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Abstract. Let G be an (n,m)-graph (n vertices and m-regular) and H be an (m, d)-graph. Randomly number
the edges around each vertex of G by {1, . . . ,m} and fix it. Then the replacement product GrH of graphs G
and H (with respect to the numbering) has vertex set V(GrH) = V(G)×V(H) and there is an edge between
(v, k) and (w, l) if v = w and kl ∈ E(H) or vw ∈ E(G) and kth edge incident on vertex v in G is connected to
the vertex w and this edge is the lth edge incident on w in G, where the numberings k and l refers to the
random numberings of edges adjacent to any vertex of G. If the set of edges of a graph can be partitioned
to a set of complete matchings, then the graph is called 1-factorizable and any such partition is called
a 1-factorization. In this paper, 1-factorizability of the replacement product GrH of graphs G and H is
studied. As an application we show that fullerene C60 and C4C8 nanotorus are 1-factorizable.

1. Introduction

Graphs considered in this paper are finite, simple and undirected. Let G be a simple graph. The
vertex set, edge set, maximum degree and minimum degree of G will be denoted by V(G), E(G), ∆(G),
δ(G) respectively. The order of G is |V(G)|, i.e. the number of vertices of G. A graph G is called regular if
δ(G) = ∆(G) and the latter integer is called the degree of G and denoted by d(G). A d-regular graph G on
n vertices is called an (n, d)-graph. A graph is called cubic if it is 3-regular. We denote by Kn and Cn the
complete graph of order n and the cycle of order n, respectively. We denote by NG(x) the neighborhoods of
x ∈ V(G), that is, the set of vertices adjacent to x.

A spanning subgraph of a graph G is a subgraph H of G such that V(H) = V(G). An r-regular spanning
subgraph of G is called an r-factor. A 1-factorization of G is a set of edge-disjoint 1-factors of G whose
union is E(G). The graph G is said to be 1-factorizable if it has a 1-factorization. A necessary condition for a
graph G to be 1-factorizable is that G is a regular graph of even order. The concept of 1-factorization can be
expressed by the concept of edge coloring. An edge coloring of a graph G is a map θ : E(G)→ C, where C
is a set, called the color set, and θ(e) , θ( f ) for any pair e and f of adjacent edges of G. If α is a color, the set
θ−1({α}), i.e. the set of edges of G colored α, is called the α-color class. If |C| = m we say that θ is an m-edge
coloring. The least integer m for which an m-edge coloring of G exists is called the edge chromatic index of
G and denoted by χ

′
(G). It is easily seen that χ

′
(G) ≥ ∆(G) for any graph G. Vizing [9] proved that
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Theorem 1.1 (Vizing’s Theorem). χ′ (G) ≤ ∆(G) + 1 for any graph G.

If in a regular graph G, we have χ
′
(G) = ∆(G) then edges of each color class consists a 1-factor and G

is 1-factorizable. We call a graph Hamiltonian if it contains a spanning cycle. Such a cycle is called a
Hamiltonian cycle. Any Hamiltonian graph of even order has a 1-factor, for if C is a Hamiltonian cycle of
G and we select alternate edges of C, we eventually end up with a 1-factor of G. A 2-factor all of whose
components are even is called an even 2-factor.

We shall also need the following well known sufficient condition for the existence of a Hamilton cycle
in a graph due to Dirac [4].

Theorem 1.2 (Dirac’s Theorem). Let G be a graph of order at least three such that δ(G) ≥ |V(G)|
2 . Then G is

Hamiltonian.

Let A and B be finite groups. Assume that B acts on A, namely we are fixing a homomorphism ϕ from B to
the automorphism group of A and for elements a ∈ A, b ∈ B we denote by ab the element abϕ the action of b
on a. We also use aB to denote the orbit of a under this action.

The Cayley graph C(H,S) of a group H and a generating set S = S−1 := {s−1 | s ∈ S}, is an undirected
graph whose vertices are the elements of H, and where {1, h} is an edge if 1−1h ∈ S. The Cayley graph C(H,S)
is |S|-regular.

2. 1-Factorizations of replacement products

In this section we describe the replacement product and investigate 1-factorizability of replacement product.

Let G be any (n, k)-graph and let [k] = {1, . . . , k}. By a random numbering of G we mean a random
numbering of the edges around each vertex of G by the numbers in {1, . . . , k}. More precisely, a random
numbering of G is a set φG consisting of bijection maps φx

G : NG(x)→ [k] for any x ∈ V(G). Thus the graph
G has (k!)n random numberings.

