]).

On the other hand in [8], Császár and Laczkovich introduced two new types of convergence of sequences
of real valued functions under the name of Equal convergence and Discrete convergence(see also [7, 9]) and
studied the lattice properties of these classes of functions. Later Bukovská [3] also studied equal convergence
under the name of Quasi-normal convergence. In [26], Papanastassiou defined and studied the notions
of uniform equal convergence, uniform discrete convergence and strong uniform equal convergence for
sequences of real valued functions. Later Das and Papanastassiou [16] studied several properties of these
classes of functions, in particular lattice properties following the line of investigation of [8]. Very recently
the above notion of equal convergence was generalized using ideals and the notion of I∗-uniform equal
convergence of sequences of real valued functions was introduced by Das, Dutta and Pal [15].
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In the present paper we consider the notion of I∗-uniform equal convergence and introduce two related
notions of convergence, namely,I∗-uniform discrete convergence andI∗-strong uniform equal convergence
which is stronger than I∗-uniform equal convergence for sequence of real valued functions. We then
investigate some lattice properties of these classes of functions mainly following the line of investigation of
[8] and [16].

2. Preliminaries

Throughout the paper N will denote the set of all positive integers. A family I ⊂ 2Y of subsets of a
non-empty set Y is said to be an ideal in Y if (i)A,B ∈ I implies A ∪ B ∈ I; (ii)A ∈ I,B ⊂ A implies B ∈ I,
while an admissible ideal I of Y further satisfies {x} ∈ I for each x ∈ Y. If I is a non-trivial proper ideal in
Y (i.e. Y < I,I , {∅}), then the family of sets F(I) = {M ⊂ Y : there exists A ∈ I : M = Y \ A} is a filter in Y.
It is called the filter associated with the ideal I.

Recall that a sequence {xn}n∈N of real numbers is said to be I-convergent to x ∈ R if for each ε > 0 the
set A(ε) = {n ∈ N : |xn − x| ≥ ε} ∈ I [20]. The sequence {xn}n∈N is said to be I∗-convergent to x ∈ R if there
is a set M ∈ F(I), M = {m1 < m2 < ... < mk < ...} such that lim

k→∞
xmk = x [20]. A sequence {xn}n∈N of real

numbers is said to be I-divergent to ∞ or −∞ if for any positive real number G, {n ∈ N : xn ≤ G} ∈ I or
{n ∈ N : xn ≥ −G} ∈ I [24] (though in [24] the terms I-convergent to +∞ and I-convergent to −∞ were
used).

We now recall the following types of convergence introduced in [8] which we generalized using the
notion of ideals in [15]. Let X be a non-empty set and let f , fn, n = 1, 2, 3, ... be real valued functions defined
on X. f is called the discrete limit of the sequence { fn}n∈N if for every x ∈ X, there exists n0 = n0(x) such that
f (x) = fn(x) for n ≥ n0. The terminology is motivated by the fact that this condition means precisely the
convergence of the sequence { fn(x)}n∈N to f (x) with respect to the discrete topology of the real line. f is said
to be the equal limit of the sequence { fn}n∈N if there exists a sequence of positive numbers {εn}n∈N tending
to zero such that for every x ∈ X, there exists n0 = n0(x) with | fn(x) − f (x)| < εn for n ≥ n0.

We say that f is the I-equal limit of the sequence { fn}n∈N if there exists a sequence {εn}n∈N of positive
reals with I- lim

n→∞
εn = 0 such that for any x ∈ X, the set {n ∈ N : | fn(x) − f (x)| ≥ εn} ∈ I. f is said to be the

I∗-equal limit of { fn}n∈N if there exists a set M = {m1 < m2 < ... < mk < ...} ∈ F(I) such that for all x ∈ X, f (x)
is the equal limit of the subsequence { fmk (x)}k∈N.

We also recall the following ideas of convergence of a sequence of functions from [2]. A sequence { fn}n∈N
of functions is said to be I-pointwise convergent to f if for all x ∈ X the sequence { fn(x)}n∈N is I-convergent

to f (x) and in this case we write fn
I−→ f . The sequence { fn}n∈N is said to be I-uniformly convergent to f if

for any ε > 0 there exists A ∈ I such that for all n ∈ Ac and for all x ∈ X, | fn(x) − f (x)| < ε. f is said to be the
I∗-uniform limit of { fn}n∈N if there exists a set M = {m1 < m2 < ... < mk < ...} ∈ F(I) such that for all x ∈ X,
f (x) is the uniform limit of the subsequence { fmk (x)}k∈N.

