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Abstract. Let R be a ring with unit 1 and a ∈ R, ā = a + δa ∈ R such that a# exists. In this paper, we mainly
investigate the perturbation of the group inverse a# on R. Under the stable perturbation, we obtain the
explicit expressions of ā#. The results extend the main results in [19, 20] and some related results in [18].

As an application, we give the representation of the group inverse of the matrix
[
d b
c 0

]
on the ring R for

certain d, b, c ∈ R.

1. Introduction

Let R be a ring with unit and a ∈ R. we consider an element b ∈ R and the following equations:

(1) aba = a, (2) bab = b, (3) akba = ak, (4) ab = ba.

If b satisfies (1), then b is called a pseudo–inverse or 1–inverse of a. In this case, a is called regular. The
set of all 1–inverse of a is denoted by a{1}; If b satisfies (2), then b is called a 2–inverse of a, and a is called
anti–regular. The set of all 2–inverse of a is denoted by a{2}; If b satisfies (1) and (2), then b is called the
generalized inverse of a, denoted by a+; If b satisfies (2), (3) and (4), then b is called the Drazin inverse of a,
denoted by aD. The smallest integer k is called the index of a, denoted by ind(a). If ind(a) = 1, we say a is
group invertible and b is the group inverse of a, denoted by a#.

The notation so–called stable perturbation of an operator on Hilbert spaces and Banach spaces is
introduced by G. Chen and Y. Xue in [4, 6]. Later the notation is generalized to Banach Algebra by Y. Xue
in [19] and to Hilbert C∗–modules by Xu, Wei and Gu in [17]. The stable perturbation of linear operator
was widely investigated by many authors. For examples, in [5], G. Chen and Y. Xue study the perturbation
for Moore–Penrose inverse of an operator on Hilbert spaces; Q. Xu, C. Song and Y. Wei studied the stable
perturbation of the Drazin inverse of the square matrices when I − Aπ − Bπ is nonsingular in [16] and Q.
Huang and W. Zhai worked over the perturbation of closed operators in [12, 13], etc..
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The Drazin inverse has many applications in matrix theory, difference equations, differential equations
and iterative methods. In 1979, Campbell and Meyer proposed an open problem: how to find an explicit

expression for the Drazin inverse of the matrix
[
A B
C D

]
in terms of its sub-block in [1]? The representation

of the Drazin inverse of a triangular matrix
[
A B
0 D

]
has been given in [3, 9, 11]. In [8], Deng and Wei studied

the Drazin inverse of the anti-triangular matrix
[
A B
C 0

]
and given its representation under some conditions.

In this paper, we investigate the stable perturbation for the group inverse of an element in a ring.
Assume that 1− aπ− āπ is invertible, we present the expression of ā# and āD. This extends the related results
in [18, 20]. As an applications, we study the representation for the group inverse of the anti–triangular

matrix
[
d b
c 0

]
on the ring.

2. Some Lemmas

Throughout the paper, R is always a ring with the unit 1. In this section, we give some lemmas:

Lemma 2.1. Let a, b ∈ R. Then 1 + ab is invertible if and only if 1 + ba is invertible. In this case, (1 + ab)−1 =
1 − a(1 + ba)−1b and

(1 + ab)−1a = a(1 + ba)−1, b(1 + ab)−1 = (1 + ba)−1b.

Lemma 2.2. Let a, b ∈ R. If 1 + ab is left invertible, then so is 1 + ba.

Proof. Let c ∈ R such that c(1 + ab) = 1. Then

1 + ba = 1 + bc(1 + ab)a = 1 + bca(1 + ba).

Therefore, (1 − bca)(1 + ba) = 1.

Lemma 2.3. Let a be a nonzero element inR such that a+ exists. If s = a+a+ aa+ − 1 is invertible inR, then a# exists
and a# = a+s−1 + (1 − a+a)s−1a+s−1.

