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The perturbation of the group inverse under the stable perturbation in
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Abstract. Let R be a ring with unit 1 and a € R, @ = a + 6a € R such that a* exists. In this paper, we mainly
investigate the perturbation of the group inverse a* on R. Under the stable perturbation, we obtain the
explicit expressions of . The results extend the main results in [19, 20] and some related results in [18].

As an application, we give the representation of the group inverse of the matrix [i 8] on the ring R for

certaind, b, ¢ € R.

1. Introduction

Let R be a ring with unit and a € R. we consider an element b € R and the following equations:
(1)aba=a, (2bab=0b, (3)a‘ba=a", (4)ab=ba.

If b satisfies (1), then b is called a pseudo-inverse or 1-inverse of 4. In this case, a is called regular. The
set of all 1-inverse of a is denoted by a'l; If b satisfies (2), then b is called a 2-inverse of a4, and a is called
anti-regular. The set of all 2-inverse of a is denoted by a'?; If b satisfies (1) and (2), then b is called the
generalized inverse of a, denoted by a*; If b satisfies (2), (3) and (4), then b is called the Drazin inverse of g,
denoted by aP. The smallest integer k is called the index of 4, denoted by ind(a). If ind(a) = 1, we say a is
group invertible and b is the group inverse of 4, denoted by a*.

The notation so—called stable perturbation of an operator on Hilbert spaces and Banach spaces is
introduced by G. Chen and Y. Xue in [4, 6]. Later the notation is generalized to Banach Algebra by Y. Xue
in [19] and to Hilbert C*-modules by Xu, Wei and Gu in [17]. The stable perturbation of linear operator
was widely investigated by many authors. For examples, in [5], G. Chen and Y. Xue study the perturbation
for Moore-Penrose inverse of an operator on Hilbert spaces; Q. Xu, C. Song and Y. Wei studied the stable
perturbation of the Drazin inverse of the square matrices when I — A™ — B™ is nonsingular in [16] and Q.
Huang and W. Zhai worked over the perturbation of closed operators in [12, 13], etc..
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The Drazin inverse has many applications in matrix theory, difference equations, differential equations
and iterative methods. In 1979, Campbell and Meyer proposed an open problem: how to find an explicit

A

expression for the Drazin inverse of the matrix [ ] in terms of its sub-block in [1]? The representation

Cc D

of the Drazin inverse of a triangular matrix [13 IBD} has been givenin [3, 9, 11]. In [8], Deng and Wei studied

. I . |A B L . o
the Drazin inverse of the anti-triangular matrix [ C 0 and given its representation under some conditions.

In this paper, we investigate the stable perturbation for the group inverse of an element in a ring.
Assume that 1 —a™ —a" is invertible, we present the expression of 2* and 2. This extends the related results
in [18, 20]. As an applications, we study the representation for the group inverse of the anti-triangular

. |d b .
matrix [c O] on the ring.

2. Some Lemmas
Throughout the paper, R is always a ring with the unit 1. In this section, we give some lemmas:

Lemma 2.1. Let a, b € R. Then 1 + ab is invertible if and only if 1 + ba is invertible. In this case, (1 + ab)™! =
1—a(l +ba)~'band
(1 +ab)la=a( +ba)", b(1+ab)™ = (1 +ba)"'b.

Lemma 2.2. Leta, b € R. If 1 + ab is left invertible, then so is 1 + ba.

Proof. Let c € R such that ¢(1 + ab) = 1. Then
1+ba=1+bc(l+ab)a=1+bca(l + ba).

Therefore, (1 — bca)(1 +ba) =1. O

Lemma 2.3. Let a be a nonzero element in R such that a* exists. If s = a*a+aa™ — 1 is invertible in R, then a* exists
anda® = a*s™' + (1 —a*a)s la*s™L.

