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ω-continuous multifunctions

İdris Zorlutunaa

aCumhuriyet University, Faculty of Sciences, Department of Mathematics, 58140, Sivas, Turkey

Abstract. The purpose of this paper is to study ω-continuous multifunctions. Basic characterizations,
preservation theorems and several properties concerning upper and lowerω-continuous multifunctions are
investigated. Furthermore, some characterizations of ω-connectedness and its relations with ω-continuous
multifunctions are given.

1. Introduction

The concepts of upper and lower continuity for multifunctions were firstly introduced by Berge [3]. After
this work several authors have given the several weak and strong forms of continuity of multifunctions
([1, 4, 5, 8, 10, 11, 16]). On the other hand, a generalization of the notion of the classical open sets which has
received much attention lately is the so-called ω-open sets. In this direction, we will introduce the concept
of ω-continuous multifunctions and studied some propeties of ω-continuous multifunctions. Also we have
obtained some results on ω-connectedness and its relations with ω-continuous multifunctions.

All through this paper, (X, τ) and (Y, σ) stand for topological spaces with no separation axioms assumed,
unless otherwise stated. Let A ⊆ X, the closure of A and the interior of A will be denoted by Cl(A) and
Int(A), respectively. Let (X, τ) be a space and let A be a subset of X. A point x ∈ X is called a condensation
point of A [12] if for each U ∈ τ with x ∈ U, the set U ∩ A is uncountable. A is called ω-closed [6] if it
contains all its condensation points. The complement of an ω-closed set is called ω-open. These sets are
characterized as follows [6]: a subset W of a topological space (X, τ) is an ω-open set if and only if for
each x ∈ W, there exists U ∈ τ such that x ∈ U and U −W is countable. The ω-closure and ω-interior,
that can be defined in a manner to Cl(A) and Int(A), respectively, will be denoted by ωCl(A) and ωInt(A),
respectively. Several characterizations and properties of ω-closed subsets were provided in [6, 7, 17]. We
set ωO(X, x) = {U : x ∈ U and U ∈ τω}

A multifunction F : X → Y is a point to set correspondence, and we always assume that F(x) , ∅ for
every point x ∈ X. For each subset A of X and each subset B of Y, let F(A) = ∪ {F(x) : x ∈ A}, F+(B) =
{x ∈ X : F(x) ⊂ B} and F−(B) = {x ∈ X : F(x) ∩ B , ∅}. Then F− : Y → P(X) and if y ∈ Y, then F−(y) = {x ∈ X :
y ∈ F(x)}where P(X) be the collection of the subsets of X. Thus for B ⊆ Y, F−(B) = ∪ {F−(y) : y ∈ B

}
. F is said

to be a surjection if F(X) = Y , or equivalently, if for each y ∈ Y, there exists an x ∈ X such that y ∈ F(x).
A multifunction F : X → Y is called upper semi continuous [3], abbreviated as u.s.c., (resp. lower semi
continuous [3], or l.s.c.) at x ∈ X if for each open V ⊆ Y with F(x) ⊂ V (resp. F(x) ∩ V , ∅), there is an open
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neighbourhood U of x such that F(U) ⊆ V (resp. F(z) ∩ V , ∅ for all z ∈ U). F is u.s.c. (resp. l.s.c.) if and
only if it is u.s.c. (resp. l.s.c.) at each point of X. Then F is called semi continuous if and only if it is both
u.s.c.and l.s.c. A multifunction F : X→ Y is image-P if F(x) has property P for every x ∈ X.

2. Characterizations

Definition 2.1. A multifunction F : X→ Y is called
(a) upper ω-continuous (briefly, u.ω-c.) at a point x ∈ X if for each open subset V of Y with F(x) ⊆ V, there

is an ω-open set U containing x such that F(U) ⊆ V.
(b) lower ω-continuous (briefly, l.ω-c.) at a point x ∈ X if for each open subset V of Y with F(x) ∩ V , ∅,

there is an ω-open set U containing x such that F(z) ∩ V , ∅ for every point z ∈ U.
(c) ω-continuous at x ∈ X if it is both u.ω-c. and l.ω-c. at x ∈ X.
(d) ω-continuous if it is ω-continuous at each point x ∈ X.