Proof. According to [14] or [18, Theorem 4.5.9], a# exists. We now give the expression of a# as follows.
Put p = a+a, q = aa+. Then we have

ps = pq = sq, qs = qp = sp, sa = a+a2. (2.1)

Set y = a+s−1. Then by (2.1),

yp = a+s−1a+a = a+aa+s−1 = y = py,

pay = a+aaa+s−1 = pqs−1 = p,

ypa = a+s−1a+aa = a+a = p.

Put a1 = pap = pa, a2 = (1 − p)ap = (1 − p)a. Then a = a1 + a2 and it is easy to check that a# = y + a2y2. Using
(2.1), we can get that a# = a+s−1 + (1 − a+a)a(a+s−1)2 = a+s−1 + (1 − a+a)s−1a+s−1.

Let M2(R) denote the matrix ring of all 2 × 2 matrices over R and let 12 denote the unit of M2(R).

Corollary 2.4. Let b, c ∈ R have group inverse b# and c# respectively. Assume that k = b#b+ c#c− 1 is invertible in

R. Then
[
0 b
c 0

]#
exists with

[
0 b
c 0

]#
=

[
0 k−1c#k−1

k−1b#k−1 0

]
.

In particular, when b#bc#c = b#b and c#cb#b = c#c,
[
0 b
c 0

]#
=

[
0 b#bc#

c#cb# 0

]
.
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Proof. Set a =
[
0 b
c 0

]
. Then a+ =

[
0 c#

b# 0

]
and

a+a + aa+ − 12 =

[
b#b + c#c − 1 0

0 b#b + c#c − 1

]
=

[
k

k

]
is invertible in M2(R). Noting that bb#k−1 = k−1cc#. Thus, by Lemma 2.3,

a# = a+
[
k−1

k−1

]
+ (12 − a+a)

[
k−1

k−1

]
a+
[
k−1

k−1

]
=

[
0 c#k−1 + (1 − c#c)k−1c#k−1

b#k−1 + (1 − b#b)k−1b#k−1 0

]
=

[
0 k−1c#k−1

k−1b#k−1 0

]
.

When b#bc#c = b#b and c#cb#b = c#c, k−1 = k. In this case,
[
0 b
c 0

]#
=

[
0 b#bc#

c#cb# 0

]
.

Lemma 2.5. Let a, b ∈ R and p be a non–trivial idempotent element in R, i.e., p , 0, 1. Put x = pap + pb(1 − p).

(1) If pap is group invertible and (pap)(pap)#b(1 − p) = pb(1 − p), then x is group invertible too and x# =
(pap)# + [(pap)#]2pb(1 − p).

(2) If x is group invertible, then so is the pap.

Proof. (1) It is easy to check that p(pap)# = (pap)#p = (pap)#. Put y = (pap)# + [(pap)#]2pb(1 − p). Then xyx = x,
yxy = y and xy = yx, i.e., y = x#.

(2) Set y1 = px#p, y2 = px#(1 − p), y3 = (1 − p)x#p and y4 = (1 − p)x#(1 − p). Then x# = y1 + y2 + y3 + y4.
From xx#x = x, x#xx# = x# and xx# = x#x, we can obtain that y3 = y4 = 0 and

(pxp)y1(pxp) = pxp, y1(pxp)y1 = y1, y1(pxp) = (pxp)y1,

that is, (pxp)# = y1.

At the end of this section, we will introduce the notation of stable perturbation of an element in a ring.
LetA be a unital Banach algebra and a ∈ A such that a+ exists. Let ā = a + δa ∈ A. Recall from [19] that

ā is a stable perturbation of a if āA ∩ (1 − aa+)A = {0}. This notation can be easily extended to the case of
ring as follows.

Definition 2.6. Let a ∈ R such that a+ exists and let ā = a + δa ∈ R. We say ā is a stable perturbation of a if
āR ∩ (1 − aa+)R = {0}.

