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w-continuous multifunctions

idris Zorlutuna®

?Cumbhuriyet University, Faculty of Sciences, Department of Mathematics, 58140, Sivas, Turkey

Abstract. The purpose of this paper is to study w-continuous multifunctions. Basic characterizations,
preservation theorems and several properties concerning upper and lower w-continuous multifunctions are
investigated. Furthermore, some characterizations of w-connectedness and its relations with w-continuous
multifunctions are given.

1. Introduction

The concepts of upper and lower continuity for multifunctions were firstly introduced by Berge [3]. After
this work several authors have given the several weak and strong forms of continuity of multifunctions
([1,4,5,8,10,11, 16]). On the other hand, a generalization of the notion of the classical open sets which has
received much attention lately is the so-called w-open sets. In this direction, we will introduce the concept
of w-continuous multifunctions and studied some propeties of w-continuous multifunctions. Also we have
obtained some results on w-connectedness and its relations with w-continuous multifunctions.

All through this paper, (X, 7) and (Y, o) stand for topological spaces with no separation axioms assumed,
unless otherwise stated. Let A C X, the closure of A and the interior of A will be denoted by CI(A) and
Int(A), respectively. Let (X, ) be a space and let A be a subset of X. A point x € X is called a condensation
point of A [12] if for each U € 7 with x € U, the set U N A is uncountable. A is called w-closed [6] if it
contains all its condensation points. The complement of an w-closed set is called w-open. These sets are
characterized as follows [6]: a subset W of a topological space (X, t) is an w-open set if and only if for
each x € W, there exists U € 7 such that x € U and U — W is countable. The w-closure and w-interior,
that can be defined in a manner to CI(A) and Int(A), respectively, will be denoted by wCI(A) and wInt(A),
respectively. Several characterizations and properties of w-closed subsets were provided in [6, 7, 17]. We
set wO(X,x) ={U:xe Uand U € 1,}

A multifunction F : X — Y is a point to set correspondence, and we always assume that F(x) # 0 for
every point x € X. For each subset A of X and each subset B of Y, let F(A) = U{F(x):x € A}, F*(B) =
xeX:F(x)cBland FF(B)={xe X:F(x)NB#0}. ThenF : Y » P(X)andif y € Y, then F (y) = {x € X :
y € F(x)} where P(X) be the collection of the subsets of X. Thus for BC Y, F*(B) = U{F(y) : y € B}. Fis said
to be a surjection if F(X) = Y, or equivalently, if for each y € Y, there exists an x € X such that y € F(x).
A multifunction F : X — Y is called upper semi continuous [3], abbreviated as u.s.c., (resp. lower semi
continuous [3], or Ls.c.) at x € X if for each open V C Y with F(x) C V (resp. F(x) N V # (), there is an open
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neighbourhood U of x such that F(U) C V (resp. F(z) NV # @ for all z € U). Fis us.c. (resp. Ls.c.) if and
only if it is u.s.c. (resp. l.s.c.) at each point of X. Then F is called semi continuous if and only if it is both
uw.s.c.and L.s.c. A multifunction F : X — Y is image-P if F(x) has property P for every x € X.

2. Characterizations

Definition 2.1. A multifunction F : X — Y is called

(a) upper w-continuous (briefly, u.w-c.) at a point x € X if for each open subset V of Y with F(x) C V, there
is an w-open set U containing x such that F(U) C V.

(b) lower w-continuous (briefly, L.w-c.) at a point x € X if for each open subset V of Y with F(x) NV # 0,
there is an w-open set U containing x such that F(z) N V # 0 for every point z € U.

(¢c) w-continuous at x € X if it is both u.w-c. and l.w-c. atx € X.

(d) w-continuous if it is w-continuous at each point x € X.

The following examples show that u.w-c. and l.w-c. are independent.

