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aVocational College of Technology, Arandjelovac, Serbia
bFaculty of Technology and Metallurgy,University of Belgrade, Serbia

Abstract. In this paper we present an algorithm for minimization of a nondifferentiable proper closed
convex function. Using the second order Dini upper directional derivative of the Moreau-Yosida regular-
ization of the objective function we make a quadratic approximation. It is proved that the sequence of
points generated by the algorithm has an accumulation point which satisfies the first order necessary and
sufficient conditions.

1. Introduction

The following minimization problem is considered:

min
x∈Rn

f (x) (1)

where f : Rn → R
∪{+∞} is a convex and not necessary differentiable function with a nonempty set X∗ of

minima.
Non-smooth optimization problems, in general, are difficult to solve, even when they are unconstrained.

For nonsmooth programs, many approaches have been presented so far and they are often restricted to the
convex unconstrained case. In general, the various approaches are based on combinations of the following
three methods: (i) subgradient methods (see [4], [11]); (ii) bundle techniques (see [12], [14], [15], [22]), (iii)
Moreau-Yosida regularization (see [13], [20], [17]).

For a function f it is very important that its Moreau-Yosida regularization is a new function which
has the same set of minima and is differentiable with Lipchitz continuous gradient, even when f is not
differentiable.

In [23] the optimality conditions and an algorithm for minimizing an LC1 function are given. Having
in mind that the Moreau-Yosida regularization of a proper closed convex function is an LC1 function, we
present an optimization algorithm based on the results from [23] and [6] (using the second order Dini upper
directional derivative (described in [2] and [3])). We shall present an iterative algorithm for finding an
optimal solution of the problem (1) by generating the sequence of points {xk} of the following form:

xk+1 = xk + dk k = 0, 1, . . . , dk , 0 (2)
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where the directional vector dk is defined by the particular algorithm. That is the main idea of this paper.
Paper is organized as follows: in the second section some basic theoretical preliminaries are given; in

the third section the Moreau-Yosida regularization and its properties are described; in the fourth section
the definition of the second upper Dini directional derivative and the basic properties are given; in the fifth
section the semismooth functions and conditions for their minimization are described. Finally, in the sixth
section a model algorithm is suggested and the convergence of the algorithm is proved.

2. Theoretical preliminaries

Throughout the paper we will use the following notation. A vector s refers to a column vector, and ∇

denotes the gradient operator
(
∂
∂x1
,
∂
∂x2
, . . . ,

∂
∂xn

)T

. The Euclidean product is denoted by ⟨·, ·⟩ and ∥ · ∥ is the

associated norm. For a given symmetric positive definite linear operator M we set ⟨·, ·⟩M := ⟨M·, ·⟩; hence it
is shortly denoted by ∥x∥2M := ⟨x, x⟩M. The smallest and the largest eigenvalue of M we denote by λ and Λ
respectively.

The domain of a given function f : Rn → R
∪{+∞} is the set dom( f ) = {x ∈ Rn| f (x) < +∞}. We say f

is proper if its domain is nonempty. The point x∗ = arg min
x∈Rn

f (x) refers to the minimum point of a given

function f : Rn → R
∪{+∞}.

A vector 1 ∈ Rn is said to be a subgradient of a given proper convex function f : Rn → R
∪{+∞} at a point

x ∈ Rn if the next inequality

f (z) ≥ f (x) + 1T · (z − x) (3)

holds for all z ∈ Rn. The set of all subgradients of f (x) at the point x, called the subdifferential at the point x,
is denoted by ∂ f (x). The subdifferential ∂ f (x) is a nonempty set if and only if x ∈ dom( f ). The condition
0 ∈ ∂ f (x) is a first order necessary and sufficient condition for a global minimizer for the convex function f
at the point x ∈ Rn (see in [1] or [18]).