Using the same methods as appeared in the proofs of [19, Proposition 2.2] and [18, Theorem 2.4.7], we
can obtain:

Proposition 2.7. Let a ∈ R and ā = a+δa ∈ R such that a+ exists and 1+a+δa is invertible inR. Then the following
statements are equivalent:

(1) ā+ exists and ā+ = (1 + a+δa)−1a+.
(2) āR ∩ (1 − aa+)R = {0} ( that is, ā is a stable perturbation if a).
(3) ā(1 + a+δa)−1(1 − a+a) = 0.
(4) (1 − aa+)(1 + δaa+)−1ā = 0.
(5) (1 − aa+)δa(1 − a+a) = (1 − aa+)δa(1 + a+δa)−1a+δa(1 − a+a).
(6) Rā ∩R(1 − a+a) = {0}.
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3. Main results

In this section, we investigate the stable perturbation for group inverse and Drazin inverse of an element
a in R.

Let a ∈ R and ā = a + δa ∈ R such that a# exists and 1 + a#δa is invertible in R. Put aπ = (1 − a#a),
Φ(a) = 1 + δaaπδa[(1 + a#δa)−1a#]2 and B = Φ(a)(1 + δaa#), C(a) = aπδa(1 + a#δa)−1a#. These symbols will be
used frequently in this section.

Lemma 3.1. Let a ∈ R and ā = a + δa ∈ R such that a# exists and 1 + a#δa is invertible in R. Suppose that Φ(a) is
invertible, then (Ba)# = Baa#B−1a#B−1.

Proof. Put P = aa#. Noting that Φ(a)(1 − P) = 1 − P, we have PΦ(a)P = PΦ(a), Φ−1(a)(1 − P) = (1 − P) and
PBP = PB, B−1(1 − P) = (1 + δaa#)−1(1 − P), a#B−1(1 − P) = 0, i.e., a#B−1 = a#B−1P. Thus, BPB−1Ba = Ba and

(Ba)(Baa#B−1a#B−1) = BPB−1 = (Baa#B−1a#B−1)(Ba),

(Baa#B−1a#B−1)(BPB−1) = Baa#B−1a#B−1.

These indicate (Ba)# = Baa#B−1a#B−1.

Theorem 3.2. Let a ∈ R such that a# exists. Let ā = a + δa ∈ R with 1 + a#δa invertible in R. Suppose that Φ(a) is
invertible and āR ∩ (1 − aa#)R = {0}. Put D(a) = (1 + a#δa)−1a#Φ−1(a). Then ā# exists with

ā# = (1 + C(a))(D(a) +D2(a)δaaπ)(1 − C(a)).

Proof. Put P = aa#. By Proposition 2.7 (3), we have aπ(1 + δaa#)−1ā = 0 and

Pā(1 + a#δa)−1 = a(aa# + a#δa)(1 + a#δa)−1 = a(1 + a#δa − aπ)(1 + a#δa)−1 = a.

Thus, we have

(1 − C(a))ā(1 + C(a))

= [P + aπ(1 + δaa#)−1]ā[1 + aπδa(1 + a#δa)−1a#]

= Pā[1 + aπδa(1 + a#δa)−1a#]

= Pā + Pāaπδa(1 + a#δa)−1a#

= Pā + Pδaaπδa(1 + a#δa)−1a#

= Pδa + P[a + δaaπδa(1 + a#δa)−1a#]

= Pδa(1 − P) + PδaP + P[a + δaaπδa(1 + a#δa)−1a#]