Proof. According to [14] or [18, Theorem 4.5.9], a” exists. We now give the expression of a” as follows.
Putp =a%a, q = aa*. Then we have

ps =pq=sq, g5 =qp =sp, sa = a*a>. @.1)
Set y = a*s™!. Then by (2.1),
yp=a*s'ata=a%aats! =y =py,
pay = ataaats™ = pgs' =p,

_ el —_ aty —
Yypa=a's aaa=a a=p.

Puta; = pap = pa, ay = (1 — p)ap = (1 — p)a. Then a = a; + a, and it is easy to check that a* = y + a,*. Using
(2.1), we can get thata* = a*s™! + (1 —a*a)a(a*s™)? =a*s '+ (1 —ata)s lats™h. O

Let M,(R) denote the matrix ring of all 2 X 2 matrices over R and let 1, denote the unit of M,(R).

Corollary 2.4. Let b, ¢ € R have group inverse b* and c* respectively. Assume that k = b*b + c*c — 1 is invertible in
# # -1 #y-1
R. Then 00 exists with L 0 Kk .
c 0 c k

0 —1p#g-1 0
#
. 0 b 0 b*bct
Hy # oy _ _
In particular, when b"bc*c = b"b and c"cb*b = c"c, [c O] = [C#Cb# 0 }
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0 b 0 c*
Proof. Seta = [C O]' Thena* = [b# 0] and
bbb+ cfc -1 0 k
+ + _ _
aa+aa 12_[ 0 b#b+c#c—1]_[ k]

is invertible in My(R). Noting that bb*k~! = k~!cc*. Thus, by Lemma 2.3,

-1 -1 -1
a# = ﬂ+ [k k_l] + (12 - a+a) [k k_l]a+ [k k_l]

3 0 Ak + (1 - ok k!
= |6kt + (1 - bo)kTbHE! 0

| o k1!

Vi 0 ’

# #1 #
When bbetc = b*b and c*cbb = cfc, k' = k. In this case, | 0| =1|,0, "l o
c 0 cch 0

Lemma 2.5. Let a, b € R and p be a non—trivial idempotent element in R, i.e., p # 0,1. Put x = pap + pb(1 — p).

(1) If pap is group invertible and (pap)(pap)*b(1 — p) = pb(1 — p), then x is group invertible too and x* =
(pap)* + L(pap)*Ppb(1 - p).
(2) If x is group invertible, then so is the pap.

Proof. (1) It is easy to check that p(pap)* = (pap)*p = (pap)*. Put y = (pap)* + [(pap)*]*pb(1 — p). Then xyx = x,
yxy = yand xy = yx, i.e, y = x*.

(2) Set y1 = px*p, y2 = px*(1 —p), y3 = 1 —p)x*pand ys = (1 — p)x*(1 = p). Then x* = y1 + y2 + Y3 + Ya.
From xx"x = x, x*xx* = x* and xx* = x*x, we can obtain that y3 = y4 = 0 and

(pxp)y1(pxp) = pxp,  yai(pxp)yr = y1,  ya(pxp) = (pxp)ys,
that is, (pxp)* = y1. O

At the end of this section, we will introduce the notation of stable perturbation of an element in a ring.

Let A be a unital Banach algebra and a € A such that a* exists. Leta = a + 6a € A. Recall from [19] that
a is a stable perturbation of a if aA N (1 — aa*)A = {0}. This notation can be easily extended to the case of
ring as follows.

Definition 2.6. Let a € R such that a* exists and let @ = a + 6a € R. We say a is a stable perturbation of a if
aRN (1 —aa™)R = {0}

Using the same methods as appeared in the proofs of [19, Proposition 2.2] and [18, Theorem 2.4.7], we
can obtain:

Proposition 2.7. Leta € Rand d = a+0a € N such that a* exists and 1+ a*ba is invertible in R. Then the following
statements are equivalent:

(1) a* exists and a* = (1 +a*da)a*.

(2) AR N (1 —aa™)R = (0} (that is, a is a stable perturbation if a).
(3) a(l +a*6a)"'(1 —ata) = 0.

4) 1 -aa*)(1 + daa*)'a=0.

