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Abstract. It is known that the Newton polygon of a polynomial carries information on its irreducibility. In
this paper we shall give another proof of the main theorem and characterize the inner points of the polygon.
From that proof it will be obvious that the inner points of the Newton polygon play an important role in
finding possible factorizations. We shall give a necessary and sufficient condition for the existence of the
integer polynomial factorization in integer factor-polynomials.

Definition 0.1. The convex hull of a set S (denoted by conv(S)) is the smallest convex set that contains the set S.

Definition 0.2. For two arbitrary sets A and B, being subsets of R2, a 2-dimensional real Euclidean space, the set
A + B = {a + b : a ∈ A, b ∈ B} is called the Minkowski sum of sets A and B.

Definition 0.3. An arbitrary point from R2 is called an integer point if both of its coordinates are integers. An
arbitrary polygon in R2 is called an integer polygon if all of its vertices are integer points.

Definition 0.4. We say that the integer polygon C is integrally decomposable if there exist integer polygons A and B
that satisfy C = A+B, A and B containing at least two points. Polygons A and B are called polygon summands of the
polygon C. Otherwise, polygon C is integrally indecomposable, i.e. there is no non-trivial decomposition of polygon
C.

Definition 0.5. Consider an arbitrary polynomial in two variables with integer coefficients fromZ[x, y], the ring of
polynomials in two variables over Z

f (x, y) =
∑

Ce1e2 xe1 ye2 .

Consider an exponent vector (e1, e2) as a point in Z2. The Newton polygon of the polynomial f (x, y), denoted by P f ,
is defined as the convex hull in R2 of all the points (e1, e2) with Ce1e2 ∈ Z \ {0}.

Definition 0.6. A polynomial over field F is called absolutely irreducible if it remains irreducible over every algebraic
extension of F.
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Definition 0.7. Let f (x, y) ∈ Z[x, y]. The non-extended lattice of nodes of the polynomial f (x, y) consists of all the
points (e1, e2)i, i = 1, ..., k corresponding to the terms with non-zero coefficients. If the Newton polygon of f (x, y)
contains, in its inner area, some integer points different from (e1, e2)i, i = 1, ..., k, these points, together with (e1, e2)i,
i = 1, ..., k, form an extended lattice of nodes.

The following theorem is well known.

Theorem 0.8. Let F be an arbitrary field. Let f (x, y), 1(x, y), h(x, y) ∈ F[x, y] with f (x, y) , 0 and f (x, y) =
1(x, y)h(x, y). Then P f = P1 + Ph.

Proof: It is known that the Minkowski sum of two polygons is a polygon and any vertex of the resulting
polygon is obtained as the sum of the vertices of the polygon summands. Let (α, β) ∈ P f be an arbitrary vertex
of the Newton polygon of polynomial f (x, y). This implies that polynomial f contains monomial xαyβ with
non-zero coefficient. Due to the fact that f (x, y) = 1(x, y)h(x, y),we can conclude that polynomials 1(x, y) and
h(x, y) contain monomials xγyδ and xα−γyβ−δ in that order, both with non-zero coefficients. These monomials
correspond to the points (γ, δ) ∈ P1 and (α − γ, β − δ) ∈ Ph. It is obvious that (γ, δ) + (α − γ, β − δ) ∈ P1 + Ph.
Namely, we obtain (γ+α−γ, δ+β−δ) ∈ P1+Ph, i.e. (α, β) ∈ P1+Ph. In other words, the inclusion P f ⊆ P1+Ph
holds. We will show that the reverse inclusion P1 + Ph ⊆ P f also holds. Since a Newton polygon is the
convex hull of its vertices, it is sufficient to show that any vertex of a polygon P1 + Ph lies in the polygon
P f . Let v be a vertex of the Newton polygon P1 + Ph. Since v ∈ P1 + Ph, we conclude that there exist points
v1 ∈ P1 and vh ∈ Ph such that v = v1 + vh. The assumption that v is a vertex of the Newton polygon P1 + Ph
implies that such vectors v1 and vh are unique. Assume the opposite, v = v1 + vh = v′1 + v′h, v1, v′1 ∈ P1,
vh, v′h ∈ Ph,with v1 , v′1 and vh , v′h.