Example 2.2. Let X = R with the usual topology 7 and let Y = {a, b, c} with the topology ¢ = {2, Y, {a}}.
{a} ;x<0
(a) Define a multifunction F : (R,7) = (Y,0) by F(x) ={ {a,b} ;x=0 . Then F is u.w-c., but it is not
{c} ;x>0
Lw-c.

(b) Define a multifunction F : (R,7) = (Y,0) by F(x) = { ta) x<0 . Then F is L.w-c., but it is not

{a,c} ;x>0
u.w-C.

Theorem 2.3. For a multifunction F : (X, t) — (Y, 0), the following statements are equivalent;
(1) Fisl.w-c.;
(2) For each open subset V of Y, F~(V) is w-open;
(3) For each closed subset K of Y, F*(K) is w-closed;
(4) For any subset B of Y, wCI(F*(B)) € F*(CI(B));
(5) For any subset B of Y, F~(Int(B)) € wInt(F~(B));
(6) For any subset A of X, F(wCI(A)) € CI(F(A));
(7)F: (X, 10) = (Y,0) is Ls.c.

Proof. (1)&(2) It is obvious.

(2)©(3) These follow from equality F~(Y\K) = X\F*(K) for each subset K of Y.

(3)=(4) Let B be any subset of Y. Then by (3) F*(CI(B)) is w-closed subset of X. Since F*(B) C F*(CI(B)),
then wCI(F*(B)) € wCI(F*(CI(B))) = F*(CI(B)).

(4)e(5) These follow from the facts that F-(Y\K) = X\F*(K), Y\(CI(B)) = Int(Y\B) for B C Y and
X\(wClI(A)) = wint(X\A) for each subset A of X.

(5)=(6) Under the assumption (5), suppose (6) is not truei.e. forsome A C X, F(wCI(A)) € CI(F(A)). Then
there exists a vy € Y such that yy € F(wCI(A)) but yo ¢ CI(F(A)). So Y\CI(F(A)) is an open set containing .
By (5), we have F~(Y\CI(F(A))) = F-(Int(Y\CI(F(A)))) € wInt(F~(Y\CI(F(A)))) and F~(yo) € F~(Y\CI(F(A))).
Since F~(Y\CI(F(A)))NF*(F(A)) = 0and A C F*(F(A)), we have F~(Y\CI(F(A))) N A = 0. Since F~(Y\CI(F(A)))
is w-open set, clearly we have that F~(Y\CI(F(A)))NwCI(A) = 0. On the other hand, because of 1y € F(wCI(A)),
we have F~(yo)NwCI(A) # 0. But thisis a contradiction with F~(Y\CI(F(A)))NwCI(A) = 0. Thus y € F(wCI(A))
implies y € CI(F(A)). Consequently wCI(F(A)) € CI(F(A)).

(6)=(3) Let K C Y be a closed set. Since we always have F(F*(K)) c K, CI(F(F*(K))) € CI(K) and by (6),
F(wCI(F*(K))) € CI(F(F*(K))) € CI(K) = K. Therefore, wCI(F*(K)) C F*(F(wCI(F*(K)))) c F*(K) and so F*(K)
is w-closed in X.

(e (@) Itisclear. O
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Theorem 2.4. For a multifunction F : (X, 1) — (Y, 0), the following statements are equivalent;
(1) Fis u.w-c.;
(2) For each open subset V of Y, F*(V) is w-open;
(3) For each closed subset K of Y, F~(K) is w-closed;
(4)F: (X, 10) — (Y,0)is us.c;

The proof is similar to that of Theorem 2.3, and is omitted.

Definition 2.5. The net (x,)qer is w-convergent to x if for each w-open set U containing x, there exists an
ap € I such that @ > ap implies x, € U.

Theorem 2.6. The multifunction F : X — Y is Lw-c. at x € X if and only if for each y € F(x) and for every net
(Xa)aer w-converging to x, there exists a subnet (zg)pes of the net (xo)acr and a net (yg)@,v)es in Y with yg € F(zp) is
convergent to y.