(5) (1 —aa*)da(l —a*a) = (1 —aa*)da(l + a*da) 'a*da(l — a*a).
(6) RanR(A —ata) = {0}.
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3. Main results

In this section, we investigate the stable perturbation for group inverse and Drazin inverse of an element
ain R.

Leta € Wand 4 = a + d6a € R such that a* exists and 1 + a*6a is invertible in R. Put a™ = (1 — a’a),
®(a) = 1+ daa™da[(1 + a*6a)'a*]? and B = O(a)(1 + daa®), C(a) = a™da(1 + a*6a)~'a*. These symbols will be
used frequently in this section.

Lemma 3.1. Leta € Rand a = a + da € R such that a* exists and 1 + a*da is invertible in R. Suppose that O(a) is
invertible, then (Ba)* = Baa*B~'a*B!.

Proof. Put P = aa®. Noting that ®(a)(1 — P) = 1 — P, we have P®(a)P = Pd(a), ®'(a)(1 — P) = (1 — P) and
PBP = PB,B~'(1 - P) = (1 + 6aa*)~'(1 = P), a*B~'(1 = P) = 0, i.e., a*B~! = a*B~'P. Thus, BPB~'Ba = Ba and
(Ba)(Baa*B™'a*B™") = BPB™! = (Baa"B~'a*B™")(Ba),
(Baa"B~'a*B~')(BPB™!) = Baa"B~'a*B7!.

These indicate (Ba)* = Baa*B~'a*B~1. O

Theorem 3.2. Let a € R such that a* exists. Let a = a + 6a € R with 1 + a*6a invertible in R. Suppose that O(a) is
invertible and aR N (1 — aa®)R = {0}. Put D(a) = (1 + a*6a) " a*® 1 (a). Then a* exists with

i = (1 + C())(D(a) + D*(a)daa™)(1 — C(a)).
Proof. Put P = aa®. By Proposition 2.7 (3), we have a™(1 + 6aa*)™'a = 0 and
Pa(1 + a*6a)™" = a(aa® + a*oa)1 + a*6a) ™ = a(1 + a*6a — a™)(1 + a*6a) ' = a.
Thus, we have

(I -C(@)a(l + C(a))

=[P +a™(1 + 6aa™)"Na[1 + a"6a(1 + a*5a)~'a"]

= Pa[1 + a™oa(1 + a*doa)'a"]

= Pa + Paa™da(1 + a*oa)'a"

= Pa + Poaa™6a(1 + a*5a)~'a®

= Poa + Pla + 6aa™6a(1 + a*5a)~'a*]

= Péa(1 — P) + P6aP + Pla + 6aa™6a(1 + a*5a)~'a*]

= Péa(1 — P) + P[6a + a + daa™da(1 + a*6a)'a*]P

= Péa(1 — P) + P[a + 6aa™da(1 + a*6a)'a"]P

= Poa(1 — P) + Pla(1 + a*6a) ™ + 6aa™da(1 + a*6a)~a* (1 + a*6a) ' ](1 + a”6a)P
= Pda(1 — P) + Pla + daa™da(1 + a*6a) a*(1 + a*6a) 11 + a”6a)P

= Pda(1 — P) + Pla + 6aa™da(1 + a*6a)~a* (1 + a*6a) " ]a* (1 + daa™)a
= Péa(1 — P) + Plaa® + 6aa™sa(1 + a*6a) " a* (1 + a*6a)1a*](1 + 6aa™)a
= Péa(1 — P) + P[1 + 6aa™da((1 + a*6a)1a*)?1(1 + daa®)a

= Pda(1 — P) + P®(a)(1 + daa")aP.