Let v = (x, y) and v1 = (a, b).As v = v1+vh, it is obvious that vh = (x−a, y−b). Let v′1 = (c, d).Analogously
we obtain v′h = (x− c, y−d).Consider the point v1+v′h. It is clear that v1+v′h ∈ P1+Ph.We have the following

v1 + v′h = (a, b) + (x − c, y − d) = (x + a − c, y + b − d) = (x + (a − c), y + (b − d)).

Further, consider the point v′1 + vh. It is clear that v′1 + vh ∈ P1 + Ph.We have the following

v′1 + vh = (c, d) + (x − a, y − b) = (x − a + c, y − b + d) = (x − (a − c), y − (b − d)).

Let us look for a midpoint of the line segment whose endpoints are v1+v′h and v′1+vh, v1+v′h, v
′
1+vh ∈ P1+Ph.

(
x + (a − c) + x − (a − c)

2
,

y + (b − d) + y − (b − d)
2

) = (x, y).

In other words, the center of the line segment whose endpoints are v1 + v′h and v′1 + vh,which both lie in the
Newton polygon P1 + Ph, is the point (x, y). As a vertex of the Newton polygon is not on any line segment
connecting any other two points of the polygon, we conclude that the point (x, y) is not the vertex of the
polygon P1 + Ph, which is an obvious contradiction. Therefore, for an arbitrary vertex v of the Newton
polygon P1 + Ph there exist unique vectors v1 ∈ P1 and vh ∈ Ph such that v = v1 + vh.

As v is a vertex of the polygon P1+Ph, we can conclude that v1 and vh are also the vertices of the polygons
P1 and Ph. Since v1 and vh are unique, it is obvious that there exist unique terms of 1(x, y) and h(x, y) such
that v is a resulting exponent vector in 1(x, y)h(x, y). Therefore v ∈ P f . We have shown that all vertices of
polygon P1 + Ph lie in the polygon P f . Due to the fact that the Newton polygon is the convex hull of its
vertices, we have P1 + Ph ⊆ P f . �

Remark 0.9. From the proof of Theorem 0.8 it is obvious that the monomials of the polynomial f (x, y) that
are ”obtained” in, at least, two different ways by multiplying factor-polynomials 1(x, y) and h(x, y), certainly
do not correspond to the vertices of the Newton polygon P f .

Example 0.10. Consider a polynomial:

f (x, y) = x2 + 2xy + y2 ∈ Z[x, y].
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The factorization of polynomial f (x, y) is given below

f (x, y) = (x + y)(x + y).

The monomial xy with coefficient 2 is ”obtained” in two different ways by multiplying factor-polynomials

xy = (x)(y) = (y)(x).

Examine the Newton polygon of the polynomial f (x, y) shown in Figure 1.
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y

2

(1,1)

(0,2)

(2,0)
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1

3

0 1 3 4

Figure 1

Clearly, P f = conv((1, 1), (0, 2), (2, 0)) is a line segment with endpoints (0, 2) and (2, 0). Indeed, the
monomial xy of the polynomial f (x, y) that is ”obtained” in two different ways by multiplying factor-
polynomials corresponds to the point (1, 1),which is not the vertex of the polygon P f .

Theorem 0.11. Let f (x, y) be a non-zero bivariate polynomial over an arbitrary field F, non-divisible either by x or
by y. If the Newton polygon of the polynomial is integrally indecomposable, then polynomial f (x, y) is absolutely
irreducible over F.