Example 2.1. Suppose G = C(A, S) is a Cayley graph. Then the edges around each vertex of G are naturally
labeled by the elements of S: if {x, y} ∈ E(G) then φx

G(y) = f (x−1y), where f is a bijection map from S to [|S|].

Definition 2.2. Let G be an (n, k)-graph and let H be a (k, k′)-graph with V(H) = [k] = {1, . . . , k} and fix a random
numbering φG of G. The replacement product GrφG H is the graph whose vertex set is V(G) × V(H) and there is an
edge between vertices (v, k) and (w, l) whenever v = w and kl ∈ E(H) or vw ∈ E(G), φv

G(w) = k and φw
G(v) = l.

Note that the definition of GrφG H clearly depends on φG. Thus for given any two regular graphs G and H
as above, there are (|V(H)|!)|V(G)| replacement products which are not necessarily isomorphic.
It follows from the definition that GrφG H is a regular graph and in fact it is a (nk, k′ + 1)-graph (see [1, 7, 8]).

Example 2.3. Let G = K5 and H = C4 and let φG, φ′G be as shown in Figure 1. Then the replacement product
GrφG H and Grφ′G H are not isomorphic, (see Figure 2) since the determinants of the adjacency matrices of
GrφG H and Grφ′G H are 9 and 12, respectively.

Lemma 2.4. Let G be an (n, k)-graph. Then G is 1-factorizable if and only if there exists a random numbering φG
such that for any edge xx′ of G we have φx

G(x′) = φx′
G (x).

Proof. ⇒: Let G have a 1-factorization. Then, since G is k-regular, there exists an edge coloringθ : E(G)→ [k]
for G. Now define the map φx

G from NG(x) to [k] for any x ∈ V(G) as φx
G(y) = θ(xy) for all y ∈ NG(x). Clearly

φx
G is a bijection and we have

φx
G(x′) = θ(xx′) = θ(x′x) = φx′

G (x)
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Figure 1: G = K5 and H = C4

Figure 2: (A) is GrφG H and (B) is Grφ′G H

for any xx′ ∈ E(G). Thus φG = {φx
G | x ∈ V(G)} is the desired random numbering of G.

⇐: Suppose that G has a random numbering φG with the mentioned property in the lemma. Let β be the
map from E(G) to [k] defined by β(xy) = φx

G(y) for any xy ∈ E(G). Since φx
G(y) = φy

G(x) (β(xy) = β(yx)), then
β is well-defined. Now we show that β is an edge coloring for G. To do this, suppose e, f be two adjacent
edges of E(G). Then there exist x, y, y′ ∈ V(G) with e = xy, f = xy′ and y , y′. Hence φx

G(y) , φx
G(y′), as φx

G
is one-to-one. This implies that β(e) , β( f ), as required.

If G is a 1-factorizable graph, a random numbering φG is called a 1-factorizable numbering whenever for
any edge xx′ of G we have φx

G(x′) = φx′
G (x). Thus it follows from Lemma 2.4 that every 1-factorizable graph

has a 1-factorizable numbering.

We now consider the case when the two components of the product graph are Cayley graphs G = C(A,SA)
and H = C(B,SB). Furthermore, suppose that B acts on A in such a way that SA = αB for some α ∈ SA. So
the edges around each vertex of G are naturally labeled by the elements of B. This enables us to define the
replacement product of G and H.

The following result is well-known and we give a proof by using Lemma 2.4.
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Lemma 2.5. Let G be a cubic graph. Then the following properties are equivalent:
(i) G is 1-factorizable.
(ii) G has an even 2-factor.
(iii) GrφG C3 is 1-factorizable for any 1-factorizable numbering φG.

Proof. (i) ⇔ (ii) Suppose that G is 1-factorizable. Then, since G is 3-regular, there exists an edge coloring
θ : E(G) → [3]. For any two colors α, β, the subgraph generated by the union of α- and β-color classes is a
spanning subgraph of G which is the union of some cycle subgraphs C1, . . . ,Cs of G with disjoint vertices
and even length.

If G has an even 2-factor then G contains a spanning subgraph
∪s

i=1 Ci where Ci are disjoint cycles of
even length. Thus Ci are 1-factorizable and by Lemma 2.4, there exists a random numbering φCi such that
for any edge ab of Ci we have φa

Ci
(b) = φb

Ci
(a). Now define φx

G for each x ∈ V(G) as follows:

φx
G(y) =

{
φx

Ci
(y) xy ∈ E(Ci)

3 otherwise.