Proof. (=) Suppose F is Lw-c. at xo. Let (x,)qer be a net w-converging to xg. Let y € F(xg) and V be any
open set containing y. So we have F(xp) N V # 0. Since F is L.w-c. at xo, there exists an w-open set U such
that xo € U € F(V). Since the net (x,)q4er is w-convergent to xq, for this U, there exists ay € I such that
a > ap implies x, € U. Therefore, we have the implication a > ayp = x, € F7(V). For each openset V C Y
containing y, define thesets Iy = {ap e [:a > ag = x, €e F(V)}and &£ = {(a, V) : @ € Iy, y € V and V is open
} and order “ > ” on & as follows: “(d, V) > (o, V) © V C V and & > a”. Define p:&— L byo(B V) =5
Then ¢ is increasing and cofinal in I, so ¢ defines a subnet of (x,).c;. We denote the subnet (zg)(,v)es. On
the other hand, for any (8,V) € &, if f > fo = xg € F7(V) and we have F(zgp) NV = F(xg) NV # ¢. Pick
yp € F(zg) NV # ¢. Then the net (yp),v)es is convergent to y. To see this, let Vo be an open set containing y.
Then there exists By € I such that ¢((8o, Vo)) = fo and yp, € V. If (B, V) = (Bo, Vo) this means that § > fy and
V C Vy. Therefore, yg € F(zg) NV = F(xg) N V C F(xg) N Vo, so yg € Vo. Thus (yp)(s,v)ee is convergent to y.

(&) Suppose F is not L.w-c. at xg. Then there exists an open set V C Y so that xp € F~(V) and for each
w-open set U C X containing xo, there is a point xy; € U for which xy; ¢ F~(V). Let us consider the net
(xu)uewoxxp)- Obviously (xu)uewoxx,) is w-convergent to xo. Let yo € F(xo) N V. By hypothesis, there is a
subnet (zy)wew Of (XU)uewo(xx) and Yuw € F(zy) such that (y,)wew is convergent to yo. Asygp € Vand V CY
is an open set, there is wj € W so that w > wj implies y;, € V. On the other hand, (z;)wew is a subnet of the
net (Xu)uewo(x,x) and so there is a function h : W — wO(X, x¢) such that z;, = xj(). By the definition of the
net (Xu)uewo(Xx), We have F(z,) NV = F(xuq)) NV = 0 and this means that y,, ¢ V. This is a contradiction
and so Fisl.w-c. atxg. O

Theorem 2.7. The multifunction F : X — Y is Lw-c. (resp. u.w-c.) at x € X if and only if for each net (Xy)qer
w-convergent to x and for each open subset V of Y with F(x) NV # 0 (resp. F(x) C V), there is an ag € I such that
F(xo) NV # 0 (resp. F(x,) € V) forall a > ay.

Proof. We prove only for lower w-continuity. The other is entirely analogous.

(=) Let (x4)aer be a net which w-converges to x in X and let V be any open set in Y such that x € F~(V).
Since F is L.w-c. multifunction, it follows that there exists an w-open set U in X containing x such that
U ¢ F~(V). Since (x,) w-converges to x, it follows that there exists an index ay € I such that x, € U for all
a 2 ap. So we obtain that x, € F7(V) for all @ > ag. Thus, the net (x,) is eventually in F~(V).

(&) Suppose that F is not L.w-c. Then there is an open set V in Y with x € F~(V) such that for
each w-open set U of X containing x, x € U € F~(V) i.e. thereis a xy € U such that xy ¢ F~(V). Define
D ={(xy, U) : U e wOX), xu € Uxy ¢ F(V)}. Now the order “ < ” defined by (xy;,, Uy) < (xy, U) © U C Uy
is a direction on D and g defined by g : D — X, g((xy, U)) = xy is a net on X. The net (xy) @y, wep is w-
convergent to x. But F(x;;) N V = 0 for all (xy, U) € D. This is a contradiction. [J

From the definitions, it is obvious that upper (lower) semi-continuity implies upper (lower) w-continuity.
But the converse is not true in general.
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Example 2.8. Let X = R with the topology t = {&, R, Q}. Define a multifunction F : (R,7) — (R, 1) by
F(x)_{ Q  ;xeR-Q

. Then F is u.w-c. and l.w-c. But it is neither u.s.c nor l.s.c.

