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Abstract. In this paper, we derive a representation for the Drazin inverse of a block matrix M =
(

A B
C D

)
under the assumptions AAπB = 0, CAπB = 0, AADBSSπ = 0, SSDCWAAD(AW)π = 0 and (AW)πAADBSSD =
0, where S = D−CADB is the generalized Schur complement. And the representation can be regarded as an
unified form of MD because it covers the case either S is nonsingular or zero. Moreover, some alternative
representations for the Drazin inverse are presented. Several situations are analyzed and recent results are
generalized.

1. Introduction

Let A be a square complex matrix. As we know, the Drazin inverse [1] of A, denoted by AD, is the unique
matrix satisfying the following three equations

AkADA = Ak, ADAAD = AD, AAD = ADA,

where k = ind(A) is the index of A. If ind(A) = 1, then the Drazin inverse of A is reduced to the group
inverse, denote by A#. If ind(A) = 0, then AD = A−1. In addition, we denote Aπ = I−AAD, and define A0 = I,
where I is the identity matrix with proper sizes.

The Drazin inverse is very useful, and the applications in singular differential or difference equations,
Markov chains, cryptography, iterative method and numerical analysis can be found in [1, 2, 11], respec-
tively.

In this paper, we consider the Drazin inverse of a block matrix

M =
(

A B
C D

)
, (1)

where A and D are square complex matrices but need not to be the same size. This problem was first
proposed by Campbell and Meyer [2], and is quite complicated. To the best of our knowledge, there was no
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explicit formula for the Drazin inverse of M with arbitrary blocks. However, representations for the Drazin
inverse of the block matrices were presented in the literature under some conditions [3-11, 13-21].

As is well known that, if A and the Schur complement S = D − CA−1B are nonsingular, then M is also
nonsingular, and the inverse of M can be expressed as

M−1 =

(
A−1 + A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)
. (2)

The generalized Schur complement of A in M denoted by S = D − CADB plays an important role in the
representations for MD. When M and A are nonsingular, we focus attention on the Drazin inverse of M, it
is natural to see whether MD has a form (2) with A−1 and S−1 replaced by AD and SD, respectively. In recent
papers [14, 16], the necessary and sufficient conditions for this problem were established.

When S is either nonsingular or zero, Hartwig et al. [11] extended the results in [17] by replacing the
assumptions AπB = 0 and CAπ = 0 with CAπB = 0 and AAπB = 0 . In the case S is nonsingular, Martı́nez-
Serrano and Castro-González [10] gave some new results under weaker conditions A2AπB = 0, CAAπB = 0
and CAπB = 0; in the case S is zero, they derived the expressions of MD under the assumptions A2AπB = 0,
CAAπB = 0 and BCAπB = 0 (or ABCAπ = 0, BCAπ is nilpotent). Recently, when S = 0, Yang and Liu [15]
presented a formula of MD under the conditions AAπBC = 0 and CAπBC = 0. Deng and Wei [18] presented
some new results on the formulae of MD and M#. Recently, Castro-González and Martı́nez-Serrano [13]
developed the formula of MD under the conditions ind(S) 6 1 and W = I + ADBSπCAD is nonsingular. Li
[19] developed a representation under certain conditions when S is group invertible.

To the best of our knowledge, it is still an open problem to find an explicit formula for MD when the
generalized Schur complement S is an arbitrary matrix. And most of the existing results mentioned above
were obtained when S is zero or ind(S) 6 1. In this paper, we give several representations for the Drazin
inverse of M without the restrictions ind(S) 6 1 and W = I + ADBSπCAD is nonsingular.

It is known that, if matrix A and B are similar, i.e., there exists a nonsingular matrix P such that A = PBP−1,
then AD = PBDP−1. Based on this fact, Castro-González and Martı́nez-Serrano [13] used it to determine the
expression of MD. Here, we adopt this technique again, but the choices of P are different.

Before proceeding to the next section, we first introduce the following results which will come in handy
in the proofs of our theorems.

Lemma 1.1. ([12]) Let P, Q ∈ Cn×n, and ind(P) = r, ind(Q) = s, such that PQ = 0, then

(P +Q)D = Qπ
s−1∑
i=0

Qi(PD)i+1 +

r−1∑
i=0

(QD)i+1PiPπ.