Proof: Since polynomial f (x, y) is non-divisible either by x or by y, it has no trivial decomposition. Assume
the opposite, the polynomial f (x, y) is not absolutely irreducible over field F, i.e. it does not remain
irreducible over every algebraic extension of F. This implies that over some algebraic field extension of F,
f (x, y) = 1(x, y)h(x, y) holds, with 1(x, y) and h(x, y) having, at least, two non-zero terms. Due to the fact
that 1(x, y) and h(x, y) have, at least, two non-zero terms, their corresponding Newton polygons have, at
least, two points. Since f (x, y) = 1(x, y)h(x, y), from the previous theorem we get P f = P1 + Ph, with P1
and Ph having, at least, two points. This implies that polygon P f has non-trivial decomposition, which is a
contradiction. Therefore, the polynomial f (x, y) is absolutely irreducible over F. �

Definition 0.12. Let f (x, y) be a polynomial in two variables over Z. Let P = {A1,A2, ...,An} be the lattice of
nodes of the polynomial f (x, y) possibly extended by some integer points that lie inside of the Newton polygon of the
polynomial f (x, y). Without loss of generality, we can assume that after the construction of the Newton polygon of
the polynomial f (x, y), A1,A2, ...,Ak, k ≥ 2, become its vertices, and Ak+1, ...,An do not. We say that the grouping of
the set P, G1, ...,Gl, l ≥ 2, is a super-covering of P if:

1. Each group Gi, i = 1, ..., l, contains the same number of points not less than two,

2.
l∪

i=1
Gi = P,

3. Points A1,A2, ...,Ak appear in one and only one of the sets G1, ...,Gl,

4. Points Ak+1, ...,An appear in at least one of the sets G1, ...,Gl,

5. Convex polygons determined by G1,G2, ...,Gl are congruent and G2, ...,Gl are obtained from G1 by translation.
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Definition 0.13. Let f (x, y) be a bivariate polynomial with integer coefficients over Z. Let P = {A1,A2, ..., An}
be the extended or non-extended lattice of nodes of the polynomial f (x, y). Let G1 = conv(Ai1,1 , ...,Ai1,k ), ..., Gl =
conv(Ail,1 , ...,Ail,k ), l ≥ 2, with {i1,1, ..., i1,k, ..., il,1, ..., il,k} = {1, ..., n} be a super-covering of P by l congruent k−gons.
Due to the fact that the composition of two translations is also a translation, we conclude that, for any of the Gp and
Gq, p , q, p, q ∈ {1, ..., l} there exists a translation τp,q, such that τp,q(Gp) = Gq. For each polygon, we list vertices in
such a way that we firstly list the vertex with smallest x−coordinate. If such vertex is not unique, we choose the one
having simultaneously smallest y−coordinate. Then we list the other vertices in counterclockwise order. It is clear
that τp,q(Aip,w ) = Aiq,w , for any of the p and q, p , q, p, q ∈ {1, ..., l} and each w = 1, ..., k. Let us denote by coef(Ai) the
coefficient of the monomial of the polynomial f (x, y) corresponding to the exponent vector Ai. Assume that polygons
G1,G2, ...,Gl have no common node. We say that the super-covering of P is suitable super-covering with respect to
the coefficients of the polynomial f (x, y) if

coef(Ai1,1 ) : coef(Ai1,2 ) : ... : coef(Ai1,k ) = ... = coef(Ail,1 ) : coef(Ail,2 ) : ... : coef(Ail,k ).

Assume that polygons G1, ...,Gl have common nodes. Each Gi, i = 1, ..., l, determines a polynomial pi(x, y) such
that f (x, y) = p1(x, y) + ... + pl(x, y), where polynomial summands pi(x, y), i = 1, ..., l, are ordered in the same
way as the vertices. For each node Ac, that is common for s polygons, the coefficient of the monomial whose
exponent vector is Ac is partitioned into s summands such that every summand belongs to one and only one
pi(x, y), corresponding to the polygons having a common node Ac, in a way that the coefficients of p1(x, y),...,pl(x, y),
pi(x, y) = ci,1xαi,1 yβi,1 + ... + ci,kxαi,k yβi,k , are proportional, i.e.

c1,1 : c1,2 : ... : c1,k = ... = cl,1 : cl,2 : ... : cl,k.