For convex function f it follows that f (x) = maxz∈Rn { f (z) + 1T(x − z)} holds, where 1 ∈ ∂ f (z) ([5]).
The concept of the subgradient is a simple generalization of the gradient for nondifferentiable convex

functions.
The directional derivative of a real function f defined on Rn at the point x′ ∈ Rn in the direction s ∈ Rn,

denoted by f ′(x′, s), is

f ′(x′, s) = lim
t↓0

f (x′ + t · s) − f (x′)
t

(4)

when this limit exists. For a real convex function a directional derivative at the point x′ ∈ Rn in the direction
s exists in any direction s ∈ Rn (see Theorem 2.1.3, page 10 in [16]).

At the end of this section we recall the definition of LC1 function.

Definition 1. A real function f defined on Rn is an LC1 function on the open set D ⊆ Rn if it is continuously
differentiable and its gradient ∇ f is locally Lipschitzian, i.e., ∥∇ f (x) − ∇ f (y)∥ ≤ L∥x − y∥ for x, y ∈ D holds for some
L > 0.

3. The Moreau-Yosida regularization

Definition 2. Let f : Rn → R
∪{+∞} be a proper closed convex function. The Moreau-Yosida regularization of a

given function f , associated to the metric defined by M, denoted by F, is defined as follows:

F(x) := min
y∈Rn

{
f (y) +

1
2
∥y − x∥2M

}
. (5)
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The above function is an infimal convolution. In [21] (Theorem 5.4, page 50) it is proved that infimal
convolution of a convex function is also a convex function. Hence the function defined by (5) is a convex
function and has the same set of minima as the function f (see in [7]), so the motivation of the study of
Moreau-Yosida regularization is due to the fact that minx∈Rn f (x) is equivalent to minx∈Rn F(x).

The minimum point p(x) of the function (5), i.e.: p(x) := arg min
y∈Rn

{
f (y) +

1
2
∥y − x∥2M

}
is called the proximal

point of x. In [7] it is proved that the function F defined by (5) is always differentiable.
The first order regularity of F is well known (see in [7] and [13]): without any further assumptions, F

has a Lipschitzian gradient on the whole space Rn. More precisely,

∥∇F(x1) − ∇F(x2)∥2 ≤ Λ ⟨∇F(x1) − ∇F(x2), x1 − x2⟩

holds for all x1, x2 ∈ Rn (see in [13]), where ∇F(x) has the following form:

G := ∇F(x) =M(x − p(x)) ∈ ∂ f (p(x)) (6)

and p(x) is the unique minimizer in (5). So, according to the above consideration and Definition 1, we
conclude that F is an LC1 function (ifΛ is Lipschitzian constant for F then it is also Lipschitzian constant for
∇F).

Note in particular that the function f has nonempty subdifferential at any point p of the form p(x). Since
p(x) is the minimum point of the function (5) then it follows (see in [7] and [13]) that p(x) = x−M−11where
1 ∈ ∂ f (p(x)).

Lemma 1. The following statements are equivalent:
(i) x minimizes f ;
(ii) p(x) = x;
(iii) ∇F(x) = 0;
(iv) x minimizes F;
(v) f (p(x)) = f (x);
(vi) F(x) = f (x).

Proof. See in [7] or [20].

4. Dini second upper directional derivative

We shall give some preliminaries that will be used for the remainder of the paper.

Definition 3. The second order Dini upper directional derivative of the function f ∈ LC1 at x ∈ Rn in the direction
d ∈ Rn is defined to be

f ′′D (x, d) = lim sup
α↓0

[
∇ f (x + αd) − ∇ f (x)

]T
· d

α
.

If ∇ f is directionally differentiable at x, we have

f ′′D (x, d) = f ′′(xk, d) = lim
α↓0

[
∇ f (x + αd) − ∇ f (x)

]T
· d

α
for all d ∈ Rn.

Remark 1. For a locally Lipschitzian function the directional derivative may not exist but the Dini directional
derivative always there exists. (see [24], page 598).