It is easy to see that φG is a random numbering of G satisfying the conditions of Lemma 2.4.
(i)⇔ (iii) We know G is 1-factorizable if only if there exists a 1-factorizable numbering φG such that for

any xy ∈ E(G) we have φx
G(y) = φy

G(x). Assume G is 1-factorizable and φG is a 1-factorizable numbering. If
V(C3) = [3] = {1, 2, 3} then we define φ(x,i)

GrφG
C3

for (x, i) ∈ V(GrφG C3) as follows:

φ(x,i)
GrφG

C3
((y, j)) =

{
[3]-{i, j} x = y, i j ∈ E(C3)
φx

G(y) xy ∈ E(G) ,

where (y, j) ∈ NGrφG
C3 ((x, i)). It is obvious that φ(x,i)

GrH((y, j)) = φ(y, j)
GrH((x, i)). Now Lemma 2.4 completes the

proof.

Corollary 2.6. Let G be a 1-factorizable graph and φG is 1-factorizable numbering of G. Assume also that G1 denotes
GrφG C3 and recursively let Gr = Gr−1rφGr−1

C3. Then {Gr}r≥1 is an infinite family of 1-factorizable cubic graphs.

Theorem 2.7. Let G be an (n, k)-graph and let H be a (k, k′)-graph with V(H) = [k]. If H has a 1-factorization, then
the replacement product GrφG H is 1-factorizable for any random numbering φG of G.

Proof. Let GrH = GrφG H. By Lemma 2.4, there exists a set φH = {φa
H : NH(a) → [k′] | a ∈ V(H)} such that

for any ab ∈ E(H) we have φa
H(b) = φb

H(a). Now define φ(x,a)
GrH for any (x, a) ∈ V(GrH) and (y, b) ∈ NGrH(x, a)

as follows:

φ(x,a)
GrH((y, b)) =

{
φa

H(b) x = y
k′ + 1 otherwise.

It is obvious that φ(x,a)
GrH((y, b)) = φ(y,b)

GrH((x, a)). Now Lemma 2.4 completes the proof.

Example 2.8. Let Cn be a cycle of length n. Then for any random numbering φCn , we have

CnrφCn
K2 � C2n

If n is odd then Cn is not 1-factorizable but CnrφCn
K2 � C2n is 1-factorizable. If n is even then Cn−1 is not 1-

factorizable. Therefore for any random numbering φKn , the graph KnrφKn
Cn−1 is cubic having an even 2-factor. Then

by Lemma 2.5, KnrφKn
Cn−1 is a 1-factorizable graph.

Theorem 2.9. Let G be an (n,m)-graph. Then the replacement product GrφG Km is 1-factorizable whenever one of
the following conditions holds:

(a) m is even and φG is any random numbering of G.
(b) G is 1-factorizable and φG is any 1-factorizable numbering of G.
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Proof. The complete graph Km is 1-factorizable whenever m is even. Then by Theorem 2.7, GrφG Km is
1-factorizable for any random numbering φG of G. If m is odd and G is 1-factorizable then by Lemma 2.4,
there exists a random numbering φG such that for x ∈ V(G) and y ∈ NG(x), we have φx

G(y) = φy
G(x). For any

(x, i) ∈ V(GrφG Km) and (y, j) ∈ NGrφG
Km ((x, i)), where i, j ∈ V(Km) = [m], we define φ(x,i)

GrφG
Km

as follows:

φ(x,i)
GrφG

Km
((y, j)) =


φx

G(y) xy ∈ E(G)
i+ j
2 x = y and i + j is non − zero and even

m x = y and i + j = 0
i+ j+m

2 x = y and i + j is odd

,

where i + j is the remainder when i + j is divided by m. It is easy to see that φ(x,i)
GrKm

((y, j)) = φ(y, j)
GrKm

((x, i)).
This completes the proof.

For the replacement product GrCk, k ≥ 4, we derive the following result.

Theorem 2.10. Let G be an (n, k)-graph and Ck a cycle of length k ≥ 4. Then the replacement product GrφG Ck is
1-factorizable if one of the following conditions holds:

(a) k is even and φG is any random numbering of G
(b) G has an even 2-factor H =

∪s
i=1 Ci and φG |Ci= φCi , where φCi are 1-factorizable numbering of Ci.