If the above holds for every common node, we say that the super-covering is suitable.

From Theorem 0.11 it follows that integral indecomposability of the corresponding Newton polygon of a
polynomial, that is completely determined by its vertices, implies irreducibility of a polynomial. Moreover,
any polynomial having the same non-zero terms is also absolutely irreducible over that field. It remains
irreducible if we add monomials whose exponent vectors lie in the inner area of the polygon. On the other
hand, the Newton polygon of a polynomial does not carry the entire information on the existence of the
polynomial factorization. In what follows we are going to see that, when factoring a polynomial, it is
important to consider the vertices that determine Newton polygon, as well as the points disregarded for
vertices of the Newton polygon and integer points captured by the polygon.

Remark 0.14. Note that it is sufficient to discuss possible factorization of polynomials non-divisible either
by x or by y, and therefore, having no trivial factorization. For example, multiplying by x and y means, in
the sense of Newton polygon, translation for vectors (1, 0) and (0, 1). Since we are not interested in the trivial
factorizations, in the following we examine polynomials non-divisible either by x or by y. So, if we intend
to examine possible non-trivial factorization of a polynomial divisible by x, y or both of them, firstly we
extract a trivial factor xα, yβ or xαyβ and discuss possible factorizations of the non-trivial factor-polynomial.

Let us formulate a necessary and sufficient condition for the existence of the non-trivial integer factor-
ization of the bivariate polynomial with integer coefficients.

Theorem 0.15. Let f (x, y) be a non-zero bivariate polynomial over Z. Polynomial f (x, y) has non-trivial integer
factorization if and only if its lattice of nodes, possibly extended by some integer points captured by the Newton
polygon of the polynomial f (x, y), has suitable super-covering with respect to the coefficients of f (x, y).

Proof: (⇒) Assume that f (x, y) has non-trivial integer factorization, i.e. there exist integer polynomials
1(x, y) and h(x, y) both having, at least, two monomials with non-zero terms such that f (x, y) = 1(x, y)h(x, y).
Let h(x, y) = c1xα1 yβ1 + ... + ckxαk yβk , with ci , 0, for at least, two i, i = 1, ..., k. Let cp , 0 and cq , 0. It is clear
that either (αp, βp) , (0, 0) or (αq, βq) , (0, 0). So, let us rewrite polynomial h(x, y) in the following form

h(x, y) = cpxαp yβp + cqxαq yβq +
∑
i∈I

cixαi yβi ,
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where I ⊂ {1, ..., k} \ {p, q}, is a collection of all indices different from p and q, such that for each i ∈ I, ci , 0.
Clearly, if the polynomial h(x, y) has no other non-zero terms except cpxαp yβp and cqxαq yβq , the set I is empty.
We can rewrite the polynomial f(x,y) in the following way

f (x, y) = 1(x, y)
(
cpxαp yβp + cqxαq yβq +

∑
i∈I

cixαi yβi
)
.

Further, we obtain
f (x, y) = 1(x, y)cpxαp yβp + 1(x, y)cqxαq yβq + 1(x, y)

∑
i∈I

cixαi yβi .

Let us denote the Newton polygons of polynomials 1(x, y) and f (x, y) by P1 and P f . Due to the fact that the
multiplication of the polynomial 1(x, y) by monomials cpxαp yβp , cqxαq yβq , and eventually others, corresponds
to the translation of the polygon P1 for vectors (αp, βp), (αq, βq), and others, it is clear that the Newton polygon
of f (x, y) is the convex hull of polygon P1 translated by vectors (αp, βp), (αq, βq) and others. In other words,
the lattice of nodes is covered by congruent polygons P1. So, the super-covering of the lattice of nodes is
obtained. From the representation above of the polynomial f (x, y) it is obvious that, if monomials obtained
in more than one way exist, they are split into the polynomial summands 1(x, y)cpxαp yβp , 1(x, y)cqxαq yβq , and
eventually others, in the way that appropriate coefficients of these polynomial summands are proportional
as cp : cq : ..., so it follows that such a covering is suitable super-covering.