According to the Rademacher’s theorem, which state that any Lipschitzian continuous function from Rn to R is
differentiable almost everywhere in Rn, it follows that ∇F is differentiable almost everywhere on Rn. Let D∇F be the
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set of points where ∇F is differentiable. The generalized Hessian in the sense of Clarke is defined to be ∂2F(xk) =
co{limxi→xk ∇2F(xi)| xi ∈ D∇F}, where co stands for the convex hull of all n×n matrices obtained as a limit of sequence of
Hessian matrices∇2F(xi). So, ∂2F(x) is nonempty convex compact subset of Rn×n. According to Caratheodory theorem
(see [9], page 195 or [25],page 155) it follows that if V ∈ ∂2F(x) then there exist V j ∈ {limxi→x ∇2F(xi)| xi ∈ D∇F} and
λ j ∈ [0, 1], r ≤ n2 + 1 such that

∑r
j=1 λ j = 1 and V =

∑r
j=1 λ jV j. In other words, V ∈ ∂2F(x) is obtained as a convex

combination of limit of semipositive definite matrices.

Lemma 2. Let f : Rn → R be a closed convex proper function and F be its Moreau – Yosida regularization for M = I.
Then V ∈ ∂2F(x) is a positive semidefinite matrix.

Proof. Let V and d be elements from the sets ∂2F(x) and Rn respectively. Then by Charatheodory theorem
there exist V j ∈ {limxi→x ∇2F(xi)| xi ∈ D∇F} and λ j ∈ [0, 1], r ≤ n2 + 1 such that

∑r
j=1 λ j = 1 and V =

∑r
j=1 λ jV j.

So, we have that

dTVd = dT

 r∑
j=1

λ jV j

 d = dT

 r∑
j=1

λ j lim
xi→x j

∇2F(x j)

 d, xi ∈ D∇F

=

r∑
j=1

λ j lim
xi→x j

(dT∇2F(x j)d), xi ∈ D∇F

≥
r∑

j=1

λ j · 0 = 0

where the last inequality holds because ∇2F(xi) is positive semidefinite at every xi ∈ D∇F as the Hessian of
the convex function F.

Lemma 3. Let f : Rn → R be a closed convex proper function and F be its Moreau –Yosida regularization for M = I.
Then the next statements are valid.

(i) F′′D(x, d) is upper semicontinous with respect to (x, d) i.e. if xi → x and di → d, then

lim sup
i→∞

F′′D(xi, di) ≤ F′′D(x, d)

(ii) F′′D(x, d) = max
{
dTVd|V ∈ ∂2F(x)

}
(iii) |F′′D(xk, d)| ≤ K · ∥d∥2, where K is some constant.
(iv) F′′D(xk, kd) = k2F′′D(xk, d)

Proof. See in [3].

5. Semi-smooth functions and optimality conditions

Definition 4. A function ∇F : Rn → Rn is said to be semi-smooth at the point x ∈ Rn if ∇F is locally Lipschitzian at
the point x ∈ Rn and the limit lim

h→d
λ↓0

{Vh}, V ∈ ∂2F(x + λh) there exists for any d ∈ Rn.

Note that for a closed convex proper function, the gradient of its Moreau-Yosida regularization is a
semi-smooth function (see in [26]).

Lemma 4. [23]: If ∇F : Rn → Rn is semi-smooth at the point x ∈ Rn then ∇F is directionally differentiable at x ∈ Rn

and for any V ∈ ∂2F(x+ h), h→ 0 we have: Vh− (∇F)′(x, h) = o(∥h∥). Similarly we have hTVh− F′′(x, h) = o(∥h∥2).

Lemma 5. Let f : Rn → R be a proper closed convex function and F be its Moreau-Yosida regularization for M=I.
Then if x ∈ Rn is a solution of the problem (1), then F′(x, d) = 0 and F′′D(x, d) ≥ 0 for all d ∈ Rn.
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Proof. From the definition of the directional derivative and by Lemma 1 we have that F′(x, d) = ∇F(x)Td =
0. Since x ∈ Rn is a solution of the problem (1) then according to Lemma 1, Theorem 23.1 in [21] and the fact

that the next inequalities F′(x + td, d) ≥ 1
t

(F(x + td) − F(x)) ≥ 0 hold, we have that

F′′D(x, d) = lim
t↓0

F′(x + td, d) − F′(x, d)
t

≥ 0.