Lemma 1.2. ([14]) Let M be a given matrix of form (1) and S = D − CADB be the generalized Schur complement of
A in M. Then

MD =

(
AD + ADBSDCAD −ADBSD

−SDCAD SD

)
if and only if

AπBSD = ADBSπ, SπCAD = SDCAπ

and (
AAπ AπB

SπCAπ SSπ

)
is a nilpotent operator (or matrix).

In the following, we always denote S = D − CADB and W = I + ADBSπCAD.
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Lemma 1.3. Let A ∈ Cn×n with ind(A) = r. Then

(A2ADW)D = AAD(AW)D = (AW)DAAD = (AW)D, (A2ADW)π = (AW)π; (3)
(WA2AD)D = AAD(WA)D = (WA)DAAD = (WA)D, (WA2AD)π = (WA)π. (4)

Moreover, if W is nonsingular, then

(A2ADW)D =W−1AD, (A2ADW)π = Aπ;
(WA2AD)D = ADW−1, (WA2AD)π = Aπ.

And the following statements are equivalent:
(1) W is nonsingular;
(2) AAD(AW)π = (AW)πAAD = 0;
(3) AAD(WA)π = (WA)πAAD = 0.

Proof. Without loss of generality, we assume that matrix A and BSπC can be represented as

A =
(
Σ 0
0 N

)
, BSπC =

(
(BSπC)11 (BSπC)12
(BSπC)21 (BSπC)22

)
,

where Σ is nonsingular and N is nilpotent with index r, Σ and (BSπC)11 have the same size.
Hence,

A2ADW =
(
Σ(I + Σ−1(BSπC)11Σ

−1) 0
0 0

)
, AW =

(
Σ(I + Σ−1(BSπC)11Σ

−1) 0
0 N

)
.

Therefore, the conclusion (3) is evident. Similarly, we can prove (4). In the case W is nonsingular, the results
have been shown in [13]. And the equivalence of statements among (1)-(3) can be easily verified.

2. Main results

Castro-González and Martı́nez-Serrano [13] gave some representations for the Drazin inverse of block
matrix M when ind(S) 6 1 and W is nonsingular together with some conditions. In this section, we present
several representations for MD under some weaker conditions than those in [13]. Furthermore, some
analogous results are given.

According to Lemma 1.3, the nonsingularity of W is equivalent to AAD(AW)π = (AW)πAAD = 0, next,
we consider the representation of MD extended the case where AAD(AW)π = (AW)πAAD = 0 are substituted
with SSDCWAAD(AW)π = 0 and (AW)πAADBSSD = 0.

Theorem 2.1. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If AAπB = 0, CAπB = 0,
AADBSSπ = 0, SSDCWAAD(AW)π = 0 and (AW)πAADBSSD = 0, then

MD =


(

I 0
SπCAD I

)
+

(
AπBSπCAD AπB

0 0

)
R +

s−1∑
j=1

(
0 0

S jSπCAD 0

)
R j+

s−1∑
j=1

(
AπBS jSπCAD 0

0 0

)
R j+1

 R

×
( I 0
−SπCAD I

)
+ R

(
−BSπCAD BSπ

C(I −W) CADBSπ

)
+

r−1∑
i=0

Ri+1
(

0 0
CAiAπ 0

)

+

r−1∑
i=0

Ri+2

(
BSπCAiAπ 0

CADBSπCAiAπ 0

) , (5)

where

R =
(

(AW)D + (AW)DBSDCW(AW)D −(AW)DBSD

−SDCW(AW)D SD

)
.
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Proof. Consider the following splitting of M

M =
(

I 0
SπCAD I

)
M̃

(
I 0

−SπCAD I

)
,

where

M̃ =
(

A + BSπCAD B
SSπCAD + SSDCADBSπCAD + CAπ + SSDCAAD S + SSDCADB

)
.

Hence

MD =

(
I 0

SπCAD I

)
M̃D

(
I 0

−SπCAD I

)
. (6)

And write M̃ as

M̃ = X + Y + Z,

where

X =

(
A2ADW AADB

SSπCAD + SSDCWAAD S + SSDCADB

)
,

Y =

(
AπBSπCAD AπB

0 0

)
,

Z =

(
AAπ 0
CAπ 0

)
.