By Lemma 3.1, we have

P(Ba)*P = PBaa"B'a"B~'P = PBPB~'4*B™'P = a*B! = P(Ba)"
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and PBa(Ba)*5a = Pda. So P(Ba)*P(Ba)P = P(Ba)*(Ba) and
P(Ba)PP(Ba)*P = P(Ba)(Ba)"P = P(Ba)*(Ba)P = P(Ba)"P(Ba)P

P(Ba)*P(Ba)P(Ba)*P = P(Ba)*(Ba)(Ba)*P = P(Ba)*P,
P(Ba)P(Ba)*P(Ba)P = P(Ba)P(Ba)*(Ba)P = P(Ba)P,

i.e., (P(Ba)P)* = P(Ba)* = a*B~'. So P(Ba)P(P(Ba)P)" = P and hence, we have by Lemma 2.5 (1),
[(1 = Ca))a(l + C@a)]* = a*B~* + [a*B!]?6a(1 - P).
Therefore,
a" = (1+ C@)I(1 - C@)a(l + C@)I*(1 - C(a)
= (1 + C(@))(D(a) + D*(a)daa™)(1 — C(a))
= (1 +a"6a(1 + a*6a)"ta™)(1 + a#éa)_la#[l + oaa"da[(1 + a#(f)a)_la#]z]_1
X [1 +(1+ a#éa)‘la#[l + daa"da[ (1 + u#éa)_la#]z]_léaa”](l —a"6a(1 +a*oa)~la"). O

Now we consider the case when a € R and @ = a + 6a € R such that a*, 7 exist. Firstly, we have

Proposition 3.3. Leta € R, a = a + 6a € R such that a*, a* exist. Then the following statements are equivalent:

(1) R =aR + (1 —adR = aR + (1 — a3")R = Ra + R — aa®) = Ra + R — az®).
(2) K =K(a,a) = aa" + aa® — 1 is invertible.
(3) AR N (1 —aa®)R = {0}, RaNR(1 — aa®) = (0} and 1 + daa® is invertible.

Proof. (1) = (2) : Since R = aR + (1 —aa")R = aR + (1 —aa")R, we have for any y € R, there are y; € R, 1y, € R
such that

#

1- dﬁ#)y =1 -ai’)(1- aa#)yl, dﬁ#y =ai aa#y2.

Put z = aa®y, — (1 — aa®)y;. Then
K(a,a)z = @a" +aa" — 1)(aa"y, — (1 — aa*)y1) = y.
Since R = Ra + R(1 — aa”) = Ra + R(1 — aa*), we have for any y € R, there are y1, y» € R such that
y(1 - aa') = (1 - aa®)(1 - aa®), yﬁﬁ# = yzaa#dﬁ#.
Put z = yoaa* — y1(1 — aa*). Then
zK(a,a) = (yzaa# -n(l- aa"))@aa® + aa® — 1) = Y.

The above indicates K(a, 4) is invertible when we take y = 1.

(2) = (3) : Lety € aR N (1 — aa®)R. Then aa’y = y, a*y = 0. Thus K(a,a)y = 0 and hence y = 0, that is,
aR N (1 —aa"R = {0}. Similarly, we have Ra N R(1 — aa®) = {0}.

Let T = aK~'a* —a™. Since aa*aK~! = a, we have (1 + 6aa*)T = K, that is, (1 + daa") has right inverse TK~!.

Since K~laa*a = 4, we have (@*K™'a — a™)(1 + a*6a) = K, that is, 1 + a*6a has left inverse K™'(@*K~'a — a™).
This indicates that 1 + daa” has left inverse 1 — 6aK™*(@*K™'a — a™)a* by Lemma 2.2. Finally, 1 + daa” is
invertible.

(3) = (1) : By Lemma 2.1, 1 + a*6a is also invertible. So from

1+ 6aa" = aa® + (1 - aa®), 1 +a"6a = a’a + (1 - aa®)

and Lemma 2.7, we get that
R=aR+ (1 —-ad"R =NRa +RA - aa®).



Fapeng Du, Yifeng Xue / Filomat 27:1 (2013), 65-74 70
We now prove that
R=aR+(1-aa)R =Ra+RA -aa"), aRn(1-a R =RanRA —aa") = {0}.

For any y € aR N (1 — aa")R, we have aa®y = y, ay = 0. So (1 + a*6a)y = (1 — a*a)y = 0 and hence y = 0.