The following examples show that u.ω-c. and l.ω-c. are independent.

Example 2.2. Let X = R with the usual topology τ and let Y = {a, b, c}with the topology σ = {∅,Y, {a}}.

(a) Define a multifunction F : (R, τ) → (Y, σ) by F(x) =


{a} ; x < 0
{a, b} ; x = 0
{c} ; x > 0

. Then F is u.ω-c., but it is not

l.ω-c.

(b) Define a multifunction F : (R, τ) → (Y, σ) by F(x) =
{
{a} ; x ≤ 0
{a, c} ; x > 0 . Then F is l.ω-c., but it is not

u.ω-c.

Theorem 2.3. For a multifunction F : (X, τ)→ (Y, σ), the following statements are equivalent;
(1) F is l.ω-c.;
(2) For each open subset V of Y, F−(V) is ω-open;
(3) For each closed subset K of Y, F+(K) is ω-closed;
(4) For any subset B of Y, ωCl(F+(B)) ⊆ F+(Cl(B));
(5) For any subset B of Y, F−(Int(B)) ⊆ ωInt(F−(B));
(6) For any subset A of X, F(ωCl(A)) ⊆ Cl(F(A));
(7) F : (X, τω)→ (Y, σ) is l.s.c.

Proof. (1)⇔(2) It is obvious.
(2)⇔(3) These follow from equality F−(Y\K) = X\F+(K) for each subset K of Y.
(3)⇒(4) Let B be any subset of Y. Then by (3) F+(Cl(B)) is ω-closed subset of X. Since F+(B) ⊆ F+(Cl(B)),

then ωCl(F+(B)) ⊆ ωCl(F+(Cl(B))) = F+(Cl(B)).
(4)⇔(5) These follow from the facts that F−(Y\K) = X\F+(K), Y\(Cl(B)) = Int(Y\B) for B ⊆ Y and

X\(ωCl(A)) = ωInt(X\A) for each subset A of X.
(5)⇒(6) Under the assumption (5), suppose (6) is not true i.e. for some A ⊆ X, F(ωCl(A)) * Cl(F(A)). Then

there exists a y0 ∈ Y such that y0 ∈ F(ωCl(A)) but y0 < Cl(F(A)). So Y\Cl(F(A)) is an open set containing y0.
By (5), we have F−(Y\Cl(F(A))) = F−(Int(Y\Cl(F(A)))) ⊆ ωInt(F−(Y\Cl(F(A)))) and F−(y0) ⊆ F−(Y\Cl(F(A))).
Since F−(Y\Cl(F(A)))∩F+(F(A)) = ∅ and A ⊂ F+(F(A)), we have F−(Y\Cl(F(A)))∩A = ∅. Since F−(Y\Cl(F(A)))
isω-open set, clearly we have that F−(Y\Cl(F(A)))∩ωCl(A) = ∅. On the other hand, because of y0 ∈ F(ωCl(A)),
we have F−(y0)∩ωCl(A) , ∅. But this is a contradiction with F−(Y\Cl(F(A)))∩ωCl(A) = ∅. Thus y ∈ F(ωCl(A))
implies y ∈ Cl(F(A)). Consequently ωCl(F(A)) ⊆ Cl(F(A)).

(6)⇒(3) Let K ⊆ Y be a closed set. Since we always have F(F+(K)) ⊂ K, Cl(F(F+(K))) ⊆ Cl(K) and by (6),
F(ωCl(F+(K))) ⊆ Cl(F(F+(K))) ⊆ Cl(K) = K. Therefore, ωCl(F+(K)) ⊆ F+(F(ωCl(F+(K)))) ⊂ F+(K) and so F+(K)
is ω-closed in X.