3. Main results

We first recall the following definition from the recent work of Das, Dutta and Pal [15].

Definition 3.1. { fn}n∈N is said to be I∗-uniformly equally convergent to f if there exists a sequence {εn}n∈N of
positive reals with lim

n
εn = 0, a set M =M({εn}) ∈ F(I) and k = k({εn}) ∈N such that |{n ∈M : | fn(x)− f (x)| ≥

εn}| is at most k = k({εn}) for all x ∈ X. In this case we write fn
I∗−ue−−−−→ f .

Clearly I∗-equal convergence is weaker than I∗-uniform equal convergence which is again weaker than
I∗-uniform convergence.
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Example 3.2. Let I be an admissible ideal of N and I , I f in, the ideal of all finite subsets of N. Then I
must contain an infinite set A. Take a pairwise disjoint family {An}n∈N\A of non-empty subsets of R. Let
{ fn}n∈N be the sequence of functions on R defined by

fn = χAn
for all n ∈N \ A

= 1 for all n ∈ A.

Now clearly sup
x∈R
| fn(x)| = 1 for all n and so { fn}n∈N cannot converge I∗-uniformly to the constant function

f ≡ 0. But since for any sequence {εn}n∈N of positive reals with lim
n
εn = 0, the set {n ∈ N \ A : fn(x) ≥ εn}

has cardinality at most 1 for all x ∈ R, so { fn}n∈N converges I∗-uniformly equally to f ≡ 0. Clearly { fn}n∈N
does not converge uniformly equally to f ≡ 0.

Example 3.3. Consider the intervals of the form [m,m + j
m ], j = 1, 2, ...,m − 1 for each m ∈ N and { fi}i∈N be

the enumeration of the characteristic functions of these intervals. Let A ∈ I. Then M =N \A ∈ F(I) and so
M must be infinite (since I is an admissible ideal). Let M = {n1 < n2 < n3 < ...}.Now consider the sequence
{1k}k∈N of functions on R

1k = 1 for all k ∈ A
1ni = fi for all i ∈N.

It is now easy to see that {1k}k∈N convergesI∗-equally to zero function. But if lim
n
εn = 0 for a given sequence

{εn}n∈N, then |{n ∈ N \ A : |1n(x)| ≥ εn|}| = x − 1 for each x ∈ N which increases with x and also these n′s
overlap the whole setN \A as x runs overN. Hence {1k}k∈M cannot converge I∗-uniformly equally to f ≡ 0.

We first observe the following equivalent condition for I∗-uniform equal convergence.

Theorem 3.4. Let fn, f : X→ R, n ∈ N. Then fn
I∗−ue−−−−→ f if and only if there exists a sequence {ρn}n∈N of positive

integers I-divergent to∞ such that

ρn| fn − f | I
∗−ue−−−−→ 0.

Proof. Suppose that fn
I∗−ue−−−−→ f . Then there exists a sequence {εn}n∈N of positive reals with lim

n
εn = 0, a set

M =M({εn}) ∈ F(I) and k = k({εn}) ∈N such that

|{n ∈M : | fn(x) − f (x)| ≥ εn}| ≤ k for all x ∈ X. (1)

Now, define a sequence {ρn}n∈N as

ρn =
[ 1√
εn

]
, n ∈M

= 1 , n <M.

Obviously {ρn}n∈N is an I-divergent to∞. Hence from (1)

|{n ∈M : ρn| fn(x) − f (x)| ≥
√
εn}| ≤ k for all x ∈ X

which implies ρn| fn − f | I
∗−ue−−−−→ 0.

Conversely, if ρn| fn − f | I
∗−ue−−−−→ 0 where {ρn}n∈N is a sequence of positive integers I-divergent to∞, then

there exists a sequence {λn}n∈N of positive reals with lim
n
λn = 0 and M =M({λn}) ∈ F(I) and k = k({λn}) ∈N

such that |{n ∈M : ρn| fn(x) − f (x)| ≥ λn}| ≤ k for all x ∈ X. Define a sequence {θn}n∈N by

θn =
λn

ρn
, n ∈M

=
1
n
, n <M.
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Then lim
n
θn = 0 and |{n ∈M : | fn(x) − f (x)| ≥ θn}| ≤ k for all x ∈ X. This completes the proof.