R-Q ;xe€Q
Definition 2.9. ([17]) A space X is anti-locally countable if each non-empty open set is uncountable.
Corollary 2.10. Let X be an anti-locally countable space. Then the multifunction F : X — Y is u(l).«w-c iff F u(l).s.c.
Recall that A multifunction F : X — Y is called open if for each open subset U of X, F(U) is openin Y.

Definition 2.11. A multifunction F : X — Y is called
(a) w-open if for each open subset U of X, F(UI) is w-openin Y.
(b) pre-w-open if for each w-open subset U of X, F(U) is w-openin Y.

The proofs of the following two lemmas follow from the fact that © C 7, and definitions.

Lemma 2.12. Let F : X — Y be a multifunction.
(1) If F is image-open, then F is open, w-open;
(2) If F is image-w-open, then F is both w-open and pre-w-open.

Lemma 2.13. Let F : X — Y be a multifunction.
(1) If F~ is image-open, then F L.w-c.;
(2) If F~ is image-w-open, then F is l.w-c.

Lemma 2.14. If F : X — Y is image-open and u.cw-c., then F~(B) is w-closed in X for any B C Y. In particular; F~
is image-w-closed.

Proof. Let x € X — F7(B) = F*(Y — B). Then F(x) C Y — B. Since F(x) is open and F is u.w-c., F*(F(x)) is an
w-open setin X and x € F*(F(x)) € F*(Y — B) = X — F~(B). This shows that X — F7(B) is an w-open and hence
F*(B)is an w-closed in X. O

A multifunction F : X — Y is said to be have nonmingled point images [14] provided that for x1,x, € X
with x1 # x,, the image sets F(x1) and F(x,) are either disjoint or identical.
Note that for a multifunction F, F is image-nonmingled if and only if F o F~ o F = F [14].

Theorem 2.15. Let F : X — Y be image-nonmingled such that F is either image-open and l.w-c. or F~ image-w-open.
Then F is u.c-c.

Proof. Let x € X and V be an open set with F(x) C V. Firstly, suppose that F is image-open and l.w-c. Then
F~(F(x)) is w-openin X and x € F~(F(x)). Put U = F~(F(x)). Thus we have an w-open set U containing x such
that F(U) = F(F~(F(x))) = F(x) € V by above note. This shows that F is u.w-c.

Now suppose that F~ is image-w-open. Then F~(F(x)) is an w-open set in X containing x. On the other
hand, by Lemma 2.13(2), F is l.w-c. and proceed as above. [

Theorem 2.16. Let F : X — Y be image-open, image-nonmingled and u.w-c. Then F is l.w-c.

Proof. Let x € X and V be an open set with F(x) NV # @. Then F*(F(x)) is w-open in X and x € F*(F(x)).
Put U = F*(F(x)). Thus we have an w-open set U containing x such that if z € U then F(z) = F(x) and
F(z) NV # @. This shows that Fis L.w-c. O

For a multifunction F : X — Y, the graph multifunction Gr : X — X X Y is defined as follows:
Gr(x) = {x} X F(x) for every x € X.

Lemma 2.17. ([10]) For a multifunction F : X — Y, the following hold:
(1) GE{(Ax B)= ANF*(B),
(2) GEF(AxB)=ANF (B)

for any subsets A C Xand BCY.



I. Zorlutuna / Filomat 27:1 (2013), 165-172 169

Theorem 2.18. Let F : X — Y be an image-compact multifunction. Then the graph multifunction of F is u.w-c. if
and only if F is u.cw-c.