Lemma 6. Let f : Rn → R be a proper closed convex function and F be its Moreau-Yosida regularization for M = I.
Let x be a point from Rn such that F′(x, d) = 0 and F′′D(x, d) > 0 hold for all d ∈ Rn. Then x ∈ Rn is a strict local
minimizer of the problem (1).

Proof. Suppose that x ∈ Rn is not a strict minimizer of the function f . According to Lemma 1 then x ∈ Rn

is neither strict minimizer of the function F, nor a proximal point of the function F. Then there exists a
sequence {xk}, xk → x such that F(xk) ≤ F(x) holds for every k. If we define the sequence {xk}, xk → x by

xk = x+tkd, where tk =
∥xk − x∥
∥d∥ , then by Lemma 3 it follows that F(xk)−F(x)−tk∇F(x)Td =

1
2

t2
kF′′D(x, d)+o(∥d∥2)

holds. Since ∇F(x) = 0 it follows that
1
2

t2
kF′′′D (x, d) ≤ 0, which contradicts the assumption.

6. A model algorithm

In this section an algorithm for solving the problem (1) is introduced. We suppose that at each x ∈ Rn it is
possible to compute f (x) and∇F(x), and F′′D(x, d) for a given d ∈ Rn, where F is Moreau-Yosida regularization
of the function f for M = I.

At the k-th iteration we consider the following problem

min
d∈Rn
Φ̃k(d), Φ̃k(d) = F(xk) + ∇F(xk)Td +

1
2

F′′D(xk, d) (7)

where F′′D(xk, d) stands for the second order Dini upper directional derivative at xk in the direction d. Note
that if Λ is Lipschitzian constant for F it is also Lipschitzian constant for ∇F. Since F is an LC1 function, it
follows that F′′D(xk, d) always there exists for all d ∈ Rn. Φ̃k(d) is called an iteration function. It is easy to see
that Φ̃k(0) = F(xk) and Φ̃k(d) is Lipschitzian on Rn (with the same Lipshitzian constant as a function F).

Lemma 7. The objective function of the problem (7) is a convex function.

Proof. Let d1 and d2 be vectors from Rn and V̂k ∈ ∂2F(xk). Let λ be a scalar such that 0 < λ < 1. Then

Φ̃k(λd1 + (1 − λ)d2) = F(xk) + ∇F(xk)T(λd1 + (1 − λ)d2) +
1
2

F′′D(xk, (λd1 + (1 − λ)d2))

= λ(F(xk) + ∇F(xk)Td1) + (1 − λ)(F(xk) + ∇F(xk)Td2)+

+
1
2

max
V̂k∈∂2F(xk)

(λd1 + (1 − λ)d2)TV̂k(λd1 + (1 − λ)d2)

(8)

holds. Since V̂k ∈ ∂2F(xk) is positive semidefinite as stated in Lemma 2 then it follows:

(d1 − d2)TV̂k(d1 − d2) ≥ 0⇒ dT
1 V̂kd2 + dT

2 V̂kd1 ≤ dT
1 V̂kd1 + dT

2 V̂kd2.

Hence

(λd1 + (1 − λ)d2)TV̂k(λd1 + (1 − λ)d2) = λ2dT
1 V̂kd1 + (1 − λ)2dT

2 V̂kd2+

+ λ(1 − λ)dT
2 V̂kd1 + λ(1 − λ)dT

1 V̂kd2

≤ λ2dT
1 V̂kd1 + (1 − λ)2dT

2 V̂kd2+

+ λ(1 − λ)(dT
1 V̂kd1 + dT

2 V̂kd2)

= λdT
1 V̂kd1 + (1 − λ)dT

2 V̂kd2.

(9)
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So, from (8) and (9) then it follows:

Φ̃k(λd1 + (1 − λ)d2) ≤ λ(F(xk) + ∇F(xk)Td1) + (1 − λ)(F(xk) + ∇F(xk)Td2)+

+
1
2

max
V̂k∈∂2F(xk)

(λd1 + (1 − λ)d2)TV̂k(λd1 + (1 − λ)d2)