Similarly, we have Ra N R(1 — aa*) = {0}.

By Lemma 2.7, 3" = (1+a*6a)~'a* and a*a = (1+a*0a)~'a*a(1 +4*6a). So (1-a*a)R = (1+a*6a) ' (1-a’a)R.
From (1 —a*a)(1 —a*a) = 1 —a*a, we get that (1 —a*a)R c (1 — a*@)R. Note that aR = a*R and (1 + a*6a)aR =
a*(1 + daa®)R = a*aR. So

RoaR+ (1 -a'a)R > (1 +a"6a)a"aR + (1 +a"0a) (1 - a®a)R = R.

Similarly, we can get Ra + R(1 —a*a) =R. O

Now we present a theorem which can be viewed as the inverse of Theorem 3.2 as follows:
Theorem 3.4. Leta € Rand a = a + ba € R such that a*, a* exist. If K(a, a) is invertible, then ®(a) is invertible.

Proof. Since K(a, @) is invertible, we have aR N (1 — aa*)R = {0} and 1 + daa” is invertible in R by Propositon
3.3. Thus, from the proof of Theorem 3.2, we have

(1= C(a))a(1 + C(a)) = Pda(1 — P) + PD(a)(1 + daa™)aP
= PBaP + Pda(1 — P).
Since (1 — C(a))a(1 + C(a)) is group invertible, it follows from Lemma 2.5 (2) that PBaP is group invertible.
Hence PBa(PBa)*da(I — P) = Pda(I — P). Consequently,
[(1 - C@)a(l + C@)I* = (1 - C@)a*(1 + C(a))
= (PBa)*P + ((PBa)*)?6a(1 - P).

Thus,

(1 - C(a))aa*(1 + C(a)) = [PBaP + Pda(1 — P)][(PBa)*P + ((PBa)*)?6a(1 — P)]
= PBa(PBa)*P + (PBa)*da(1 — P)
(1= C(a)K(a,a)(1 + C(a)) = (1 - C(a))aa"(1 + C(a)) — (1 — C(a))a™(1 + C(a))

= (1 - C())aa"(1 + C(a)) —a™(1 + C(a))
= PBa(PBa)*P + (PBa)*da(1 — P) — (1 — P)C(a)P — (1 — P)

Since (1 — C(a))K(a, @)(1 + C(a)) is invertible, we get that

p(a) = (PBa)*PBa — (PBa)*6aC(a) = PBa[(PBa)*]*(PBa — 5aC(a))
is invertible in PRP. So we have P = PBa[(PBa)*]*(PBa — 6aC(a))p~'(a) and that ®(a) has right inverse.
Set E(a) = a*(1 + 6aa®)"10aa™. Then 1 — E(a) = P + (1 + a*6a)'a™ and (1 — E(a))™' = 1 + E(a). From Lemma

2.7, we have a(1 + a*6a)™'a™ = 0 and

a*(1 + 6aa")'a = (1 +a*oa)'a*a = (1 + a*6a) 1 (1 + a”6a — a™)

=1-(1+a"6a)"ta™
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Put ¥(a) = 1+ [(1 + a*6a)'a*]?6aa™6a and R = (1 + a*6a)i(a). Then
(1+E(a))a(l — E(a))

=[1+4a*(1 + 6aa™)"16aa™a[P + (1 + a*5a)~a™]

=[1 +a"(1 + 6aa") "' 6aa™aP

=aP +a*(1 + 6aa™) " 6aa™aP

=P + a*(1 + 6aa™) " 6aa™5aP

= aP + 6aP + a*(1 + 6aa®) "' 6aa" 6aP

= (1 — P)5aP + PdaP + aP + a*(1 + 6aa®) "' 6aa™ 6aP

= (1 - P)5aP + P[a + a*(1 + 6aa®) ' 6aa™6a]P

= (1= P)daP + P(1 + 6aa™)[(1 + 6aa®)'a + (1 + 6aa®)a* (1 + daa™) " 6aa™da]P
= (1 = P)5aP + Pa(1 + a*6a)[a" (1 + 6aa™) ' + a* (1 + 6aa™)a" (1 + 6aa®) ' 6aa™6a]P
= (1 = P)daP + Pa(1 + a*da)[a" (1 + 6aa™)"'a + [(1 + a*06a) ' a*]*0aa™ 6a]P

= (1 = P)daP + Pa(1 + a*6a)[1 + [(1 + a*6a) L a*]*0aa™ 5a]P

= (1 — P)6aP + PaRP.