Proof. (=) Suppose that Gr : X — X X Y is u.w-c. Let x € X and V be any open set of Y containing F(x).
Since X X Vis open in X X Y and Gr(x) € X X V, there exists U € wO(X, x) such that Gr(U) € X x V. By the
previous lemma, we have U C Gf(X X V) = F*(V) and F(U) € V. This shows that F is u.w-c.

(&) Suppose that F is u.w-c. Let x € X and W be any open set of X X Y containing Gr(x). For each
y € F(x), there exist open sets U(y) € X and V(y) C Y such that (x,y) € U(y) X V(y) € W. The family of
{V(y) : y € F(x)} is an open cover of F(x). Since F(x) is compact, it follows that there exists a finite number of
points, says y1, Y2, ..., Y in F(x) such that F(x) € {V(y;) : 1 =1,2,..,n}. Take U = N{U(y;) : i = 1,2, ...,n} and
V=U{V(y;):i=1,2,..,n}. Then U and V are open sets in X and Y, respectively, and {x} X F(x) S UxV C W.
Since F is u.w-c., there exists Uy € wO(X, x) such that F(Up) € V. By the previous lemma, we have
UnUy CUNFY(V)=GHU X V) € GE(W). Therefore, we obtain U N Up € wO(X, x) and Gp(U N Up) € W.
This shows that Gris u.w-c. O

Theorem 2.19. A multifunction F : X — Y is Lw-c. if and only if the graph multifunction Gr is l.w-c.

Proof. (=) Suppose that F is lL.w-c. Let x € X and W be any open set of X X Y such that x € G;(W). Since
W N ({x} X F(x)) # @, there exists y € F(x) such that (x,y) € W and hence (x,y) € U X V C W for some open
sets U and V of X and Y, respectively. Since F(x) NV # @, there exists G € wO(X, x) such that G C F~(V).
By Lemma 2.17, UN G C UNF(V) = G (U X V) € Gz(W). Therefore, we obtain x € U N G € wO(X, x) and
hence Gr is L.w-c.

(&) Suppose that Gr is L.w-c. Let x € X and V be any open set of Y such that x € F7(V). Then X X V is
openin X XY and Gr(x) N (X X V) = ({x} x F(x)) N (X X V) = {x} x (F(x) N V) # @. Since Gr is L.w-c., there
exists an w-open set U containing x such that U C G (X X V). By Lemma 2.17, we have U C F~(V). This
shows that Fis lL.w-c. O

Lemma 2.20. ([17]) Let A be a subset of a space (X, t). Then (14)a = (TA)w-

Theorem 2.21. For a multifunction F : X — Y, the following statements are true.

a) If Fisu(l).w-c. and AC X, then F |4: A — Yis u(l).w-c.;

b) Let {Ay: a €1} be open cover of X. Then a multifunction F : X — Y is u(l).w-c. iff the restrictions
Fla,: Ay = Yareu(l).w-c. for every o € .

The proof is obvious from the above lemma and we omit it.

3. Some applications

Theorem 3.1. Let F and G be u.w-c. and image-closed multifunctions from a topological space X to a normal
topological space Y. Then the set A = {x : F(x) N G(x) # @} is closed in X.

Proof. Letx € X—A. Then F(x) N G(x) = @. Since F and G are image-closed multifunctions and Y is a normal
space, then there exist disjoint open sets U and V containing F(x) and G(x), respectively. Since F and G are
u.w-c., then the sets F*(U) and G*(V) are w-open and contain x. Put W = F*(U) N G*(V). Then W is an
w-open set containing x and WN A = @. Hence, Ais closedin X. O

Definition 3.2. ([2]) A space X is said to be w-T> if for each pair of distinct points x and y in X, there exist
UecwO(X,x)and V € wO(X, y) suchthat UNV = 2.

Theorem 3.3. Let F : X — Y be an u.w-c. multifunction and image-closed from a topological space X to a normal
topological space Y and let F(x) N F(y) = @ for each distinct pair x,y € X. Then X is an w-T, space.