(1)⇔(7) It is clear.
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Theorem 2.4. For a multifunction F : (X, τ)→ (Y, σ), the following statements are equivalent;
(1) F is u.ω-c.;
(2) For each open subset V of Y, F+(V) is ω-open;
(3) For each closed subset K of Y, F−(K) is ω-closed;
(4) F : (X, τω)→ (Y, σ) is u.s.c.;

The proof is similar to that of Theorem 2.3, and is omitted.

Definition 2.5. The net (xα)α∈I is ω-convergent to x if for each ω-open set U containing x, there exists an
α0 ∈ I such that α ≥ α0 implies xα ∈ U.

Theorem 2.6. The multifunction F : X → Y is l.ω-c. at x ∈ X if and only if for each y ∈ F(x) and for every net
(xα)α∈I ω-converging to x, there exists a subnet (zβ)β∈ξ of the net (xα)α∈I and a net (yβ)(β,V)∈ξ in Y with yβ ∈ F(zβ) is
convergent to y.

Proof. (⇒) Suppose F is l.ω-c. at x0. Let (xα)α∈I be a net ω-converging to x0. Let y ∈ F(x0) and V be any
open set containing y. So we have F(x0) ∩ V , ∅. Since F is l.ω-c. at x0, there exists an ω-open set U such
that x0 ∈ U ⊆ F−(V). Since the net (xα)α∈I is ω-convergent to x0, for this U, there exists α0 ∈ I such that
α ≥ α0 implies xα ∈ U. Therefore, we have the implication α ≥ α0 ⇒ xα ∈ F−(V). For each open set V ⊆ Y
containing y, define the sets IV = {α0 ∈ I : α ≥ α0 ⇒ xα ∈ F−(V)} and ξ = {(α,V) : α ∈ IV, y ∈ V and V is open
} and order “ ≥ ” on ξ as follows: “(ά, V́) ≥ (α,V)⇔ V́ ⊆ V and ά ≥ α”. Define φ : ξ −→ I, by φ((β,V)) = β.
Then φ is increasing and cofinal in I, so φ defines a subnet of (xα)α∈I. We denote the subnet (zβ)(β,V)∈ξ. On
the other hand, for any (β,V) ∈ ξ, if β ≥ β0 ⇒ xβ ∈ F−(V) and we have F(zβ) ∩ V = F(xβ) ∩ V , ϕ. Pick
yβ ∈ F(zβ)∩V , ϕ. Then the net (yβ)(β,V)∈ξ is convergent to y. To see this, let V0 be an open set containing y.
Then there exists β0 ∈ I such that φ((β0,V0)) = β0 and yβ0 ∈ V. If (β,V) ≥ (β0,V0) this means that β ≥ β0 and
V ⊆ V0. Therefore, yβ ∈ F(zβ) ∩ V = F(xβ) ∩ V ⊆ F(xβ) ∩ V0, so yβ ∈ V0. Thus (yβ)(β,V)∈ξ is convergent to y.

(⇐) Suppose F is not l.ω-c. at x0. Then there exists an open set V ⊆ Y so that x0 ∈ F−(V) and for each
ω-open set U ⊆ X containing x0, there is a point xU ∈ U for which xU < F−(V). Let us consider the net
(xU)U∈ωO(X,x0). Obviously (xU)U∈ωO(X,x0) is ω-convergent to x0. Let y0 ∈ F(x0) ∩ V. By hypothesis, there is a
subnet (zw)w∈W of (xU)U∈ωO(X,x0) and yw ∈ F(zw) such that (yw)w∈W is convergent to y0. As y0 ∈ V and V ⊆ Y
is an open set, there is w′0 ∈ W so that w ≥ w′0 implies yw ∈ V. On the other hand, (zw)w∈W is a subnet of the
net (xU)U∈ωO(X,x0) and so there is a function h : W −→ ωO(X, x0) such that zw = xh(w). By the definition of the
net (xU)U∈ωO(X,x0), we have F(zw) ∩ V = F(xh(w)) ∩ V = ∅ and this means that yw < V. This is a contradiction
and so F is l.ω-c. at x0.

