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Abstract. Over the past few decades, there have been a lot of activity about combining fixed point theory
and another branches in mathematics such differential equations, geometry and algebraic topology. In 2005,
Echenique started combining fixed point theory and graph theory by giving a short constructive proof for
the Tarski fixed point theorem by using graphs. In 2006, Espinola and Kirk started combining fixed point
theory and graph theory. Recently, this field have been of great interest for fixed point theorists. In this
paper, we give some fixed point results for generalized quasi-contractive multifunctions on graphs.

1. Introduction

In 2005, Echenique started combining fixed point theory and graph theory by giving a short constructive
proof for the Tarski fixed point theorem by using graphs ([8]). In 2006, Espinola and Kirk applied fixed
point results in graph theory ([9]). Later, some notable contributions were made by Jachymski in 2008 ([14]),
O’Regan and Petrusel in 2008 ([19]), Jachymski in 2009 ([11]), Bojor in 2010 ([5]), Beg, Butt and Radojevic in
2010 ([4]), Espinola, Lorenzo and Nicolae in 2011 ([10]), Nicolae, O’Regan and Petrusel in 2011 ([18]), Bojor
in 2012 ([6]) and Aleomraninejad, Rezapour and Shahzad ([1]). On the other hand, the notion of quasi-
contractions provided by Ciric in 1974 ([7]). It has been published some papers about quasi-contractions,
but we like to review here some recent published works. After providing some results on fixed points of
quasi-contractions on normal cone metric spaces by Ilic and Rakocevic in 2009 ([13]), Kadelburg, Radonevic
and Rakocevic generalized the results by considering an additional assumption and deleting the assump-
tion on normality ([16]). In 2011, Haghi, Rezapour and Shahzad proved same results without the additional
assumption and for λ ∈ (0, 1) ([20]). Then, Amini-Harandi proved a result on existence of fixed points of
set-valued quasi-contraction maps in metric spaces by using the technique of [20] (see [2]). But similar to
([16]), he could prove it only for λ ∈ (0, 1

2 ) (see [2]). In 2012, Haghi, Rezapour and Shahzad the main result of
([2]) by using a simple method ([12]). Also, they introduce quasi-contraction type multifunctions and show
that the main result of ([2]) holds for quasi-contraction type multifunctions. They raised an open problem
about difference of quasi-contraction and quasi-contraction type multifunctions ([12]). Recently, Moham-
madi, Rezapour and Shahzad gave a positive answer to the question ([17]). In this paper, by combining
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obtained idea from the listed papers, we give some fixed point results for generalized quasi-contractive
multifunctions on graphs.

Let (X, d) be a metric space and G an undirected graph such that the set V(G) of its vertices coincides
with X and the set E(G) of its edges contains all loops. We assume that G has no parallel edges. Hereafter,
we denote it for abbreviation by (G, d) and call it graph-metric space. We say that a self-map f on the
graph G preserves edges of G whenever (x, y) ∈ E(G) implies ( f x, f y) ∈ E(G) for all x, y ∈ X. A graph G is
connected if there is a path x0 = x, · · · , xn = y between any two vertices x and y. In this case, we say that the
length of this path is n. If there is a path between x and y, we denote it by y ∈ [x]G. It is clear that there is
path via minimum length between each two vertices when G is a finite graph. But, we deal infinite graphs
(see [1]) and so we assume in this paper that there is path via minimum length between each two vertices
and we denote it by o(x, y) = n. We say that G is a (C)-graph whenever for each sequence {xn}n≥0 in X with
xn → x and (xn, xn+1) ∈ E(G) for all n ≥ 0, there is a subsequence {xnk }k≥0 such that (xnk , x) ∈ E(G) for all k ≥ 0
(see [1] and [14]). We say that a multifunction T : G→ 2G has comparable approximative valued property
whenever for each x ∈ G there exists y ∈ Tx such that (x, y) ∈ E(G) and d(x,Tx) = d(x, y). Denote byΦ the set
of all continuous and nondecreasing mappings ϕ : [0,∞) → [0,∞) such that ϕ(t) < t for all t > 0. Let ϕ be
a function in Φ. The multifunction T : G→ 2G is called weakly generalized ϕ-quasi-contractive whenever
H(Tx,Ty) ≤ ϕ(M(x, y)) for all x, y ∈ G with y ∈ [x]G, where

M(x, y) = max{d(x, y), d(x,Tx), d(y,Ty),
(d(x,Ty) + d(y,Tx))

2
}

and H is the Hausdorffmetric.