(⇐) Assume that the lattice of nodes of f (x, y), possibly extended by some integer points captured by
the Newton polygon of the polynomial f (x, y), has suitable super-covering with respect to the coefficients
of f (x, y). Further, we assume that this covering is reached by l congruent polygons G1,G2, ...,Gl.We group
monomials of the polynomial f (x, y) in the way determined by polygons G1,G2, ...,Gl, l ≥ 2. We split
monomials into polynomial summands that correspond to the nodes that are common for, at least, two
polygons in order to obtain proportionality of the coefficients of the polynomial summands. This is possible
to achieve because of the fact that super-covering is suitable with respect to the coefficients of f (x, y). It
is obvious that such splitting of the monomials into polynomial summands defines a non-trivial integer
factorization of the polynomial f (x, y). �

Remark 0.16. Under the same conditions as in the previous theorem, the same holds if we consider the
polynomial with rational coefficients.

Example 0.17. Consider a polynomial f (x, y) over Z,

f (x, y) = x2 + 2xy + y2 ∈ Z[x, y].

The lattice of nodes of f (x, y), shown in Figure 2, contains the vertices of the polygon (0, 2) and (2, 0), but also
the point (1, 1) that is disregarded for the vertex because of its collinearity with two consecutive vertices.
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(2,0)

2

1

3
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Figure 2

The only way to achieve super-covering on this lattice is to cover it with two congruent line segments
conv((2, 0), (1, 1)) and conv((1, 1), (0, 2)) having a common node (1, 1). This super-covering is suitable if
the coefficient of the monomial corresponding to the comon node (1, 1), i.e. xy, can be split in such a
way as to obtain proportionality of the appropriate coefficients of polynomial summands induced by the
super-covering. We use brackets to announce the grouping of the monomials

f (x, y) = (x2 + axy) + ((2 − a)xy + y2).
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Line segment conv((1, 1), (0, 2)) is obtained from the line segment conv((2, 0), (1, 1)) by the translation for
the vector (−1, 1). If we denote such translation by τ, it follows that τ((2, 0)) = (1, 1) and τ((1, 1)) = (0, 2).
In the first brackets, the order of the monomials is such that firstly we list the monomial corresponding to
the exponent vector (2, 0) and secondly the monomial corresponding to the exponent vector (1, 1). In the
second brackets, firstly we list the monomial corresponding to the exponent vector τ((2, 0)) and secondly the
monomial corresponding to the exponent vector τ((1, 1)). The super-covering is suitable if 1 : a = (2− a) : 1,
i.e. a = 1.We have

f (x, y) = x(x + y) + y(x + y) = (x + y)(x + y).

Example 0.18. Consider a polynomial f (x, y) over Z

p(x, y) = y2 − x2 ∈ Z[x, y].

The exponent vectors corresponding to non-zero terms of the polynomial p(x, y) are (0, 2) and (2, 0) and the
Newton polygon of the polynomial p(x, y) is a line segment with endpoints (0, 2) and (2, 0) as in the previous
example. It is not possible to reach a factorization of this polynomial if we only consider the vertices of
its Newton polygon. Nevertheless, this line segment contains an integer point (1, 1) that corresponds to
the monomial xy with coefficient 0. Consider the extended lattice of nodes that consists of vertices (0, 2)
and (2, 0) together with the point (1, 1).We reach the super-covering of the lattice in the same way as in the
previous example. So let us rewrite polynomial p(x, y) in the following way

p(x, y) = y2 + 0xy − x2.