Theorem 2.7. The multifunction F : X → Y is l.ω-c. (resp. u.ω-c.) at x ∈ X if and only if for each net (xα)α∈I
ω-convergent to x and for each open subset V of Y with F(x) ∩ V , ∅ (resp. F(x) ⊆ V), there is an α0 ∈ I such that
F(xα) ∩ V , ∅ (resp. F(xα) ⊆ V) for all α ≥ α0.

Proof. We prove only for lower ω-continuity. The other is entirely analogous.
(⇒) Let (xα)α∈I be a net which ω-converges to x in X and let V be any open set in Y such that x ∈ F−(V).

Since F is l.ω-c. multifunction, it follows that there exists an ω-open set U in X containing x such that
U ⊆ F−(V). Since (xα) ω-converges to x, it follows that there exists an index α0 ∈ I such that xα ∈ U for all
α ≥ α0. So we obtain that xα ∈ F−(V) for all α ≥ α0. Thus, the net (xα) is eventually in F−(V).

(⇐) Suppose that F is not l.ω-c. Then there is an open set V in Y with x ∈ F−(V) such that for
each ω-open set U of X containing x, x ∈ U * F−(V) i.e. there is a xU ∈ U such that xU < F−(V). Define
D = {(xU,U) : U ∈ ωO(X), xU ∈ U, xU < F−(V)}. Now the order “ ≤ ” defined by (xU1 ,U1) ≤ (xU,U)⇔ U ⊆ U1
is a direction on D and 1 defined by 1 : D −→ X, 1((xU,U)) = xU is a net on X. The net (xU)(xU ,U)∈D is ω-
convergent to x. But F(xU) ∩ V = ∅ for all (xU,U) ∈ D. This is a contradiction.

From the definitions, it is obvious that upper (lower) semi-continuity implies upper (lower)ω-continuity.
But the converse is not true in general.
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Example 2.8. Let X = R with the topology τ = {∅,R,Q}. Define a multifunction F : (R, τ) → (R, τ) by

F(x) =
{
Q ; x ∈ R −Q
R −Q ; x ∈ Q . Then F is u.ω-c. and l.ω-c. But it is neither u.s.c nor l.s.c.

Definition 2.9. ([17]) A space X is anti-locally countable if each non-empty open set is uncountable.

Corollary 2.10. Let X be an anti-locally countable space. Then the multifunction F : X→ Y is u(l).ω-c iff F u(l).s.c.

Recall that A multifunction F : X→ Y is called open if for each open subset U of X, F(U) is open in Y.

Definition 2.11. A multifunction F : X→ Y is called
(a) ω-open if for each open subset U of X, F(U) is ω-open in Y.
(b) pre-ω-open if for each ω-open subset U of X, F(U) is ω-open in Y.

The proofs of the following two lemmas follow from the fact that τ ⊆ τω and definitions.

Lemma 2.12. Let F : X→ Y be a multifunction.
(1) If F is image-open, then F is open, ω-open;
(2) If F is image-ω-open, then F is both ω-open and pre-ω-open.

Lemma 2.13. Let F : X→ Y be a multifunction.
(1) If F− is image-open, then F l.ω-c.;
(2) If F− is image-ω-open, then F is l.ω-c.

Lemma 2.14. If F : X → Y is image-open and u.ω-c., then F−(B) is ω-closed in X for any B ⊆ Y. In particular; F−

is image-ω-closed.

Proof. Let x ∈ X − F−(B) = F+(Y − B). Then F(x) ⊆ Y − B. Since F(x) is open and F is u.ω-c., F+(F(x)) is an
ω-open set in X and x ∈ F+(F(x)) ⊆ F+(Y−B) = X−F−(B). This shows that X−F−(B) is an ω-open and hence
F+(B) is an ω-closed in X.