Since (1 + E(a))a(1 — E(a)) is group invertible, we can deduce that aR is group invertible and

[(1 + E@@)a(1 - E@)]* = (1 + E(a))a*(1 - E(a))
= P(aRP)* + (1 — P)da((aRP)*)?

and

(1 + E(a))aa*(1 — E(a)) = [(1 — P)daP + PaRP][P(aRP)* + (1 — P)da((aRP)*)?]
= PaR(aRP)* + (1 — P)da(aRP)*.

Thus, from the invertibility of K(a, @), we get that

(1 + E(a))K(a, @)(1 — E(a))
= (1 + E(a))aa*(1 — E(a)) — (1 + E(a))a™(1 — E(a))
= PaR(aRP)* + (1 — P)6a(aRP)* — (1 + E(a))a™
= PaR(aRP)" + (1 — P)6a(aRP)* — PE(a)(1 — P) — (1 — P)

is invertible in R and hence
n(a) = aRPaRP)* — E(a)6a(aRP)* = [aRP — E(a)oa][(aRP)*]*aRP
= [aRP - E(a)da][(aRP)**a(1 + a*da)y(a)P

is invertible in PRP. So y(a) is left invertible and hence ®(a) is left invertible by Lemma 2.2. Therefore, ®(a)
is invertible. [J

Let a € R such that aP exists and ind(a) = s. As we know if a” exists, then a' has group inverse (a')* and
aP = (a')*a"! for any I > s.
From Theorem 3.2 and Theorem 3.4, we have the following corollary:

Corollary 3.5. Let a and b be nonzero elements in R such that a® and bP exist. Put s = ind(a) and t = ind(b).
Suppose that K(a, b) = bbP + aaP — 1 is invertible in R. Then for any | > s and k > t, we have

(1) 1+ (@P)/(b* - a') is invertible in R and B*R N (1 — aPa)R = {0}.
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(2) Wiy = 1+Eg1Zx;(1+(aP)' Ex )1 (aP)! is invertible in R, here Ex ) = b —a' and Zy; = a™Ej j(aP) (1 + Ex(aP)) 1.
(3) b = (1 + Zx)[Hi + Hf Exa™ (1 ~ Zi )1, where Hyy = (1 + (ﬂD)’Ek,l)fl(ﬂD)lW;;ll-

Proof. Noting that (aP)! = (a')*, aaP = d'(@")*, bbP = bF(b")¥, | > s, k > t, we have
K(a,b) = FON + d'@)* -1, 1+ @)@ -4d) =1+ @)@ -d).
Applying Theorem 3.2 and Theorem 3.4 to b* and 4/, we can get the assertions. []

4. The representation of the group inverse of certain matrix on R
As an application of Theorem 3.2 and Theorem 3.4, we study the representation of the group inverse of
d b .
L O] on the ring R.
Proposition 4.1. Let b, ¢, d € R. Suppose that b* and c* exist and k = b*b + c*c — 1 is invertible. If b™d = 0 or
#
dc™ =0, then [i g] exists and

1#

d b [ —k kbt dek ! k1t

e 0] " [FWK (1 + dk kT R k) —k T bk ke R
if b"d = 0. When dc™ = 0, we have

[d b [k T 1+ KTk R )k !

c 0] ~ kptk? —k 1k Ak ! :

Proof. Seta = [(c) 3], oa = [g 8] anda = [i g] Since b*bk = kc*c, c*ck = kb*b, it follows from Corollary 2.4
that