This super-covering is suitable if we can choose an appropriate way to represent zero in order to obtain
proportionality of the appropriate coefficients of polynomial summands

p(x, y) = y2 + (−a + a)xy − x2 = (y2 − axy) + (axy − x2), a ∈ Z.

As 1:(- a) = a:(-1), i.e. a2 = 1, we conclude that suitable super-covering is reached for a = 1 and a = −1.
Choosing a = 1, we get

p(x, y) = (y2 − xy) + (xy − x2) = y(y − x) + x(y − x) = (y + x)(y − x).

Remark 0.19. Choosing a = −1 leads to the same factorization of the polynomial

p(x, y) = (y2 + xy) + (−xy − x2) = y(y + x) − x(y + x) = (y − x)(y + x).

Example 0.20. Consider a polynomial p(x, y) over Z

p(x, y) = y2 − 2x2 = y2 + 0xy − 2x2 ∈ Z[x, y].

As in Example 0.17 and Example 0.18, the extended lattice of nodes consists of points (0, 2), (2, 0) and (1, 1)
and we cover it in the same way. This super-covering is suitable if the monomial 0xy can be split in such a
way as to obtain proportionality of the appropriate coefficients, i.e.

p(x, y) = y2 − axy + axy − 2x2 = (y2 − axy) + (axy − 2x2), a ∈ Z,

with 1 : (−a) = a : (−2), i.e. a2 = 2. There is no a, a ∈ Z , such that a2 = 2. Therefore, the polynomial f (x, y)
has no integer factorization. Since a =

√
2 ∈ R, p(x, y) has factorization over the field of real numbers

p(x, y) = (y −
√

2x)(y +
√

2x).

Example 0.21. Consider a polynomial r(x, y) over Z

r(x, y) = y2 − 4x2 = y2 + 0xy − 4x2 ∈ Z[x, y]
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with the same lattice of nodes as in the previous examples and we cover it in the same way. This super-
covering is suitable if the polynomial can be written in the following form

r(x, y) = y2 + 0xy − 4x2 = (y2 − axy) + (axy − 4x2), a ∈ Z

with 1 : (−a) = a : (−4), i.e. a = 2 or a = −2. Choosing a = 2, we get

r(x, y) = (y2 − 2xy) + (2xy − 4x2) = y(y − 2x) + 2x(y − 2x) = (y + 2x)(y − 2x).

Remark 0.22. We have stated earlier that, if we want to factor a bivariate polynomial, it is important to
consider the vertices that determine the Newton polygon as well as the points disregarded as vertices of
the Newton polygon, because of their collinearity with two consecutive vertices or their position inside
the constructed polygon. In other words, all the points corresponding to any of the exponent vectors are
important for finding the possible factorizations of a polynomial. In the previous examples we have shown
that integer points, that do not correspond to exponent vectors but lie inside the Newton polygon of a
polynomial, may also be important for its factorization.

Remark 0.23. It would be wrong to conclude that if all the points that correspond to exponent vectors
of a polynomial are vertices of its Newton polygon and the polygon has no other integer points in its
inner area, the polynomial is irreducible. In other words, the inner points of the Newton polygon play an
important role in finding possible factorizations, but their absence does not necessary imply irreducibility
of the polynomial. This will be illustrated by the following example.

Example 0.24. Consider a polynomial f (x, y) over Z

f (x, y) = xy + x + y + 1 ∈ Z[x, y].

The terms of the polynomial f (x, y) with non-zero coefficients correspond to the following exponent vectors:
(1, 1), (1, 0), (0, 1) i (0, 0). The Newton polygon of f (x, y) is a square with integer vertices shown in Figure 3
having no other integer points in its inner area.

x

y
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1

0 1

(0,0)

Figure 3

P f can be integrally decomposed in a way as shown in Figure 4, i.e.