Since AAπB = 0 and CAπB = 0, we get Z(X + Y) = 0, XY = 0, Y2 = 0 and Z is nilpotent with index r + 1.
Applying Lemma 1.1 yields

M̃D =

r∑
i=0

(
(X + Y)D

)i+1
Zi, (7)

(X + Y)D = XD + Y(XD)2,

and, for i > 0,(
(X + Y)D

)i+1
= (XD)i+1 + Y(XD)i+2.

Therefore,

M̃D =

r∑
i=0

(
(XD)i+1 + Y(XD)i+2

)
Zi. (8)

Next, we compute XD. Rewrite X as

X =

(
A2ADW AADBSSD

SSDCWAAD S2SD + SSDCADBSSD

)
+

(
0 AADBSπ

0 SSDCADBSπ

)
+

(
0 0

SSπCAD SSπ

)
, X1 + X2 + X3. (9)

Since AADBSSπ = 0, we have (X1 +X2)X3 = 0, X3 is nilpotent with index s, and X2X1 = 0, X2
2 = 0. Therefore,

using Lemma 1.1 gives

XD =

s−1∑
j=0

X j
3

(
(X1 + X2)D

) j+1
, (10)
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and for j > 0,(
(X1 + X2)D

) j+1
= (XD

1 ) j+1 + (XD
1 ) j+2X2. (11)

It follows from (AW)πAADBSSD = 0 that

S2SD + SSDCADBSSD − SSDCWAAD(A2ADW)DAADBSSD

= S2SD + SSDCADBSSD − SSDCW(AW)DAADBSSD

= S2SD + SSDCADBSSD − SSDCADAW(AW)DAADBSSD

= S2SD + SSDCAD(AW)πAADBSSD

= S2SD

i.e., the generalized Schur complement of A2ADW in X1 is S2SD. By assumptions, we can verify that X1
satisfies the conditions of Lemma 1.2, thus,

XD
1 =

(
(AW)D + (AW)DBSDCW(AW)D −(AW)DBSD

−SDCW(AW)D SD

)
, R. (12)

Substituting (12) into (11) produces

(
(X1 + X2)D

) j+1
= R j+1 + R j+2

(
0 BSπ

0 CADBSπ

)
. (13)

By substituting (13) into (10) follows that

XD =

I + s−1∑
j=1

(
0 0

S jSπCAD 0

)
R j

 R
[
I + R

(
0 BSπ

0 CADBSπ

)]
.

Further, for all i > 0,

(XD)i+1 =

I + s−1∑
j=1

(
0 0

S jSπCAD 0

)
R j

 Ri+1

[
I + R

(
0 BSπ

0 CADBSπ

)]
. (14)

In terms of (8) and (14) gives

M̃D =

I + s−1∑
j=1

(
0 0

S jSπCAD 0

)
R j + YR + Y

s−1∑
j=1

(
0 0

S jSπCAD 0

)
R j+1

 R
r∑

i=0

[
RiZi + Ri+1

(
0 BSπ

0 CADBSπ

)
Zi

]

=

I +
(

AπBSπCAD AπB
0 0

)
R +

s−1∑
j=1

(
0 0

S jSπCAD 0

)
R j+

s−1∑
j=1

(
AπBS jSπCAD 0

0 0

)
R j+1


×R

I + R
(

0 BSπ

0 CADBSπ

)
+

r−1∑
i=0

Ri+1

(
0 0

CAiAπ 0

)
+

r−1∑
i=0

Ri+2

(
BSπCAiAπ 0

CADBSπCAiAπ 0

) . (15)

Substituting (15) into (6) gives formula (5).

As an application of Theorem 2.1, we can deduce following result.



X. Liu, H. Yang / Filomat 27:1 (2013), 75–83 80

Corollary 2.2. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If AAπB = 0, CAπB = 0, BSSπ = 0
and BSπC = 0, then

MD =


(

I 0
SπCAD I

)
+

(
0 AπB
0 0

)
R +

s−1∑
j=1

(
0 0

S jSπCAD 0

)
R j


×R

( I ADBSπ

−SπCAD I

)
+

r−1∑
i=0

Ri+1

(
0 0

CAiAπ 0

) ,
where R is defined as in Theorem 2.1 with W = I.

Similarly, we can prove the following result.