Lt d'on = 1o + 0 vk 'tk [d o] 1 0
R o 0 0 0| |kptkld 1
b |1 0 0 k1t
(1 +a"6a)"a" = »—kilb#kild 11t 0
| o k1cfk1
B LA o e o
¢ [0 b 0 bk k!
a = c 0 ctek 1otk 0
_ [bctekptR? 0
i 0 cb*bk k1
[t 0
1 0 cctk1
P Pl - 0
a'=1-aa —[ 0 _bnkl]
[d b 1 0[-c"k? 0
= # -1 n _
Az +a%oa)"a” = oH—c#ck—lb#k—ld 1” 0 —bﬂk—l]

_[d-bctek v d b|[-c"kt 0

| c 0 0 b7k !

[—c"k'd b|[-ck 0 | [kWrdckt 0
c off o -vk?'|~ 0 0
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and

soron— |4 Ok 0 ][d 0] _[-dekd 0
mwor=10 ol o -pkllo o]~ 0 0

ngg = | K0T O] o [-dekt 0
a"oa = 0 ol 0" = 0 ol

If b™d = O ordc™ = 0, then a(1+a*6a)~'a™ = 0 and daa™da = 0. Thus, ®(a) = 1, and D(a) = (1+a*6a)'a*®(a) =
(1 + a*6a)~1a*.
When b"d = 0, C(a) = a™0a(1 + a*5a)"'a* = 0 and
<~ | 0 k~tcf! —dc"kt 0
D@)oaa™ = [k-lb#k—l —k—lb#k-ldk—lc#k—l] [ 0 0]

B 0 0
|-kttt o)
By Theorem 3.2, we have

i = (1, + C(a))(D(a) + D*(a)5aa™)(1, — C(a))
= D(a)(1, + D(a)oaa™)

[ o k1! 1 0
Tk kW dk R | |~k bt ekt 1

_|m k1t
“ay, —-kWWkdk |
where a; = -k 1k 2b%kYdc"kL, g, = k70K + KMotk N dk 1t 2P 1dem kL. Since ectbt = kb*, it follows

that
A2t = Aok Ik = Ak bt = A

Soa; = —k 'k Wk 'dc"k Y, ap = k0K (1 + dk Pk bk detk ).
When dc”™ = 0, we have by Theorem 3.2,
7" = (12 + C(a))D(a)(12 — C(a)) = (12 + C(a))D(a)

1 =kt o ket
= o 1 b kbt ko k!

_ kW dk kWY (1 + kW dk T bk dk Pk
- i —k Wtk k1 k! )
Combining Proposition 4.1 with Corollary 2.4, we have
Corollary 4.2. Let b, ¢, d € R. Assume that b* and c* exist and satisfy conditions: b*bcc = b*b, c*cb™b = c*c.
b]" b*bctbtdbT b*bct
0| ~ |cfeb*(1 = db*bctb*db™)  —cFebtdbthct |
b]# B [b”db#bc#b# (1- bndb#bc#b#d)b#bc#]

(1) Ifb™d = 0, then [‘z

- d
(2) Ide = 0, then [C 0 C#Cb# _C#Cb#db#bc#

Recall from [10] that an involution * on R is an involutory anti-automorphism, that is,
@) =a (a+b)y=a+0b", (ab)" =b"a", a* =0if and only ifa = 0

and R is called the *—ring if R has an involution.
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Corollary 4.3. Let R be a »—ring with unit 1 and let p be a nonzero idempotent element in R. Then

[PP* P]#Z[ pr(L -~ p) p ] [rf‘p P]#:[(l—p)p*zﬂ p—(1-pprp)
p 0 “lp-@rya-p -prp|” |p O p —pp'p '

Proof. Since p* = p, we can get the assertions easily by using Corollary 4.2. [

Remark 4.4. (1) If Risaskew field and b = cin Proposition 4.1, the conclusion of Proposition 4.1 is contained
in [22].

(2) Let p be an idempotent matrix. The group inverse of [i is givenin [2] for somea, b, c € {pp*, p, p*}.