= Pδa(1 − P) + P[δa + a + δaaπδa(1 + a#δa)−1a#]P

= Pδa(1 − P) + P[ā + δaaπδa(1 + a#δa)−1a#]P

= Pδa(1 − P) + P[ā(1 + a#δa)−1 + δaaπδa(1 + a#δa)−1a#(1 + a#δa)−1](1 + a#δa)P

= Pδa(1 − P) + P[a + δaaπδa(1 + a#δa)−1a#(1 + a#δa)−1](1 + a#δa)P

= Pδa(1 − P) + P[a + δaaπδa(1 + a#δa)−1a#(1 + a#δa)−1]a#(1 + δaa#)a

= Pδa(1 − P) + P[aa# + δaaπδa(1 + a#δa)−1a#(1 + a#δa)−1a#](1 + δaa#)a

= Pδa(1 − P) + P[1 + δaaπδa((1 + a#δa)−1a#)2](1 + δaa#)a

= Pδa(1 − P) + PΦ(a)(1 + δaa#)aP.

By Lemma 3.1, we have

P(Ba)#P = PBaa#B−1a#B−1P = PBPB−1a#B−1P = a#B−1 = P(Ba)#
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and PBa(Ba)#δa = Pδa. So P(Ba)#P(Ba)P = P(Ba)#(Ba) and

P(Ba)PP(Ba)#P = P(Ba)(Ba)#P = P(Ba)#(Ba)P = P(Ba)#P(Ba)P

P(Ba)#P(Ba)P(Ba)#P = P(Ba)#(Ba)(Ba)#P = P(Ba)#P,

P(Ba)P(Ba)#P(Ba)P = P(Ba)P(Ba)#(Ba)P = P(Ba)P,

i.e., (P(Ba)P)# = P(Ba)# = a#B−1. So P(Ba)P(P(Ba)P)# = P and hence, we have by Lemma 2.5 (1),

[(1 − C(a))ā(1 + C(a))]# = a#B−1 + [a#B−1]2δa(1 − P).

Therefore,

ā# = (1 + C(a))[(1 − C(a))ā(1 + C(a))]#(1 − C(a))

= (1 + C(a))(D(a) +D2(a)δaaπ)(1 − C(a))

= (1 + aπδa(1 + a#δa)−1a#)(1 + a#δa)−1a#
[
1 + δaaπδa[(1 + a#δa)−1a#]2

]−1

×
[
1 + (1 + a#δa)−1a#

[
1 + δaaπδa[(1 + a#δa)−1a#]2

]−1
δaaπ
]
(1 − aπδa(1 + a#δa)−1a#).

Now we consider the case when a ∈ R and ā = a + δa ∈ R such that a#, ā# exist. Firstly, we have

Proposition 3.3. Let a ∈ R, ā = a + δa ∈ R such that a#, ā# exist. Then the following statements are equivalent:

(1) R = āR u (1 − aa#)R = aR u (1 − āā#)R = Rā uR(1 − aa#) = Ra uR(1 − āā#).
(2) K = K(a, ā) = āā# + aa# − 1 is invertible.
(3) āR ∩ (1 − aa#)R = {0}, Rā ∩R(1 − aa#) = {0} and 1 + δaa# is invertible.

Proof. (1)⇒ (2) : SinceR = āRu (1− aa#)R = aRu (1− āā#)R, we have for any y ∈ R, there are y1 ∈ R, y2 ∈ R
such that

(1 − āā#)y = (1 − āā#)(1 − aa#)y1, āā#y = āā#aa#y2.

Put z = aa#y2 − (1 − aa#)y1. Then

K(a, ā)z = (āā# + aa# − 1)(aa#y2 − (1 − aa#)y1) = y.

Since R = Rā uR(1 − aa#) = Ra uR(1 − āā#), we have for any y ∈ R, there are y1, y2 ∈ R such that

y(1 − āā#) = y1(1 − aa#)(1 − āā#), yāā# = y2aa#āā#.

Put z = y2aa# − y1(1 − aa#). Then

zK(a, ā) = (y2aa# − y1(1 − aa#))(āā# + aa# − 1) = y.