Theorem 2.3. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If AAπB = 0, CAπB = 0,
SSπCAAD = 0, SSDCWAAD(AW)π = 0 and (AW)πAADBSSD = 0, then

MD =

[(
I 0

SπCAD I

)
+

(
AπBSπCAD AπB

0 0

)
R
]

R

×

(

I 0
−SπCAD I

)
+ R

(
−BSπCAD 0
C(I −W) 0

)
+

s−1∑
j=0

R j+1
(

0 BS jSπ

0 CADBS jSπ

)

+

r−1∑
i=0

Ri+1

(
0 0

CAiAπ 0

)
+

r−1∑
i=0

s−1∑
j=0

Ri+ j+2

(
BS jSπCAiAπ 0

CADBS jSπCAiAπ 0

) ,
where R is defined as in Theorem 2.1.

Proof. If SSπCAAD = 0, then (9) reduces to

X = X1 + X2,

where

X1 =

(
A2ADW AADBSSD

SSDCWAAD S2SD + SSDCADBSSD

)
,

X2 =

(
0 AADBSπ

0 SSπ + SSDCADBSπ

)
.

Note that X2X1 = 0, and X2 is nilpotent with index s + 1. By Lemma 1.1 and (12), we can compute that

(XD)i+1 = Ri+1

I + s−1∑
j=0

R j+1
(

0 BS jSπ

0 CADBS jSπ

) .
By (8), we get

M̃D =

[
I +

(
AπBSπCAD AπB

0 0

)
R
] r∑

i=0

Ri+1

I + s−1∑
j=0

R j+1
(

0 BS jSπ

0 CADBS jSπ

) Zi

=

[
I +

(
AπBSπCAD AπB

0 0

)
R
]

R

I + s−1∑
j=0

R j+1

(
0 BS jSπ

0 CADBS jSπ

)
+

r∑
i=1

Ri
(

AiAπ 0
CAi−1Aπ 0

)

+

r∑
i=1

s−1∑
j=0

Ri+ j+1

(
0 BS jSπ

0 CADBS jSπ

) (
AiAπ 0

CAi−1Aπ 0

) .
Hence, this Theorem can be easily obtained.
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Using Theorem 2.3, we can derive the following result.

Corollary 2.4. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If AAπB = 0, CAπB = 0, SSπC = 0
and BSπC = 0, then

MD =

[(
I 0

SπCAD I

)
+

(
0 AπB
0 0

)
R
]

R


(

I 0
−SπCAD I

)
+

s−1∑
j=0

R j+1
(

0 BS jSπ

0 CADBS jSπ

)
+

r−1∑
i=0

Ri+1
(

0 0
CAiAπ 0

) ,
where R is defined as in Theorem 2.1 with W = I.

If ind(S) 6 1, by Lemma 1.3, then Theorem 2.1 and Theorem 2.3 reduce to the following corollary.

Corollary 2.5. Let M be a given matrix of form (1) with ind(A) = r, ind(S) 6 1. If AAπB = 0, CAπB = 0, and W is
nonsingular, then

MD =

[(
I 0

SπCAD I

)
+

(
AπBSπCAD AπB

0 0

)
R
]

R
[(

I 0
−SπCAD I

)
+ R

(
−BSπCAD BSπ

C(I −W) CADBSπ

)
+

r−1∑
i=0

Ri+1
(

0 0
CAiAπ 0

)
+

r−1∑
i=0

Ri+2
(

BSπCAiAπ 0
CADBSπCAiAπ 0

) ,
where

R =
(

W−1 0
0 I

) (
AD + ADBSDCAD −ADBSD

−SDCAD SD

)
.

If the condition AAπB = 0 in Theorem 2.1 and Theorem 2.3 is replaced by CAAπ = 0, then the following
results can be deduced by a similar approach.

Theorem 2.6. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If CAAπ = 0, CAπB = 0,
SSπCAAD = 0, SSDC(WA)πAAD = 0 and (WA)πAADWBSSD = 0, then

MD =

( I −ADBSπ

0 I

)
+

(
−ADBSπC (I −W)B

SπC SπCADB

)
R̃ +

r−1∑
i=0

(
0 AiAπB
0 0

)
R̃i+1

+

r−1∑
i=0

(
AiAπBSπC AiAπBSπCADB

0 0

)
R̃i+2

 R̃
[(

I ADBSπ

0 I

)
+ R̃

(
ADBSπCAπ 0

CAπ 0

)

+

s−1∑
j=1

R̃ j
(

0 ADBS jSπ

0 0

)
+

s−1∑
j=1

R̃ j+1

(
ADBS jSπCAπ 0

0 0

) ,
where

R̃ =
(

(WA)D + (WA)DWBSDC(WA)D −(WA)DWBSD

−SDC(WA)D SD

)
.