A multifunction F : X → Y is said to be have nonmingled point images [14] provided that for x1, x2 ∈ X
with x1 , x2, the image sets F(x1) and F(x2) are either disjoint or identical.

Note that for a multifunction F, F is image-nonmingled if and only if F ◦ F− ◦ F = F [14].

Theorem 2.15. Let F : X→ Y be image-nonmingled such that F is either image-open and l.ω-c. or F− image-ω-open.
Then F is u.ω-c.

Proof. Let x ∈ X and V be an open set with F(x) ⊆ V. Firstly, suppose that F is image-open and l.ω-c. Then
F−(F(x)) is ω-open in X and x ∈ F−(F(x)). Put U = F−(F(x)). Thus we have an ω-open set U containing x such
that F(U) = F(F−(F(x))) = F(x) ⊆ V by above note. This shows that F is u.ω-c.

Now suppose that F− is image-ω-open. Then F−(F(x)) is an ω-open set in X containing x. On the other
hand, by Lemma 2.13(2), F is l.ω-c. and proceed as above.

Theorem 2.16. Let F : X→ Y be image-open, image-nonmingled and u.ω-c. Then F is l.ω-c.

Proof. Let x ∈ X and V be an open set with F(x) ∩ V , ∅. Then F+(F(x)) is ω-open in X and x ∈ F+(F(x)).
Put U = F+(F(x)). Thus we have an ω-open set U containing x such that if z ∈ U then F(z) = F(x) and
F(z) ∩ V , ∅. This shows that F is l.ω-c.

For a multifunction F : X → Y, the graph multifunction GF : X → X × Y is defined as follows:
GF(x) = {x} × F(x) for every x ∈ X.

Lemma 2.17. ([10]) For a multifunction F : X→ Y, the following hold:
(1) G+F (A × B) = A ∩ F+(B),
(2) G−F (A × B) = A ∩ F−(B)

for any subsets A ⊆ X and B ⊆ Y.
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Theorem 2.18. Let F : X → Y be an image-compact multifunction. Then the graph multifunction of F is u.ω-c. if
and only if F is u.ω-c.

Proof. (⇒) Suppose that GF : X → X × Y is u.ω-c. Let x ∈ X and V be any open set of Y containing F(x).
Since X × V is open in X × Y and GF(x) ⊆ X × V, there exists U ∈ ωO(X, x) such that GF(U) ⊆ X × V. By the
previous lemma, we have U ⊆ G+F (X × V) = F+(V) and F(U) ⊆ V. This shows that F is u.ω-c.

(⇐) Suppose that F is u.ω-c. Let x ∈ X and W be any open set of X × Y containing GF(x). For each
y ∈ F(x), there exist open sets U(y) ⊆ X and V(y) ⊆ Y such that (x, y) ∈ U(y) × V(y) ⊆ W. The family of
{V(y) : y ∈ F(x)} is an open cover of F(x). Since F(x) is compact, it follows that there exists a finite number of
points, says y1, y2, ..., yn in F(x) such that F(x) ⊆ {V(yi) : i = 1, 2, ..., n}. Take U = ∩{U(yi) : i = 1, 2, ..., n} and
V = ∪{V(yi) : i = 1, 2, ..., n}. Then U and V are open sets in X and Y, respectively, and {x}×F(x) ⊆ U×V ⊆W.
Since F is u.ω-c., there exists U0 ∈ ωO(X, x) such that F(U0) ⊆ V. By the previous lemma, we have
U ∩ U0 ⊆ U ∩ F+(V) = G+F (U × V) ⊆ G+F (W). Therefore, we obtain U ∩ U0 ∈ ωO(X, x) and GF(U ∩ U0) ⊆ W.
This shows that GF is u.ω-c.

Theorem 2.19. A multifunction F : X→ Y is l.ω-c. if and only if the graph multifunction GF is l.ω-c.