The above indicates K(a, ā) is invertible when we take y = 1.
(2) ⇒ (3) : Let y ∈ āR ∩ (1 − aa#)R. Then āā#y = y, a#y = 0. Thus K(a, ā)y = 0 and hence y = 0, that is,

āR ∩ (1 − aa#)R = {0}. Similarly, we have Rā ∩R(1 − aa#) = {0}.
Let T = aK−1ā# − aπ. Since āa#aK−1 = ā, we have (1+ δaa#)T = K, that is, (1+ δaa#) has right inverse TK−1.
Since K−1aa#ā = ā, we have (ā#K−1a − aπ)(1 + a#δa) = K, that is, 1 + a#δa has left inverse K−1(ā#K−1a − aπ).

This indicates that 1 + δaa# has left inverse 1 − δaK−1(ā#K−1a − aπ)a# by Lemma 2.2. Finally, 1 + δaa# is
invertible.

(3)⇒ (1) : By Lemma 2.1, 1 + a#δa is also invertible. So from

1 + δaa# = āa# + (1 − aa#), 1 + a#δa = a#ā + (1 − aa#)

and Lemma 2.7, we get that
R = āR u (1 − aa#)R = Rā uR(1 − aa#).
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We now prove that

R = aR + (1 − āā#)R = Ra +R(1 − āā#), aR ∩ (1 − āā#)R = Ra ∩R(1 − āā#) = {0}.

For any y ∈ aR ∩ (1 − āā#)R, we have aa#y = y, āy = 0. So (1 + a#δa)y = (1 − a#a)y = 0 and hence y = 0.
Similarly, we have Ra ∩R(1 − āā#) = {0}.
By Lemma 2.7, ā+ = (1+a#δa)−1a# and ā+ā = (1+a#δa)−1a#a(1+a#δa). So (1− ā+ā)R = (1+a#δa)−1(1−a#a)R.

From (1− ā#ā)(1− ā+ā) = 1− ā+ā, we get that (1− ā+ā)R ⊂ (1− ā#ā)R. Note that aR = a#R and (1+ a#δa)aR =
a#(1 + δaa#)R = a#aR. So

R ⊃ aR + (1 − ā#ā)R ⊃ (1 + a#δa)−1a#aR + (1 + a#δa)−1(1 − a#a)R = R.

Similarly, we can get Ra +R(1 − ā#ā) = R.

Now we present a theorem which can be viewed as the inverse of Theorem 3.2 as follows:

Theorem 3.4. Let a ∈ R and ā = a + δa ∈ R such that a#, ā# exist. If K(a, ā) is invertible, then Φ(a) is invertible.

Proof. Since K(a, ā) is invertible, we have āR ∩ (1 − aa#)R = {0} and 1 + δaa# is invertible in R by Propositon
3.3. Thus, from the proof of Theorem 3.2, we have

(1 − C(a))ā(1 + C(a)) = Pδa(1 − P) + PΦ(a)(1 + δaa#)aP
= PBaP + Pδa(1 − P).

Since (1 − C(a))ā(1 + C(a)) is group invertible, it follows from Lemma 2.5 (2) that PBaP is group invertible.
Hence PBa(PBa)#δa(I − P) = Pδa(I − P). Consequently,

[(1 − C(a))ā(1 + C(a))]# = (1 − C(a))ā#(1 + C(a))

= (PBa)#P + ((PBa)#)2δa(1 − P).

Thus,

(1 − C(a))āā#(1 + C(a)) = [PBaP + Pδa(1 − P)][(PBa)#P + ((PBa)#)2δa(1 − P)]

= PBa(PBa)#P + (PBa)#δa(1 − P)

(1 − C(a))K(a, ā)(1 + C(a)) = (1 − C(a))āā#(1 + C(a)) − (1 − C(a))aπ(1 + C(a))

= (1 − C(a))āā#(1 + C(a)) − aπ(1 + C(a))

= PBa(PBa)#P + (PBa)#δa(1 − P) − (1 − P)C(a)P − (1 − P)