0
The group inverse of this type of matrices is also discussed in [7].

Acknowledgement. The authors thank to the referee for his (or her) helpful comments and suggestions.

References

[1] S.L.Campbell, C.D. Meyer, Generalized inverses of linear transformations. Dover, New York, 1991 (Originally published: Pitman,
London, 1979).
[2] C. Cao and X. Tang, Representations of the group inverse of some 2 x 2 block matrices, International Math. Forum, 1 (2006),
1511-1517.
[3] N.Castro-Gonz¢lez, J.J. Koliha, New additive results for the g-Drazin inverse, Proc. Roy. Soc. Edinburgh, 134A (2004), 1085-1097.
[4] G. Chen and Y. Xue, Perturbation analysis for the operator equation Tx = b in Banach spaces, ]. Math. Anal. Appl., 212 (1997),
107-125.
[5] G.Chenand Y. Xue, The expression of generalized inverse of the perturbed operators under type I perturbation in Hilbert spaces,
Linear Algebra Appl. 285 (1998), 1-6.
[6] G. Chen, Y. Wei and Y. Xue, Perturbation analysis of the least square solution in Hilbert spaces, Linear Algebra Appl. 244 (1996),
69-80.
[7] C. Deng, A comment on some recent results concerning the Drazin inverse of an anti-triangular block matrix, Filomat, 26(2)
(2012), 135-145.
[8] C.Deng and Y. Wei. A note on the Drazin inverse of an anti-triangular matrix. Linear Algebra Appl., 431 (2009), 1910-1922.
[9] D.S. Djordjevi¢ and P.S. Stanimirovi¢, On the generalized Drazin inverse and generalized resolvent, Czechoslovak Math. J.
51(126)(2001), 617-634.
[10] R.E.Hartwig, Block generalized inverse. Archive for Rational Mechanics and Analysis, 61(3) (1976), 197-251.
[11] R.E.Hartwig, G. Wang and Y. Wei, Some additive results on Drazin inverse, Linear Algebra Appl. 322 (2001), 207-217.
[12] Q. Huang, On perturbations for oblique projection generalized inverses of closed linear operators in Banach spaces, Linear
Algebra Appl., 434 (2011), 2468-2474.
[13] Q. Huang and W. Zhai, Perturbation and expressions for generalized inverses in Banach spaces and Moore—-penrose inverses in
Hilbert spaces of closed operators, Linear Algebra Appl., 435 (2011), 117-127.
[14] P. Patricio and A.D. Costa, On the Drazin index of reular elements, Central Euro. J. Math., 7(2) (2009), 200-205.
[15] Y. Wang and H. Zhang, Perturbation analysis for oblique projection generalized inverses of closed operators in Banach spaces,
Linear Algebra Appl. 426 (2007), 1-11.
[16] Q. Xu, C. Song and Y. Wei, The Stable perturbation of the Drazin inverse of the square matrices. SIAM ]J. Matrix Anal. & Appl.,
31(3) (2010), 1507-1520.
[17] Q. Xu, Y. Wei and Y. Gu, Sharp norm—estimation for Moore—Penrose inverses of stable perturbations of Hilbert C*-module
operators, SIAM J. Numer. Anal., 47(6) (2010), 4735-4758.
[18] Y. Xue, Stable perturbations of operators and related topics, World Scientific, 2012.
[19] Y. Xue, Stable perturbation in Banach algebras, J. Aust. Math. Soc., 83 (2007), 1-14.
[20] Y. Xue and G. Chen Perturbation analysis for the Drazin inverse under satable perturbation in Banach space. Missouri J. Math.
Sci. 19(2) (2007), 106-120.
[21] Y. Xue and G. Chen, Some equivalent conditions of stable perturbation of operators in Hilbert spaces, Applied Math. Comput.
147 (2004), 765-772.
[22] J. Zhao and C. Bu, Group inverse for the block matrix with two identical subblocks over skew fields, Electronic J. Linear Algebra,
21 (2010), 63-75.