Proof. Let x and y be any two distinct points in X. Then we have F(x) N F(y) = @. Since Y is a normal space,
then there exists disjoint open sets U and V containing F(x) and F(y), respectively. Thus, F*(U) and F*(V)
are disjoint w-open sets containing x and y, respectively. Thus, X is w-T,. O



I. Zorlutuna / Filomat 27:1 (2013), 165-172 170

Definition 3.4. The graph G(F) of the multifunction F : X — Y is w-closed with respect to X if for each (x, y) ¢
G(F), there exist an w-open set U containing x and an open set V containing y such that (U x V) N G(F) = 0.

Definition 3.5. A subset A of a topological space X is called a-paracompact [15] if every open cover of A in
X has a locally finite open refinement in X which covers A.

Theorem 3.6. If F : X — Y is u.w-c. and image-a-paracompact multifunction into a Hausdorff space Y, then the
graph G(F) is w-closed with respect to X.

Proof. Let (xo, yo) ¢ G(F). Then yy ¢ F(xo). Therefore, for every y € F(xo), there exists an open set V(y) and
an open set W(y) in Y containing y and y, respectively, such that V(y) N W(y) = 0. Then {V(y)ly € F(xo)}
is a open cover of F(xq), thus there is a locally finite open cover W = {Ug|B € A} of F(xo) which refines
{V(y)ly € F(xg)}. So there exists an open neighborhood Wy of 1y such that Wy intersect only finitely many
members Ug,, Ug,, ..., Ug, of ¥. Chose finitely many points y1, y2, ..., y» of F(xo) such that Ug, C V(yk) of each
1 <k <nandset W=W,N[N; W(y)]- Then W is an open neighborhood of y, such that W N (U¥) = 0.
Since F is u.w-c., then there exists an w-open set U containing x( such that F(U) ¢ UW. Therefore, we have
that (U x W) N G(F) = 0. Thus, G(F) is w-closed set with respect to X. [J

In the above theorem, for upper w-continuous multifunction F, if F is taken as a image-closed multi-
function and Y is taken as a regular space, then we get also same result.

Definition 3.7. A space X is called w-compact [2] if every w-open cover of X has a finite subcover.

Theorem 3.8. Let F : X — Y be a image-compact and u.w-c. multifunction. If X is w-compact and F is surjective,
then Y is compact.

Proof. Let @ be an open cover of Y. If x € X, then we have F(x) € U®. Thus @ is an open cover of F(x). Since
F(x) is compact, there exists a finite subfamily ®,) of @ such that F(x) C UD,) = Vy. Then V, is an open
setin Y. Since F is u.w-c., F*(Vy) is an w-open set in X. Therefore, (3 = {F*(V,) : x € X} is an w-open cover of
X. Since X is w-compact, there exists points x1, xz, ..., X, € X such that X c U{F* (V) : x; € X, i =1,2,...,n}.
Sowe obtain Y = F(X) C F(U{F*(Vy,):i=1,2,..,n}) CU{V, :i=1,2,..,n CU{Dyy) :i=1,2,..,n}. Thus Y
is compact. O

In [[6], Theorem 4.1], Hdeib showed that a space (X, 7) is Lindelof if and only if (X, 7,,) is Lindelof.

Theorem 3.9. Let F : (X,t) — (Y, 0) be an image-Lindelof or image-compact and u.w-c. multifunction. If X is
Lindelof and F is surjective, then Y is Lindelof.

Proof. Let ® be an open cover of Y. If x € X, then we have F(x) C U®. Thus ® is an open cover of F(x).

When F(x) is Lindeldf, there exists a countable subfamily @, of ® such that F(x) € U®, = V,. Then V, is
an open setin Y. Since F is u.w-c., F*(V,) is an w-open set in X. Therefore, QO = {F*(V,) : x € X} is an w-open
cover of X. By Theorem 4.1 of [6], there exists points x1, X3, ..., Xy, ... € X such that X € U{F*(Vy,) : x; € X,
i=1,2,..,n.}). Soweobtain Y = F(X) C F(U{F*(Vy):i=1,2,..,n,..}) CU{V, :i=1,2,..,n,..} CU{D, :
i=1,2,..,n,..}. Thus Yis Lindelof.