Since (1 − C(a))K(a, ā)(1 + C(a)) is invertible, we get that

ρ(a) = (PBa)#PBa − (PBa)#δaC(a) = PBa[(PBa)#]2(PBa − δaC(a))

is invertible in PRP. So we have P = PBa[(PBa)#]2(PBa − δaC(a))ρ−1(a) and that Φ(a) has right inverse.
Set E(a) = a#(1+ δaa#)−1δaaπ. Then 1− E(a) = P+ (1+ a#δa)−1aπ and (1− E(a))−1 = 1+ E(a). From Lemma

2.7, we have ā(1 + a#δa)−1aπ = 0 and

a#(1 + δaa#)−1ā = (1 + a#δa)−1a#ā = (1 + a#δa)−1(1 + a#δa − aπ)

= 1 − (1 + a#δa)−1aπ.
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Put ψ(a) = 1 + [(1 + a#δa)−1a#]2δaaπδa and R = (1 + a#δa)ψ(a). Then

(1 + E(a))ā(1 − E(a))

= [1 + a#(1 + δaa#)−1δaaπ]ā[P + (1 + a#δa)−1aπ]

= [1 + a#(1 + δaa#)−1δaaπ]āP

= āP + a#(1 + δaa#)−1δaaπāP

= āP + a#(1 + δaa#)−1δaaπδaP

= aP + δaP + a#(1 + δaa#)−1δaaπδaP

= (1 − P)δaP + PδaP + aP + a#(1 + δaa#)−1δaaπδaP

= (1 − P)δaP + P[ā + a#(1 + δaa#)−1δaaπδa]P

= (1 − P)δaP + P(1 + δaa#)[(1 + δaa#)−1ā + (1 + δaa#)−1a#(1 + δaa#)−1δaaπδa]P

= (1 − P)δaP + Pa(1 + a#δa)[a#(1 + δaa#)−1ā + a#(1 + δaa#)−1a#(1 + δaa#)−1δaaπδa]P

= (1 − P)δaP + Pa(1 + a#δa)[a#(1 + δaa#)−1ā + [(1 + a#δa)−1a#]2δaaπδa]P

= (1 − P)δaP + Pa(1 + a#δa)[1 + [(1 + a#δa)−1a#]2δaaπδa]P
= (1 − P)δaP + PaRP.

Since (1 + E(a))ā(1 − E(a)) is group invertible, we can deduce that aR is group invertible and

[(1 + E(a))ā(1 − E(a))]# = (1 + E(a))ā#(1 − E(a))

= P(aRP)# + (1 − P)δa((aRP)#)2

and

(1 + E(a))āā#(1 − E(a)) = [(1 − P)δaP + PaRP][P(aRP)# + (1 − P)δa((aRP)#)2]

= PaR(aRP)# + (1 − P)δa(aRP)#.

Thus, from the invertibility of K(a, ā), we get that

(1 + E(a))K(a, ā)(1 − E(a))

= (1 + E(a))āā#(1 − E(a)) − (1 + E(a))aπ(1 − E(a))

= PaR(aRP)# + (1 − P)δa(aRP)# − (1 + E(a))aπ

= PaR(aRP)# + (1 − P)δa(aRP)# − PE(a)(1 − P) − (1 − P)

is invertible in R and hence

η(a) = aRP(aRP)# − E(a)δa(aRP)# = [aRP − E(a)δa][(aRP)#]2aRP

= [aRP − E(a)δa][(aRP)#]2a(1 + a#δa)ψ(a)P

is invertible in PRP. So ψ(a) is left invertible and hence Φ(a) is left invertible by Lemma 2.2. Therefore, Φ(a)
is invertible.

Let a ∈ R such that aD exists and ind(a) = s. As we know if aD exists, then al has group inverse (al)# and
aD = (al)#al−1 for any l ≥ s.