P f = conv((1, 1), (1, 0), (0, 1), (0, 0)) = conv((0, 0), (1, 0)) + conv((0, 0), (0, 1)).
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Figure 4
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Since the Newton polygon of the polynomial f (x, y) is integrally decomposable, the polynomial f (x, y)
can be either reducible or irreducible. We cover the lattice with two congruent line segments and factor
f (x, y) in the following way

f (x, y) = (x + 1)(y + 1).

Note that the Newton polygon of f (x, y) does not capture any integer point except its vertices. However,
f (x, y) has integer factorization. Due to the absence of the inner integer points, it is understandable that
there is no monomial obtained in more than one way from the factor-polynomials of f (x, y).

Example 0.25. Consider a polynomial f (x, y) over Z

f (x, y) = x2y2 + x2 + y2 + 1 ∈ Z[x, y].

The terms of the polynomial f (x, y) with non-zero coefficients correspond to the following exponent vectors:
(2, 2), (2, 0), (0, 2) and (0, 0). The Newton polygon of the polynomial f (x, y) is a square with integer vertices
shown in the Figure 5.
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2
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(0,1)
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1

1

Figure 5

The polynomial f (x, y) has following integer factorization

f (x, y) = (x2 + 1)(y2 + 1).

Remark 0.26. Note that the Newton polygon of the polynomial f (x, y) contains the following integer points
in its inner area: (0, 1), (1, 0), (1, 2), (2, 1) and (1, 1).These points are not of interest for polynomial factorization
because super-covering can be reached on the non-extended lattice of nodes.

Example 0.27. Consider the following bivariate polynomials over Z

f (x, y) = xy4 + x2y3 + 3xy2 + y3 + x2y + x + y ∈ Z[x, y],

1(x, y) = xy4 + x2y3 + 2xy2 + y3 + x2y + x + y ∈ Z[x, y],

h(x, y) = xy4 + x2y3 + 5xy2 + y3 + x2y + x + y ∈ Z[x, y].

Since these polynomials have the same non-zero terms, their non-extended lattices of nodes are the same
and Newton polygons are also the same, i.e. P f = P1 = Ph. Let A = (1, 0), B = (0, 1), C = (1, 2), D = (0, 3),
E = (1, 4), F = (2, 1) and G = (2, 3). The polygon P f is shown in Figure 6.
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The only point from the non-extended lattice of nodes that is not a vertex of the Newton polygon is
C and, if the polynomial is reducible, the monomial that corresponds to the point C = (1, 2), that is 3xy2,
would be obtained from the factor-polynomials in more than one way. Since its coefficient in f (x, y) is 3
and all the other coefficients are 1, intuitively it is clear that, in order to obtain suitable super-covering with
respect to coefficients of the polynomial f (x, y),we have to cover the non-extended lattice of nodes by three
congruent figures, such that each node belongs to one and only one figure, except node C which should
be common to all of these figures. Such covering by three congruent triangles △ABC, △CDE and △FCG is
shown in Figure 7.
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In order to obtain factorization of the polynomial, we group monomials in such a way that the vertices
of each triangle are collected in the same brackets. Nevertheless, xy2 appears in each of these three groups.
This is appropriate because it is xy2 + xy2 + xy2 = 3xy2.We have

f (x, y) = (x + y + xy2) + (xy2 + y3 + xy4) + (x2y + xy2 + x2y3).

As triangles △CDE and △FCG are obtained from the triangle △ABC by translation for vectors (0, 2) and (1, 1),
we extract from the second brackets y2 and from the third xy

f (x, y) = (x + y + xy2) + y2(x + y + xy2) + xy(x + y + xy2) = (1 + y2 + xy)(x + y + xy2).