Proof. (⇒) Suppose that F is l.ω-c. Let x ∈ X and W be any open set of X × Y such that x ∈ G−F (W). Since
W ∩ ({x} × F(x)) , ∅, there exists y ∈ F(x) such that (x, y) ∈ W and hence (x, y) ∈ U × V ⊆ W for some open
sets U and V of X and Y, respectively. Since F(x) ∩ V , ∅, there exists G ∈ ωO(X, x) such that G ⊆ F−(V).
By Lemma 2.17, U ∩ G ⊆ U ∩ F−(V) = G−F (U × V) ⊆ G−F (W). Therefore, we obtain x ∈ U ∩ G ∈ ωO(X, x) and
hence GF is l.ω-c.

(⇐) Suppose that GF is l.ω-c. Let x ∈ X and V be any open set of Y such that x ∈ F−(V). Then X × V is
open in X × Y and GF(x) ∩ (X × V) = ({x} × F(x)) ∩ (X × V) = {x} × (F(x) ∩ V) , ∅. Since GF is l.ω-c., there
exists an ω-open set U containing x such that U ⊆ G−F (X × V). By Lemma 2.17, we have U ⊆ F−(V). This
shows that F is l.ω-c.

Lemma 2.20. ([17]) Let A be a subset of a space (X, τ). Then (τω)A = (τA)ω.

Theorem 2.21. For a multifunction F : X→ Y, the following statements are true.
a) If F is u(l).ω-c. and A ⊆ X, then F |A: A→ Y is u(l).ω-c.;
b) Let {Aα : α ∈ I} be open cover of X. Then a multifunction F : X → Y is u(l).ω-c. iff the restrictions

F |Aα : Aα → Y are u(l).ω-c. for every α ∈ I.

The proof is obvious from the above lemma and we omit it.

3. Some applications

Theorem 3.1. Let F and G be u.ω-c. and image-closed multifunctions from a topological space X to a normal
topological space Y. Then the set A = {x : F(x) ∩ G(x) , ∅} is closed in X.

Proof. Let x ∈ X−A. Then F(x)∩G(x) = ∅. Since F and G are image-closed multifunctions and Y is a normal
space, then there exist disjoint open sets U and V containing F(x) and G(x), respectively. Since F and G are
u.ω-c., then the sets F+(U) and G+(V) are ω-open and contain x. Put W = F+(U) ∩ G+(V). Then W is an
ω-open set containing x and W ∩ A = ∅. Hence, A is closed in X.

Definition 3.2. ([2]) A space X is said to be ω-T2 if for each pair of distinct points x and y in X, there exist
U ∈ ωO(X, x) and V ∈ ωO(X, y) such that U ∩ V = ∅.

Theorem 3.3. Let F : X → Y be an u.ω-c. multifunction and image-closed from a topological space X to a normal
topological space Y and let F(x) ∩ F(y) = ∅ for each distinct pair x, y ∈ X. Then X is an ω-T2 space.

Proof. Let x and y be any two distinct points in X. Then we have F(x)∩ F(y) = ∅. Since Y is a normal space,
then there exists disjoint open sets U and V containing F(x) and F(y), respectively. Thus, F+(U) and F+(V)
are disjoint ω-open sets containing x and y, respectively. Thus, X is ω-T2.
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Definition 3.4. The graph G(F) of the multifunction F : X→ Y is ω-closed with respect to X if for each (x, y) <
G(F), there exist an ω-open set U containing x and an open set V containing y such that (U ×V) ∩G(F) = ∅.

Definition 3.5. A subset A of a topological space X is called α-paracompact [15] if every open cover of A in
X has a locally finite open refinement in X which covers A.

Theorem 3.6. If F : X → Y is u.ω-c. and image-α-paracompact multifunction into a Hausdorff space Y, then the
graph G(F) is ω-closed with respect to X.