Lemma 3.5. Let fn : X→ R, n ∈N. If fn
I∗−ue−−−−→ 0, then f 2

n
I∗−ue−−−−→ 0.

Proof. By definition, there exist a sequence {εn}n∈N of positive reals with lim
n
εn = 0, a set M =M({εn}) ∈ F(I)

and k = k({εn}) ∈N such that

|{n ∈M : | fn(x)| ≥ εn}| ≤ k for all x ∈ X.

Then we have

|{n ∈M : | fn(x)|2 ≥ ε2
n}| ≤ k for all x ∈ X.

and so

|{n ∈M : | f 2
n (x)| ≥ ε2

n}| ≤ k for all x ∈ X.

Therefore f 2
n
I∗−ue−−−−→ 0.

Lemma 3.6. Let fn, f : X→ R, n ∈N. If f is bounded and fn
I∗−ue−−−−→ f , then fn. f

I∗−ue−−−−→ f 2.

Proof. Let B be a positive real number such that | f (x)| ≤ B for all x ∈ X. Since fn
I∗−ue−−−−→ f , there exist a

sequence {εn}n∈N of positive reals with lim
n
εn = 0, a set M =M({εn}) ∈ F(I) and k = k({εn}) ∈N such that

|{n ∈M : | fn(x) − f (x)| ≥ εn}| ≤ k for all x ∈ X.

Since | f (x)|| fn(x) − f (x)| ≥ |( fn. f )(x) − f 2(x)|, we have

{n ∈M : |( fn. f )(x) − f 2(x)| ≥ εn.B} ⊆ {n ∈M : | f (x)|| fn(x) − f (x)| ≥ εn.B}
⊆ {n ∈M : | fn(x) − f (x)| ≥ εn}

for each x ∈ X. Therefore |{n ∈M : |( fn. f )(x) − f 2(x)| ≥ εn.B}| ≤ k for all x ∈ X. This proves the result.

Theorem 3.7. If fn
I∗−ue−−−−→ f and 1n

I∗−ue−−−−→ 1 then fn.1n
I∗−ue−−−−→ f .1, where f and 1 are bounded.

Proof. Using Lemma 3.5, Lemma 3.6 and writing fn.1n =
( fn+1n)2−( fn−1n)2

4 we can deduce that fn.1n
I∗−ue−−−−→

f .1.

Let Φ be an arbitrary class of functions defined on a non-empty set X. We denote by ΦI
∗−ue, the class of

all functions defined on X, which are I∗-uniform equal limits of sequences of functions belonging toΦ. For
any class of functions Φ on X we first recall the following definitions from [9].

Definition 3.8. (a) Φ is called a lattice if Φ contains all constants and f , 1 ∈ Φ implies max( f , 1) ∈ Φ and
min( f , 1) ∈ Φ.

(b) Φ is called a translation lattice if it is a lattice and f ∈ Φ, c ∈ R implies f + c ∈ Φ.
(c) Φ is called a congruence lattice if it is a translation lattice and f ∈ Φ implies − f ∈ Φ.
(d) Φ is called a weakly affine lattice if it is a congruence lattice and there is a set C ⊂ (0,∞) such that C is

not bounded and f ∈ Φ, c ∈ C implies c f ∈ Φ.
(e) Φ is called an affine lattice if it is a congruence lattice and f ∈ Φ, c ∈ R implies c f ∈ Φ.
( f ) Φ is called a subtractive lattice if it is a lattice and f , 1 ∈ Φ implies f − 1 ∈ Φ.
(1) Φ is called an ordinary class if it is a subtractive lattice, f , 1 ∈ Φ implies f .1 ∈ Φ and f ∈ Φ , f (x) , 0,

for all x ∈ X implies 1/ f ∈ Φ.