Since the Newton polygons of the factor-polynomials 1 + y2 + xy and x + y + xy2 have no super-covering,
we conclude that these polynomials have no integer factorization. It is easy to prove that another possible
suitable super-covering of this lattice of nodes with respect to coefficients of the polynomial f (x, y) shown
in Figure 8 leads to the same factorization.
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Nevertheless, super-coverings of the lattice of nodes shown in Figure 7 and Figure 8 are not suitable
with respect to the coefficients of 1(x, y).Due to the fact that the coefficient of the monomial xy2 is 2, suitable
covering of the lattice is the covering by two congruent figures such that each node belongs to one and only
one figure, except the node (1, 2),which is common to these two figures. Such covering is given in Figure 9.
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Analogously, we obtain integer factorization induced by this covering

1(x, y) = xy4 + x2y3 + 2xy2 + y3 + x2y + x + y = (x + y + xy2 + x2y) + (xy2 + y3 + xy4 + x2y3)

1(x, y) = (x + y + xy2 + x2y) + y2(x + y + xy2 + x2y) = (1 + y2)(x + y + xy2 + x2y).

It is easy to prove that the polynomial 1 + y2 has no integer factorization.
Further, we factor polynomial x + y + xy2 + x2y with the lattice of nodes shown in Figure 10.
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We cover the lattice by two congruent line segments, as shown in Figure 11.
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This covering implies grouping of the monomials in the following way

x + y + xy2 + x2y = (x + y) + (x2y + xy2).

Since 1 : 1 = 1 : 1, the proportionality of the coefficients of the polynomial summands is obtained. So, we
conclude that this covering is suitable super-covering of the lattice of nodes of the polynomial x+y+xy2+x2y.
Further, we obtain

(x + y) + (x2y + xy2) = (x + y) + xy(x + y) = (1 + xy)(x + y).

So, the polynomial 1(x, y) has integer factorization, that is

1(x, y) = (1 + y2)(1 + xy)(x + y).
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Another suitable covering of the lattice of nodes with respect to the coefficients of the polynomial 1(x, y)
is shown in Figure 12 and it leads to the same integer factorization of 1(x, y).

Finally, consider the polynomial h(x, y) and super-covering of its lattice of nodes shown in Figure 7. We
group monomials in the way induced by this covering.

h(x, y) = (x + y + axy2) + (bxy2 + y3 + xy4) + (x2y + cxy2 + x2y3) ∈ Z[x, y], a + b + c = 5.

This covering is not suitable with respect to the coefficients of the polynomial h(x, y) since:

1 : 1 : a = b : 1 : 1 = 1 : c : 1,

implies:
a = b = c = 1,

i.e.,
a + b + c = 3.

Completely analogously, for each super-covering reached on its lattice of nodes, it can be shown that it is
not suitable with respect to the coefficients of h(x, y), so we conclude that h(x, y) has no non-trivial integer
factorization.

Example 0.28. Consider following polynomial over Z

h(x, y) = 9xy4 + 6x2y3 + 10xy2 + 6y3 + 2x2y + x + 2y ∈ Z[x, y].

Since this polynomial has the same non-zero terms as the polynomials f (x, y) and 1(x, y) in the previous
example, the lattice of nodes is the same too. Super-covering of the lattice shown in the Figure 7 is suitable
super-covering with respect to the coefficients of the polynomial h(x, y) if it can be written in the form of
the sum of three polynomials determined by triangles △ABC, △CDE and △FCG, while monomial 10xy2 is
split in order to satisfy the proportionality of appropriate coefficients if possible

h(x, y) = (x + 2y + 3xy2) + (3xy2 + 6y3 + 9xy4) + (2x2y + 4xy2 + 6x2y3).

As 1 : 2 : 3 = 3 : 6 : 9 = 2 : 4 : 6, the proportionality is satisfied. Further, we get

h(x, y) = (x + 2y + 3xy2) + 3y2(x + 2y + 3xy2) + 2xy(x + 2y + 3xy2),

i.e.,
h(x, y) = (1 + 3y2 + 2xy)(x + 2y + 3xy2).

It is easy to prove that both of the Newton polygons of the factor-polynomials of h(x, y) have no super-
covering.
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