Proof. Let (x0, y0) < G(F). Then y0 < F(x0). Therefore, for every y ∈ F(x0), there exists an open set V(y) and
an open set W(y) in Y containing y and y0 respectively, such that V(y) ∩W(y) = ∅. Then {V(y)|y ∈ F(x0)}
is a open cover of F(x0), thus there is a locally finite open cover Ψ = {Uβ|β ∈ ∆} of F(x0) which refines
{V(y)|y ∈ F(x0)}. So there exists an open neighborhood W0 of y0 such that W0 intersect only finitely many
members Uβ1 ,Uβ2 , ...,Uβn ofΨ. Chose finitely many points y1, y2, ..., yn of F(x0) such that Uβk ⊂ V(yk) of each
1 ≤ k ≤ n and set W = W0 ∩

[∩n
k=1 W(yk)

]
. Then W is an open neighborhood of y0 such that W ∩ (∪Ψ) = ∅.

Since F is u.ω-c., then there exists an ω-open set U containing x0 such that F(U) ⊂ ∪Ψ. Therefore, we have
that (U ×W) ∩ G(F) = ∅. Thus, G(F) is ω-closed set with respect to X.

In the above theorem, for upper ω-continuous multifunction F, if F is taken as a image-closed multi-
function and Y is taken as a regular space, then we get also same result.

Definition 3.7. A space X is called ω-compact [2] if every ω-open cover of X has a finite subcover.

Theorem 3.8. Let F : X → Y be a image-compact and u.ω-c. multifunction. If X is ω-compact and F is surjective,
then Y is compact.

Proof. Let Φ be an open cover of Y. If x ∈ X, then we have F(x) ⊆ ∪Φ. Thus Φ is an open cover of F(x). Since
F(x) is compact, there exists a finite subfamily Φn(x) of Φ such that F(x) ⊆ ∪Φn(x) = Vx. Then Vx is an open
set in Y. Since F is u.ω-c., F+(Vx) is an ω-open set in X. Therefore,Ω = {F+(Vx) : x ∈ X} is an ω-open cover of
X. Since X is ω-compact, there exists points x1, x2, ..., xn ∈ X such that X ⊂ ∪{F+(Vxi ) : xi ∈ X, i = 1, 2, ..., n}.
So we obtain Y = F(X) ⊆ F(∪{F+(Vxi ) : i = 1, 2, ..., n}) ⊂ ∪{Vxi : i = 1, 2, ..., n} ⊂ ∪{Φn(xi) : i = 1, 2, ..., n}. Thus Y
is compact.

In [[6], Theorem 4.1], Hdeib showed that a space (X, τ) is Lindelöf if and only if (X, τω) is Lindelöf.

Theorem 3.9. Let F : (X, τ) → (Y, σ) be an image-Lindelöf or image-compact and u.ω-c. multifunction. If X is
Lindelöf and F is surjective, then Y is Lindelöf.

Proof. Let Φ be an open cover of Y. If x ∈ X, then we have F(x) ⊆ ∪Φ. Thus Φ is an open cover of F(x).
When F(x) is Lindelöf, there exists a countable subfamily Φx of Φ such that F(x) ⊆ ∪Φx = Vx. Then Vx is

an open set in Y. Since F is u.ω-c., F+(Vx) is an ω-open set in X. Therefore,Ω = {F+(Vx) : x ∈ X} is an ω-open
cover of X. By Theorem 4.1 of [6], there exists points x1, x2, ..., xn, ... ∈ X such that X ⊆ ∪{F+(Vxi ) : xi ∈ X,
i = 1, 2, ..., n, ...}. So we obtain Y = F(X) ⊆ F(∪{F+(Vxi ) : i = 1, 2, ..., n, ...}) ⊆ ∪{Vxi : i = 1, 2, ..., n, ...} ⊆ ∪{Φxi :
i = 1, 2, ..., n, ...}. Thus Y is Lindelöf.