≤ λ(F(xk) + ∇F(xk)Td1) + (1 − λ)(F(xk) + ∇F(xk)Td2)+

+
1
2

max
V̂k∈∂2F(xk)

(λdT
1 V̂kd1 + (1 − λ)dT

2 V̂kd2)

≤ λ(F(xk) + ∇F(xk)Td1) + (1 − λ)(F(xk) + ∇F(xk)Td2)+

+ λ
1
2

max
V̂k∈∂2F(xk)

dT
1 V̂kd1 + (1 − λ)

1
2

max
V̂k∈∂2F(xk)

dT
2 V̂kd2

= λΦ̃k(d1) + (1 − λ)Φ̃k(d2)

(where the last inequality holds since the maximum over the sum of two nonnegative functions is less or
equal to sum of maximum of this functions).

Lemma 8. The following two statements are equivalent:
(i) xk is a solution of the problem (1)
(ii) dk = 0 is a solution of the problem (7).

Proof. i)⇒ ii): Suppose that dk , 0 is a solution of the problem (7) and xk is a solution of the problem (1).
Then ∇F(xk) = 0 holds by Lemma 1 and by Lemma 2 it follows that

Φ̃k(dk) = F(xk) + ∇F(xk)Tdk +
1
2

F′′D(xk, dk) = F(xk) +
1
2

F′′D(xk, dk) ≥ F(xk) = Φ̃k(0) (10)

which contradicts Φ̃k(dk) = mind∈Rn Φ̃k(d) ≤ Φ̃k(0) = F(xk). So dk = 0 is a solution of the problem (7).
ii)⇒ i): Suppose that dk = 0 is a solution of the problem (7). Then we have that 0 ∈ ∂Φ̃k(dk) holds, and

then there exists some V̂k ∈ ∂2F(xk) such that 0 = V̂kdk + ∇F(xk). Since by assumption dk = 0 it follows that
0 = ∇F(xk) which means (by Lemma 1) that xk is a solution of the problem (1).

Lemma 9. If xk is not a solution of the problem (1), then a minimum point dk of the function Φ̃k(d) = F(xk) +

∇F(xk)Td +
1
2

F′′D(xk, d) over the set Rn is an non ascent direction of the function F at the point xk.

Proof. If dk is a solution of the problem (7) then it follows that 0 ∈ ∂Φ̃k(dk), i.e. 0 ∈ ∇F(xk)+
1
2
∂(F′′D(xk, dk))⇒

0 ∈ ∇F(xk) +
1
2
∂(maxV∈∂2F(xk) dT

k Vdk). Then for some Ĝk ∈
1
2
∂(maxV∈∂2F(xk) dT

k Vdk), where Ĝk = V̂kdk, V̂k =∑r
j=1 λ jV j, r ≤ n2 + 1, V j ∈ ∂2F(xk), it follows that

V̂kdk = −∇F(xk) (11)

holds.
If ∥V̂k∥ = 0 then from (11) by consistency of norms (if we take norm ∥ · ∥2, see [24], page 5) it follows that

∥∇F(xk)∥ = 0 (because of ∥∇F(xk)∥ = ∥V̂kdk∥ ≤ ∥V̂k∥ ∥dk∥ = 0). Hence by (6) and Lemma 1 it follows that xk is
a solution of the problem (1). So, since by assumption xk is not a solution of the problem (1), then ∥V̂k∥ , 0.
From (11) by Lemma 2 then it follows that 0 ≤ dT

k V̂kdk = −∇F(xk)Tdk, i.e.∇F(xk)Tdk ≤ 0. Hence, dk is an non
ascent direction of the function F at the point xk.

We will present the algorithm now.
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Algorithm 1.
Step 1 Given x0 ∈ Rn, ε > 0. Set k = 0.
Step 2 Compute F(xk) and ∇F(xk).
If ∥∇F(xk)∥ < ε then stop. The point xk is a solution of the problem (1).
Otherwise solve the problem (7), i.e.:

min
d∈Rn
Φ̃k(d), Φ̃k(d) = F(xk) + ∇F(xk)Td +

1
2

F′′D(xk, d)

and denote by dk its solution.
Step 3 If ∥dk∥ < ε then stop. The point xk is a solution of the problem (1). Else go to Step 4.
Step 4 Set xk+1 = xk + dk and k = k + 1. Go to Step 2.