Proof. If k is even then Ck = (123 . . . k) has 1-factorization and by Theorem 2.7, GrφG Ck is 1-factorizable.
Let G have an even 2-factor. Thus there exist disjoint cycles Ci(1 ≤ i ≤ s) with even lengths, whose∪s

i=1 Ci is a spanning subgraph of the graph G. Cycles Ci = (ai1ai2 . . . aini ), 1 ≤ i ≤ s, are 1-factorizable and
n =
∑s

i=1 ni. Because each ni is even then by Lemma 2.4, there are φCi where for any edge ail, aim of Ci we
have φail

Ci
(aim) = φaim

Ci
(ail). Let φai1

Ci
(ai2) = φai2

Ci
(ai1) = 1 thus we define cycle Ti as follows:

Ti = ((ai1, 1)(ai2, 1)(ai2, k)(ai2, k − 1) . . . (ai2, 3)(ai2, 2)(ai3, 2)(ai3, 3)
. . . (ai3, k − 1)(ai3, k)(ai3, 1) . . . (aini , 1)(aini , k)(aini , k − 1)
. . . (aini , 3)(aini , 2)(ai1, 2)(ai1, 3) . . . (ai1, k − 1)(ai1, k))

Ti are cycles of length kni and
∪s

i=1 Ti is a spanning subgraph of the replacement product GrφG Ck, where
φG |Ci= φCi . Then by Lemma 2.5, GrφG Ck has 1-factorization.

Figure 3: (A) is Icosahedron and (B) is Fullerene C60
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Corollary 2.11. Let G be an (n, k)-graph and 2k ≥ n. Then by Dirac’s Theorem, the replacement product GrCk is
1-factorizable.

Let us end the paper with two applications of the above result.

Figure 4: Coloring the edges of C60.

Figure 5: A TC4C8(R) tori (a) Top view (b) Side view

Example 2.12. A fullerene graph (in short a fullerene) is a 3-connected cubic planar graph, all of whose faces are
pentagons and hexagons. By Euler formula the number of pentagons equals 12. The first fullerenes, C60 and C70, were
isolated in 1990. The smaller version, C60, is in the shape of a soccer ball. Graph-theoretic observations on structural
properties of fullerenes are important in this respect [3, 5, 6]. Suppose F is a fullerene C60 and A is the icosahedron
((12, 5)-graph). By Figure 3(A), C = (a1a3a2a6a5a10a11a7a12a8a9a4) is a Hamiltonian cycle of A and A is hamiltonian.
If φA for any edges aia j are defined in Table I, then ArφA C5 = F is Hamiltonian, see Figure 3(B). By Lemma 2.5, F is
1-factorizable. There are many different ways to color the edges of the graph C60 (for example see Figure 4).

Example 2.13. Consider C4 nanotorus S. Then S = Ck × Cm, where Cn is the cycle of order n and S be an (km, 4)-
graph ( S is the Cartesian product of cycles). Suppose T is a T = TC4C8[k,m](R) nanotorus (which k is the number
of squares in every row and m is the number of squares in every column, Figure 5), [2]. Then T is an (4km, 3)-graph.
It is easy to see that T = SrφS C4, for some of random numbering φS of graph S. Because C4 is 1-factorizable then by
Theorem 2.10, nanotorus T is 1-factorizable.
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1 2 3 4 5
φa1

A (a4) φa1
A (a3) φa1

A (a2) φa1
A (a6) φa1

A (a5)
φa4

A (a10) φa4
A (a9) φa4

A (a3) φa4
A (a1) φa4

A (a5)
φa3

A (a9) φa3
A (a8) φa3

A (a2) φa3
A (a1) φa3

A (a4)
φa2

A (a8) φa2
A (a7) φa2

A (a6) φa2
A (a1) φa2

A (a3)
φa6

A (a7) φa6
A (a11) φa6

A (a5) φa6
A (a1) φa6

A (a2)
φa5

A (a11) φa5
A (a10) φa5

A (a4) φa5
A (a1) φa5

A (a6)
φa12

A (a11) φa12
A (a7) φa12

A (a8) φa12
A (a9) φa12

A (a10)
φa11

A (a6) φa11
A (a6) φa11

A (a7) φa11
A (a12) φa11

A (a10)
φa7

A (a5) φa7
A (a2) φa7

A (a8) φa7
A (a12) φa7

A (a11)
φa8

A (a4) φa8
A (a3) φa8

A (a9) φa8
A (a12) φa8

A (a7)
φa9

A (a3) φa9
A (a4) φa9

A (a10) φa9
A (a12) φa9

A (a8)
φa10

A (a2) φa10
A (a5) φa10

A (a11) φa10
A (a12) φa10

A (a9)

Table 1: Table I
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