Theorem 3.9. Let Φ be a class of functions on X. If Φ is a lattice, a translation lattice, a congruence lattice, a
weakly affine lattice, an affine lattice or a subtractive lattice, then so is ΦI∗−ue. Further if f ∈ ΦI∗−ue is bounded, then
f 2 ∈ ΦI∗−ue.
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Proof. LetΦ be a lattice. SinceΦ contains the constant functions, ΦI
∗−ue contains the constant functions. Let

fn
I∗−ue−−−−→ f . Then there exist a sequence {εn}n∈N of positive reals with lim

n
εn = 0, a set M =M({εn}) ∈ F(I) and

k = k({εn}) ∈ N such that |{n ∈ M : | fn(x) − f (x)| ≥ εn}| ≤ k for all x ∈ X. Now
∣∣∣| fn|(x) − | f |(x)

∣∣∣ ≤ ∣∣∣ fn(x) − f (x)
∣∣∣.

Therefore |{n ∈M :
∣∣∣| fn|(x) − | f |(x)

∣∣∣ ≥ εn}| ≤ k for each x ∈ X i.e. | fn| I
∗−ue−−−−→ | f |.

Next we show that if fn
I∗−ue−−−−→ f , 1n

I∗−ue−−−−→ 1 and α, β ∈ R, then α fn + β1n
I∗−ue−−−−→ α f + β1. Indeed, by

definition there exist M f ,M1 ∈ F(I), lim
n
εn = 0, lim

n
λn = 0 and n f = n f ({εn}), n1 = n1({λn}) ∈N such that

|{n ∈M f : | fn(x) − f (x)| ≥ εn}| ≤ n f

and

|{n ∈M1 : |1n(x) − 1(x)| ≥ λn}| ≤ n1.

Let us assume that θn = max{2|α|εn, 2|β|λn} and k = n f + n1. Hence we have

|{n ∈M f ∩M1 : |α( fn − f )(x) + β(1n − 1)(x)| ≥ θn}| ≤ k

where M f ∩M1 ∈ F(I) and lim
n
θn = 0. Hence α fn + β1n

I∗−ue−−−−→ α f + β1.

Next observe that if f , 1 ∈ ΦI∗−ue, fn
I∗−ue−−−−→ f and 1n

I∗−ue−−−−→ 1, then, in view of above,

fn+1n

2 +
| fn−1n |

2
I∗−ue−−−−→ f+1

2 +
| f−1|

2 = max( f , 1)

which implies that max( f , 1) ∈ ΦI∗−ue. Similarly we can show that min( f , 1) ∈ ΦI∗−ue. ThusΦI
∗−ue is a lattice.

The proofs of the remaining assertions are straightforward. The last assertion follows from Lemma 3.6.

Theorem 3.10. LetΦ be an ordinary class of functions on X. Let f ∈ ΦI∗−ue be bounded and f (x) , 0 for each x ∈ X.
If 1

f is bounded on X, then 1
f ∈ ΦI

∗−ue.

Proof. Assume that 1
f is bounded on X. Then there exists a λ > 0 be such that f 2(x) > λ for each x ∈ X. Since

f ∈ ΦI∗−ue and f is bounded then f 2 ∈ ΦI∗−ue. Hence there exist a sequence { fn}n∈N of Φ, a set M ∈ F(I) and
k ∈ N such that |{n ∈ M : | fn(x) − f 2(x)| ≥ 1

n3 }| ≤ k for all x ∈ X. Let 1n(x) = max{ fn(x), 1
n } for x ∈ X. Then

1n ∈ Φ for each n ∈N. Therefore

|{n ∈M : 1n(x) = fn(x), |1n(x) − f 2(x)| ≥ 1
n3 }| ≤ k

and
{n ∈M : 1n(x) = 1

n , |1n(x) − f 2(x)| ≥ 1
n3 }

= {n ∈M : 1n(x) =
1
n
, 1n(x) − f 2(x) ≥ 1

n3 }

∪{n ∈M : 1n(x) =
1
n
, − 1n(x) + f 2(x) ≥ 1

n3 }

⊆ {n ∈M : f 2(x) ≤ 1
n
− 1

n3 } ∪ {n ∈M : f 2(x) ≥ fn(x) +
1
n3 }

⊆ {n ∈M : f 2(x) <
1
n
} ∪ {n ∈M : f 2(x) ≥ fn(x) +

1
n3 }

Therefore |{n ∈M : 1n(x) = 1
n , |1n(x) − f 2(x)| ≥ 1

n3 }| ≤ k′ + k = k1(say) where k′ = [ 1
λ ] + 1. Hence

{n ∈M : |1n(x) − f 2(x)| ≥ 1
n3 } = {n ∈M : 1n(x) = fn(x), |1n(x) − f 2(x)| ≥ 1

n3 }

∪{n ∈M : 1n(x) =
1
n
, |1n(x) − f 2(x)| ≥ 1

n3 }.
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This implies that |{n ∈M : |1n(x) − f 2(x)| ≥ 1
n3 }| ≤ k1 + k = k2 (say). Therefore