From Theorem 3.2 and Theorem 3.4, we have the following corollary:

Corollary 3.5. Let a and b be nonzero elements in R such that aD and bD exist. Put s = ind(a) and t = ind(b).
Suppose that K(a, b) = bbD + aaD − 1 is invertible in R. Then for any l ≥ s and k ≥ t, we have

(1) 1 + (aD)l(bk − al) is invertible in R and bkR ∩ (1 − aDa)R = {0}.
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(2) Wk,l = 1+Ek,lZk,l(1+(aD)lEk,l)−1(aD)l is invertible inR, here Ek,l = bk−al and Zk,l = aπEk,l(aD)l(1+Ek,l(aD)l)−1.
(3) bD = (1 + Zk,l)[Hk,l +H2

k,lEk,laπ](1 − Zk,l)bk−1, where Hk,l = (1 + (aD)lEk,l)−1(aD)lW−1
k,l .

Proof. Noting that (aD)l = (al)#, aaD = al(al)#, bbD = bk(bk)#, l ≥ s, k ≥ t, we have

K(a, b) = bk(bk)# + al(al)# − 1, 1 + (aD)l(bk − al) = 1 + (al)#(bk − al).

Applying Theorem 3.2 and Theorem 3.4 to bk and al, we can get the assertions.

4. The representation of the group inverse of certain matrix on R

As an application of Theorem 3.2 and Theorem 3.4, we study the representation of the group inverse of[
d b
c 0

]
on the ring R.

Proposition 4.1. Let b, c, d ∈ R. Suppose that b# and c# exist and k = b#b + c#c − 1 is invertible. If bπd = 0 or

dcπ = 0, then
[
d b
c 0

]#
exists and[
d b
c 0

]#
=

[
−k−1c#k−1b#k−1dcπk−1 k−1c#k−1

k−1b#k−1(1 + dk−1c#k−1b#k−1dcπk−1) −k−1b#k−1dk−1c#k−1

]
if bπd = 0. When dcπ = 0, we have[

d b
c 0

]#
=

[
−k−1bπdk−1c#k−1b#k−1 (1 + k−1bπdk−1c#k−1b#d)k−1c#k−1

k−1b#k−1 −k−1b#k−1dk−1c#k−1

]
.

Proof. Set a =
[
0 b
c 0

]
, δa =

[
d 0
0 0

]
and ā =

[
d b
c 0

]
. Since b#bk = kc#c, c#ck = kb#b, it follows from Corollary 2.4

that

12 + a#δa = 12 +

[
0 b#bk−1c#k−1

c#ck−1b#k−1 0

] [
d 0
0 0

]
=

[
1 0

k−1b#k−1d 1

]
(12 + a#δa)−1a# =

[
1 0

−k−1b#k−1d 1

] [
0 k−1c#k−1

k−1b#k−1 0

]
=

[
0 k−1c#k−1

k−1b#k−1 −k−1b#k−1dk−1c#k−1

]
aa# =

[
0 b
c 0

] [
0 b#bk−1c#k−1

c#ck−1b#k−1 0

]
=

[
bc#ck−1b#k−1 0

0 cb#bk−1c#k−1

]
=

[
bb#k−1 0

0 cc#k−1

]
aπ = 1 − aa# =

[
−cπk−1 0

0 −bπk−1

]
ā(12 + a#δa)−1aπ =

[
d b
c 0

] [
1 0

−c#ck−1b#k−1d 1

] [
−cπk−1 0

0 −bπk−1

]
=

[
d − bc#ck−1b#k−1d b

c 0

] [
−cπk−1 0

0 −bπk−1

]
=

[
−cπk−1d b

c 0

] [
−cπk−1 0

0 −bπk−1

]
=

[
k−1bπdcπk−1 0

0 0

]
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and

δaaπδa =
[
d 0
0 0

] [
−cπk−1 0

0 −bπk−1

] [
d 0
0 0

]
=

[
−dcπk−1d 0

0 0

]
aπδa =

[
−k−1bπd 0

0 0

]
, δaaπ =

[
−dcπk−1 0

0 0

]
.