Remark 2. If Algorithm terminates at the Step 2, then by Lemma 1 the point xk is a solution of the problem (1).
If Algorithm terminates at the Step 3, then by Lemma 8 the point xk is a solution of the problem (1).

Theorem 1. Let f : Rn → R be a closed convex proper function and F be its Moreau –Yosida regularization for
M = I. Let the sequence {xk} be generated by Algorithm. Suppose that {xk} ⊆ B, where B is a compact. Then for any
initial point x0 ∈ Rn, xk → x∞ as k→ +∞, where x∞ is a minimal point of the function f .

Proof. Since we suppose that {xk} ⊆ B, where B is a compact, then there exist accumulation points of the
sequence {xk}. Since ∇F is continuous, then, if ∇F(xk)→ 0, k→ +∞ then it follows that every accumulation
point x∞ of the sequence {xk} satisfies ∇F(x∞) = 0. Hence, by Lemma 1 the point x∞ is a minimizer of F and,
also, a minimizer of the function f .

Therefore we have to prove that ∇F(xk)→ 0, k→ +∞.
Since from Algorithm we have that xk+1 = xk + dk, then it follows that dk → 0 as k → +∞, i.e. d∞ = 0.

From Algorithm we have that ∇F(xk)Tdk ≤ 0 and ∇F(x∞)Td∞ ≤ 0 as k → +∞. If we denote by Φ∞(d∞) =

F(x∞) + ∇F(x∞)Td∞ +
1
2

F′′D(x∞, d∞) = F(x∞) then according to the fact that F′′D(x, d) is upper semicontinous
with respect to (x, d) i.e. if xi → x and di → d then lim supi→∞ F′′D(xi, di) ≤ F′′D(x, d), and by Lemma 3 and
Lemma 2, we get

F(x∞) = Φ̃∞(d∞) ≥ lim sup
k→∞

Φ̃k(dk) = lim sup
k→∞

(F(xk) + ∇F(xk)Tdk +
1
2

F′′D(xk, dk))

≥ lim inf
k→∞

(F(xk) + ∇F(xk)Tdk +
1
2

F′′D(xk, dk))

= lim inf
k→∞

Φ̃k(dk) ≥ lim inf
k→∞

(F(xk) + ∇F(xk)Tdk) = lim
k→∞

(F(xk) + ∇F(xk)Tdk)

= F(x∞) + ∇F(x∞)Td∞ = F(x∞) = Φ̃∞(d∞)

i.e. Φ̃∞(d∞) = limk→∞ Φ̃k(dk).
Since 1k = 0 ∈ ∂Φ̃k(dk) then by Theorem 24.4 1 in [21] page 249 it follows that 1∞ = 0 ∈ ∂Φ̃∞(d∞) as

k → +∞. Then for some Ĝ∞ ∈
1
2
∂(maxV∈∂2F(xk) dT

∞Vd∞), where Ĝ∞ = V̂∞d∞, V̂∞ =
∑r

j=1 λ jV j, r ≤ n2 + 1,

V j ∈ ∂2F(x∞), it follows that V̂∞d∞ = −∇F(x∞) holds. Hence by consistency of norms we have that
∥∇F(x∞)∥ = ∥V̂∞d∞∥ ≤ ∥V̂∞∥∥d∞∥ = ∥V̂∞∥ · 0 = 0, i.e. ∥∇F(x∞)∥ = 0.

7. Conclusion

The Moreau-Yosida regularization is a powerful tool for smoothing nondifferentiable functions. It
allows us to transform the solving an NDO problem into the solving an LC1 optimization problem using
the properties of this regularization.

To our knowledge this is a new approach to solving NDO problems, and in some sense it is close to the
proximal quasi Newton algorithm (see [6]).
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