|{n ∈M : | 1
1n(x)

− 1
f 2(x)

| ≥ 1
n3 .n.

1
λ
}| = |{n ∈M :

| f 2(x) − 1n(x)|
|1n(x)|| f 2(x)| ≥

1
n3 .n.

1
λ
}|

≤ |{n ∈M : |1n(x) − f 2(x)| ≥ 1
n3 }|

≤ k2.

Hence f−2 ∈ ΦI∗−ue and so f . f−2 = f−1 ∈ ΦI∗−ue.

We now introduce the following notion.

Definition 3.11. { fn}n∈N is said to be I∗-uniformly discretely convergent to f if there exist a set M ∈ F(I) and a
natural number k ∈ N such that |{n ∈ M : | fn(x) − f (x)| > 0}| is at most k for all x ∈ X. In this case we write

fn
I∗−ud−−−−→ f .

We denote by ΦI
∗−ud, the class of all functions defined on X, which are I∗-uniform discrete limits of

sequences of functions belonging to Φ.
Now, we study some properties of the class ΦI

∗−ud.

Theorem 3.12. LetΦ be a class of functions on X. IfΦ is a lattice, a translation lattice, a congruence lattice, a weakly
affine lattice, an affine lattice or a subtractive lattice, then so is ΦI∗−ud.

Proof. This theorem readily follows from Definition 3.11.

Theorem 3.13. Let Φ be an ordinary class of functions on X. Then f , 1 ∈ ΦI∗−ud implies f .1 ∈ ΦI∗−ud. Also if
f ∈ ΦI∗−ud is such that f (x) , 0 for each x ∈ X and 1

f is bounded on X, then 1
f ∈ ΦI

∗−ud.

Proof. Let f , 1 ∈ ΦI∗−ud. Then there exist sequences { fn}n∈N and {1n}n∈N in Φ such that fn
I∗−ud−−−−→ f and

1n
I∗−ud−−−−→ 1. Then from definition, we can prove that fn.1n

I∗−ud−−−−→ f .1.
Let f ∈ ΦI∗−ud be such that f (x) , 0 for each x ∈ X and 1

f is bounded on X. Choose µ > 0 such that

f 2(x) > µ > 0 for each x ∈ X. Let { fn}n∈N be a sequence inΦ such that fn
I∗−ud−−−−→ f . SinceΦ is an ordinary class,

f 2
n ∈ Φ for each n ∈ N. Let {λn}n∈N be a sequence of positive reals converging to zero and 1n = max{ f 2

n , λn}.
Then 1n ∈ Φ. Since fn

I∗−ud−−−−→ f , then by definition

|{n ∈M : fn(x) , f (x)}| ≤ k for all x ∈ X

which implies that

|{n ∈M : 1n(x) , max{ f 2(x), λn}}| ≤ k for all x ∈ X

i.e.,

|{n ∈M :
1
1n(x)

,
1

max{ f 2(x), λn}
}| ≤ k for all x ∈ X. (2)

Now since lim
n
λn = 0, there exists a k′ ∈ N such that λn < µ for all n ∈ M such that n ≥ k′. Therefore (2)

becomes

|{n ∈M : 1
1n(x) ,

1
f 2(x) }| ≤ k + k′ for each x ∈ X.

Hence f−2 ∈ ΦI∗−ud and consequently f . f−2 = f−1 ∈ ΦI∗−ud.