When F(x) is compact, there exists a finite subfamily Φx of Φ such that F(x) ⊆ ∪Φx = Vx. Then Vx is an
open set in Y. Since F is u.ω-c., F+(Vx) is an ω-open set in X. Therefore, Ω = {F+(Vx) : x ∈ X} is an ω-open
cover of X. By Theorem 4.1 of [6], there exists points x1, x2, ..., xn, ... ∈ X such that X ⊆ ∪{F+(Vxi ) : xi ∈ X,
i = 1, 2, ..., n, ...}. So we obtain Y = F(X) ⊆ F(∪{F+(Vxi ) : i = 1, 2, ..., n, ...}) ⊆ ∪{Vxi : i = 1, 2, ..., n, ...} ⊆ ∪{Φxi :
i = 1, 2, ..., n, ...}. Thus Y is Lindelöf.
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4. ω-connectedness

Definition 4.1. ([2]) If a space X can not be written as the union of two nonempty disjoint ω-open sets, then
X is said to be ω-connected.

Definition 4.2. Two non-empty subsets A and B of X are said to beω-separated ifωCl(A)∩B = ∅ = A∩ωCl(B).

The proof of the following theorem is obtained by ordinary arguments.

Theorem 4.3. For every topological space X, the following conditions are equivalent:
(1) X is ω-connected;
(2) ∅ and X are the only ω-open and ω-closed subsets of X;
(3) If X = A ∪ B and the sets A and B are ω-separated, then one of them is empty.

Theorem 4.4. Let X be ω-connected, F : X → Y be ω-continuous multifunction on X and V be a subset of Y such
that at least one of the following conditions is fulfilled:

(1) V is clopen;
(2) F is image-open and V is closed;
(3) F− is image-ω-open and V is open;
(4) F is image-open and F− is image-ω-open.
Then either F+(V) = X or F−(Y − V) = X.

Proof. (1) Let V be clopen set in Y. Since F is l.ω-c. and u.ω-c., F+(V) isω-open andω-closed in X by Theorems
2.3 and 2.4. Then by Theorem 4.3, F+(V) = X or X − F+(V) = X. Hence, F+(V) = X or F−(Y − V) = X.

(2) Let F be image-open and V be closed. Since F is l.ω-c., F−(Y − V) is ω-open in X. By Lemma 2.14,
F−(Y − V) is ω-closed. Since F−(Y − V) = X − F+(V), the result follows.

(3) Let F− be image-ω-open and V be open. Since F is u.ω-c., F−(Y − V) is ω-closed in X. On the other
hand, since F− is image-ω-open, F−(Y −V) = ∪{F−(y) : y ∈ Y −V} is ω-open in X. Hence, the result follows.

(4) Let F be image-open and F− be image-ω-open. By Lemma 2.14, F−(Y − V) is ω-closed for any open
set V ⊆ Y. On the other hand, since F− image-ω-open, F−(Y − V) = ∪{F−(y) : y ∈ Y − V} is ω-open in X.
Hence, the result follows.

Corollary 4.5. Let X be ω-connected and F : X → Y be an ω-continuous multifunction onto Y such that F(x) is
connected in Y for some x ∈ X. Then Y is connected.

Proof. Let V be a clopen set in Y. Then V and Y − V are separated. Since F(x) is connected, either F(x) ⊆ V
or F(x) ⊆ Y − V. By Theorem 4.4(1), either F(X) ⊆ V or F(X) ⊆ Y − V. Since F is onto, it follows that V = Y
or V = ∅. This implies that Y is connected.

Corollary 4.6. Let X be ω-connected and F : X→ Y be an ω-continuous image-open multifunction such that either
F is image-closed or F− is image-ω-open. Then F is constant.

Proof. Let x ∈ X and F(x) = V. Suppose that F is image-closed. By Theorem 4.4(1), F(X) ⊆ V, thus
F(x) = F(X). Now suppose that F− is image-ω-open. By Theorem 4.4(3), F(X) ⊆ V, thus F(x) = F(X). This
completes the proof.
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