If bπd = 0 or dcπ = 0, then ā(1+a#δa)−1aπ = 0 and δaaπδa = 0. Thus,Φ(a) = 12 and D(a) = (1+a#δa)−1a#Φ−1(a) =
(1 + a#δa)−1a#.

When bπd = 0, C(a) = aπδa(1 + a#δa)−1a# = 0 and

D(a)δaaπ =
[

0 k−1c#k−1

k−1b#k−1 −k−1b#k−1dk−1c#k−1

] [
−dcπk−1 0

0 0

]
=

[
0 0

−k−1b#k−1dcπk−1 0

]
.

By Theorem 3.2, we have

ā# = (12 + C(a))(D(a) +D2(a)δaaπ)(12 − C(a))
= D(a)(12 +D(a)δaaπ)

=

[
0 k−1c#k−1

k−1b#k−1 −k−1b#k−1dk−1c#k−1

] [
1 0

−k−1b#k−1dcπk−1 1

]
=

[
a1 k−1c#k−1

a2 −k−1b#k−1dk−1c#k−1

]
,

where a1 = −k−1c#k−2b#k−1dcπk−1, a2 = k−1b#k−1 + k−1b#k−1dk−1c#k−2b#k−1dcπk−1. Since cc#b# = kb#, it follows
that

c#k−2b# = c#(c#c)k−1k−1b# = c#k−1k−1c#cb# = c#k−1b#.

So a1 = −k−1c#k−1b#k−1dcπk−1, a2 = k−1b#k−1(1 + dk−1c#k−1b#k−1dcπk−1).
When dcπ = 0, we have by Theorem 3.2,

ā# = (12 + C(a))D(a)(12 − C(a)) = (12 + C(a))D(a)

=

[
1 −k−1bπdk−1c#k−1

0 1

] [
0 k−1c#k−1

k−1b#k−1 −k−1b#k−1dk−1c#k−1

]
=

[
−k−1bπdk−1c#k−1b#k−1 (1 + k−1bπdk−1c#k−1b#k−1d)k−1c#k−1

k−1b#k−1 −k−1b#k−1dk−1c#k−1

]
.

Combining Proposition 4.1 with Corollary 2.4, we have

Corollary 4.2. Let b, c, d ∈ R. Assume that b# and c# exist and satisfy conditions: b#bc#c = b#b, c#cb#b = c#c.

(1) If bπd = 0, then
[
d b
c 0

]#
=

[
b#bc#b#dbπ b#bc#

c#cb#(1 − db#bc#b#dbπ) −c#cb#db#bc#

]
.

(2) If dcπ = 0, then
[
d b
c 0

]#
=

[
bπdb#bc#b# (1 − bπdb#bc#b#d)b#bc#

c#cb# −c#cb#db#bc#

]
.

Recall from [10] that an involution * on R is an involutory anti–automorphism, that is,

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, a∗ = 0 if and only if a = 0

and R is called the ∗–ring if R has an involution.



Fapeng Du, Yifeng Xue / Filomat 27:1 (2013), 65–74 74

Corollary 4.3. Let R be a ∗–ring with unit 1 and let p be a nonzero idempotent element in R. Then[
pp∗ p
p 0

]#
=

[
pp∗(1 − p) p

p − (pp∗)2(1 − p) −pp∗p

]
,

[
p∗p p
p 0

]#
=

[
(1 − p)p∗p p − (1 − p)(p∗p)2

p −pp∗p

]
.

Proof. Since p# = p, we can get the assertions easily by using Corollary 4.2.

Remark 4.4. (1) IfR is a skew field and b = c in Proposition 4.1, the conclusion of Proposition 4.1 is contained
in [22].

(2) Let p be an idempotent matrix. The group inverse of
[
a b
c 0

]
is given in [2] for some a, b, c ∈ {pp∗, p, p∗}.

The group inverse of this type of matrices is also discussed in [7].
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