Proof. Consider the splitting of M

M =
(

I −ADBSπ

0 I

)
M̃

(
I ADBSπ

0 I

)
,

where

M̃ =
(

A + ADBSπC AπB + AADBSSD + ADBSSπ + ADBSπCADBSSD

C S + CADBSSD

)
.
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Hence

MD =

(
I −ADBSπ

0 I

)
M̃D

(
I ADBSπ

0 I

)
.

And write M̃ as

M̃ = X + Y + Z,

where

X =

(
WA2AD AADWBSSD + ADBSSπ

CAAD S + CADBSSD

)
,

Y =

(
ADBSπCAπ 0

CAπ 0

)
,

Z =

(
AAπ AπB

0 0

)
.

The following derivative process is similar to Theorem 2.1, we omit the details.

The following result can be easily obtained from Theorem 2.6.

Corollary 2.7. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If CAAπ = 0, CAπB = 0, SSπC = 0
and BSπC = 0, then

MD =

( I −ADBSπ

SπCAD I

)
+

r−1∑
i=0

(
0 AiAπB
0 0

)
R̃i+1

 R̃


(

I − ADBSDCAπ ADBSπ

SDCAπ I

)
+

s−1∑
j=1

R̃ j
(

0 ADBS jSπ

0 0

) ,
where R̃ is defined as in Theorem 2.6 with W = I.

Similarly, we can deduce the following consequence.

Theorem 2.8. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If CAAπ = 0, CAπB = 0,
AADBSSπ = 0, SSDC(WA)πAAD = 0 and (WA)πAADWBSSD = 0, then

MD =


(

I −ADBSπ

0 I

)
+

(
−ADBSπC (I −W)B

0 0

)
R̃ +

s−1∑
j=0

(
0 0

S jSπC S jSπCADB

)
R̃ j+1

+

r−1∑
i=0

(
0 AiAπB
0 0

)
R̃i+1 +

r−1∑
i=0

s−1∑
j=0

(
AiAπBS jSπC AiAπBS jSπCADB

0 0

)
R̃i+ j+2


×R̃

[(
I ADBSπ

0 I

)
+ R̃

(
ADBSπCAπ 0

CAπ 0

)]
,

where R̃ is defined as in Theorem 2.6.

By Theorem 2.8, the following corollary is evident.

Corollary 2.9. Let M be a given matrix of form (1) with ind(A) = r, ind(S) = s. If CAAπ = 0, CAπB = 0, BSSπ = 0
and BSπC = 0, then

MD =


(

I −ADBSπ

0 I

)
+

s−1∑
j=0

(
0 0

S jSπC S jSπCADB

)
R̃ j+1 +

r−1∑
i=0

(
0 AiAπB
0 0

)
R̃i+1


×R̃

[(
I ADBSπ

0 I

)
+ R̃

(
0 0

CAπ 0

)]
,

where R̃ is defined as in Theorem 2.6 with W = I.
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If ind(S) 6 1, then Theorem 2.6 and Theorem 2.8 reduce to the following corollary.

Corollary 2.10. Let M be a given matrix of form (1) with ind(A) = r, ind(S) 6 1. If CAAπ = 0, CAπB = 0, and W
is nonsingular, then

MD =

( I −ADBSπ

0 I

)
+

(
−ADBSπC (I −W)B

SπC SπCADB

)
R̃ +

r−1∑
i=0

(
0 AiAπB
0 0

)
R̃i+1

+

r−1∑
i=0

(
AiAπBSπC AiAπBSπCADB

0 0

)
R̃i+2

 R̃
[(

I ADBSπ

0 I

)
+ R̃

(
ADBSπCAπ 0

CAπ 0

)]
,

where

R̃ =
(

AD + ADBSDCAD −ADBSD

−SDCAD SD

) (
W−1 0

0 I

)
.

Remark 2.11. By the above theorems the other special cases can also be deduced, such as: Theorem 2.6 or Theorem
2.8 in [13]; Theorem 3.1 or Corollary 3.2 (S is nonsingular), Theorem 4.1 or Corollary 4.2 (S is zero) in [11].
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