Finally we introduce the following notion of convergence for a sequence of real valued functions.
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Definition 3.14. { fn}n∈N is said to be I∗-strongly uniformly equally convergent to f if there exist a sequence

{εn}n∈N of positive reals with
∞∑

n=1

εn < ∞, a set M = M({εn}) ∈ F(I) and k = k({εn}) ∈ N such that |{n ∈ M :

| fn(x) − f (x)| ≥ εn}| is at most k = k({εn}) for all x ∈ X. In this case we write fn
I∗−sue−−−−→ f .

We denote byΦI
∗−sue, the class of allI∗-strong uniform equal limits of a class of functionsΦ defined on X.

Example 3.15. Let I be a non-trivial proper admissible ideal. So there exists an infinite set M ∈ F(I). Let
{ fn}n∈N be the sequence of functions on R defined by

fn(x) =
1
n
, n ∈M

= 0, n <M

for all x ∈ X. Then fn
I∗−ue−−−−→ 0 but fn

I∗−sue
9 0.

From the definition and the above example it follows that I∗-strong uniform equal convergence is
stronger than I∗-uniform equal convergence. As in the case of I∗-uniform equal convergence we can easily
prove the following results.

Lemma 3.16. Let fn : X→ R, n ∈N. If fn
I∗−sue−−−−→ 0, then f 2

n
I∗−sue−−−−→ 0.

Lemma 3.17. Let fn, f : X→ R, n ∈N. If f is bounded and fn
I∗−sue−−−−→ f , then fn. f

I∗−sue−−−−→ f 2.

Theorem 3.18. If fn
I∗−sue−−−−→ f and 1n

I∗−sue−−−−→ 1 then fn.1n
I∗−sue−−−−→ f .1, where f and 1 are bounded.

Theorem 3.19. LetΦ be a class of functions on X. IfΦ is a lattice, a translation lattice, a congruence lattice, a weakly
affine lattice, an affine lattice or a subtractive lattice, then so is ΦI∗−sue.

Proof. LetΦ be a lattice. SinceΦ contains the constant functions,ΦI
∗−ue also contains the constant functions.

Let fn
I∗−sue−−−−→ f . Then there exist a sequence {εn}n∈N of positive reals with

∞∑
n=1

εn < ∞, a set M =M({εn}) ∈ F(I)

and k = k({εn}) ∈N such that |{n ∈M : | fn(x)− f (x)| ≥ εn}| ≤ k for all x ∈ X. Now
∣∣∣| fn|(x)−| f |(x)

∣∣∣ ≤ ∣∣∣ fn(x)− f (x)
∣∣∣.

Therefore |{n ∈M :
∣∣∣| fn|(x) − | f |(x)

∣∣∣ ≥ εn| ≤ k for each x ∈ X i.e. | fn| I
∗−sue−−−−→ | f |.

Now we show that if fn
I∗−sue−−−−→ f , 1n

I∗−sue−−−−→ 1 and α, β ∈ R, then α fn + β1n
I∗−sue−−−−→ α f + β1. To see this, by

definition there exist M f ,M1 ∈ F(I),
∞∑

n=1

εn < ∞,
∞∑

n=1

λn < ∞ and n f = n f ({εn}), n1 = n1({λn}) ∈N such that

|{n ∈M f : | fn(x) − f (x)| ≥ εn}| ≤ n f

and

|{n ∈M1 : |1n(x) − 1(x)| ≥ λn}| ≤ n1.

Let us choose θn = max{2|α|εn, 2|β|λn} and k = n f + n1. Then we have

|{n ∈M f ∩M1 : |α( fn − f )(x) + β(1n − 1)(x)| ≥ θn}| ≤ k
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where
∞∑

n=1

θn =

∞∑
n=1

max{2|α|εn, 2|β|λn}

≤
∞∑

n=1

(
2|α|εn + 2|β|λn

)
< ∞

and M f ∩M1 ∈ F(I). Hence α fn + β1n
I∗−sue−−−−→ α f + β1.

Therefore f , 1 ∈ ΦI∗−sue, fn
I∗−sue−−−−→ f and 1n

I∗−sue−−−−→ 1 implies that

fn+1n

2 +
| fn−1n |

2
I∗−sue−−−−→ f+1

2 +
| f−1|

2 = max( f , 1)

i.e. max( f , 1) ∈ ΦI∗−sue. Similarly, min( f , 1) ∈ ΦI∗−sue. Thus ΦI
∗−sue is a lattice. It is easy to check the

remaining assertions.
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