When F(x) is compact, there exists a finite subfamily @, of ® such that F(x) € U®, = V,. Then V, is an
open set in Y. Since F is u.w-c., F*(Vy) is an w-open set in X. Therefore, Q = {F*(V,) : x € X} is an w-open
cover of X. By Theorem 4.1 of [6], there exists points x1,x, ..., Xy, ... € X such that X € U{F*(V,,) : x; € X,
i=1,2,..,n,.}). Soweobtain Y = F(X) C F(U{F*(Vy):i=12,.,n,.}) CU{Vy :i=1,2,..n,.} CUD,,:
i=1,2,..mn,..}. Thus Yis Lindelof. O
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4. w-connectedness

Definition 4.1. ([2]) If a space X can not be written as the union of two nonempty disjoint w-open sets, then
X is said to be w-connected.

Definition 4.2. Twonon-empty subsets A and B of X are said to be w-separated if wCI(A)NB = @ = ANwCI(B).
The proof of the following theorem is obtained by ordinary arguments.

Theorem 4.3. For every topological space X, the following conditions are equivalent:
(1) X is w-connected;
(2) @ and X are the only w-open and w-closed subsets of X;
(3) If X = AU B and the sets A and B are w-separated, then one of them is empty.

Theorem 4.4. Let X be w-connected, F : X — Y be w-continuous multifunction on X and V be a subset of Y such
that at least one of the following conditions is fulfilled:

(1) V is clopen;

(2) F is image-open and V is closed;

(3) F~ is image-w-open and V is open;

(4) F is image-open and F~ is image-w-open.

Then either F*(V) = Xor F-(Y - V) =X.

Proof. (1) Let V beclopensetin Y. Since Fis lL.w-c. and u.w-c., F*(V)is w-open and w-closed in X by Theorems
2.3 and 2.4. Then by Theorem 4.3, F*(V) = X or X — F*(V) = X. Hence, F*(V) =X or FF(Y - V) = X.

(2) Let F be image-open and V be closed. Since F is Lw-c., F~ (Y — V) is w-open in X. By Lemma 2.14,
F~(Y = V) is w-closed. Since F~ (Y — V) = X — F*(V), the result follows.

(3) Let F~ be image-w-open and V be open. Since F is u.w-c., F7(Y — V) is w-closed in X. On the other
hand, since F~ is image-w-open, F~ (Y - V) = U{F (y) : y € Y — V} is w-open in X. Hence, the result follows.

(4) Let F be image-open and F~ be image-w-open. By Lemma 2.14, F~ (Y — V) is w-closed for any open
set V C Y. On the other hand, since F~ image-w-open, F7 (Y —= V) = U{F (y) : y € Y — V} is w-open in X.
Hence, the result follows. [

Corollary 4.5. Let X be w-connected and F : X — Y be an w-continuous multifunction onto Y such that F(x) is
connected in Y for some x € X. Then'Y is connected.

Proof. Let V be a clopen setin Y. Then V and Y — V are separated. Since F(x) is connected, either F(x) € V
or F(x) € Y — V. By Theorem 4.4(1), either F(X) € V or F(X) € Y — V. Since F is onto, it follows that V = Y
or V = @. This implies that Y is connected. [

Corollary 4.6. Let X be w-connected and F : X — Y be an w-continuous image-open multifunction such that either
F is image-closed or F~ is image-w-open. Then F is constant.

Proof. Let x € X and F(x) = V. Suppose that F is image-closed. By Theorem 4.4(1), F(X) € V, thus
F(x) = F(X). Now suppose that F~ is image-w-open. By Theorem 4.4(3), F(X) C V, thus F(x) = F(X). This
completes the proof. [
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