2. Main Results

Now, we are ready to state and prove our main results.

Theorem 2.1. Let (G, d) be a complete graph-metric space, ϕ ∈ Φ and also T : G → 2G a weakly generalized
ϕ-quasi-contractive multifunction which has comparable approximative valued property. If G is a (C)-graph, then T
has a fixed point.

Proof. Let x0 ∈ X. If x0 ∈ Tx0, then we have nothing to prove. Suppose that x0 < Tx0. Since T has comparable
approximative valued property, there exists x1 ∈ Tx0 such that (x0, x1) ∈ E(G) and d(x0,Tx0) = d(x0, x1). It
is clear that x1 , x0. If x1 ∈ Tx1, then we have nothing to prove. Suppose that x1 < Tx1. Now, there exists
x2 ∈ Tx1 such that (x0, x1) ∈ E(G) and d(x1,Tx1) = d(x1, x2). It is clear that x2 , x1. By continuing this process,
we obtain a sequence {xn} in X such that xn ∈ Gxn−1, (xn−1, xn) ∈ E(G) and d(xn−1, xn) = d(xn−1,Txn−1) for all
n. Now, we have

d(xn−1, xn) = d(xn−1,Txn−1) ≤ H(Txn−2,Txn−1) ≤ ϕ(M(xn−2, xn−1))

≤ ϕ(max{d(xn−2, xn−1), d(xn−2,Txn−2), d(xn−1,Txn−1),

1
2

[d(xn−1,Txn−2) + d(xn−2,Txn−1)]})

≤ ϕ(max{d(xn−2, xn−1), d(xn−1, xn), 1/2d(xn−2, xn)})
≤ ϕ(max{d(xn−2, xn−1), d(xn−1, xn)})

for all n and so we get d(xn−1, xn) ≤ ϕ(d(xn−2, xn−1)) for all n. Thus,

d(xn−1, xn) ≤ ϕ(d(xn−2, xn−1)) ≤ ϕ2(d(xn−3, xn−2))... ≤ ϕn−1(d(x0, x1))

for all n and so d(xn−1, xn) → 0. If {xn} is not a Cauchy sequence, then there exists ε > 0 and subsequences
{xni} and {xmi } of {xn}with ni < mi such that d(xni , xmi ) > ε for all i. For each ni, put ki = min{mi | d(xni , xmi ) > ε}.
Then, we have

ε < d(xni , xki ) ≤ d(xni , xki−1) + d(xki−1, xki ) ≤ ε + d(xki−1, xki )



J. H. Asl, B. Mohammadi, Sh. Rezapour, S. M. Vaezpour / Filomat 27:2 (2013), 311–315 313

and so d(xni , xki )→ ε. But, we have

d(xni , xki ) − d(xni , xni+1) − d(xki , xki+1)

≤ d(xni+1, xki+1) ≤ d(xni+1, xki+1) + d(xni , xni+1) + d(xki , xki+1)

and so d(xni+1, xki+1)→ ε. Thus, we get

max{d(xni , xki ), d(xni ,Txni ), d(xki ,Txki ),
1
2

[d(xni ,Txki ) + d(xki ,Txni )]}

≤ d(xni , xki ) +
3
2

d(xki+1, xki ) + d(xni+1, xni )

and so M(xni , xki )→ ε. On the other hand, we have

d(xni+1, xki+1) ≤ d(xni+1,Txni ) +H(Txni ,Txki )

= H(Txni ,Txki ) ≤ ϕ(M(xni , xki )

and so ε ≤ ϕ(ε). This contradiction shows that {xn} is a Cauchy sequence. Since G is complete, there exists
x ∈ G such that xn → x. Since G is a (C)-graph, there is a subsequence {xnk }k≥0 such that (xnk , x) ∈ E(G) for all
k ≥ 0. Thus, we obtain

d(x,Tx) = lim
n→∞

d(xnk+1,Tx) ≤ lim
n→∞

H(Txnk ,Tx) ≤ lim
n→∞

ϕ(M(xnk , x))

≤ lim
n→∞

ϕ(max{d(xnk , x), d(xnk ,Txnk ), d(x,Tx),
d(xnk ,Tx) + d(x,Txnk )

2
})

≤ lim
n→∞

ϕ(max{d(xnk , x), (d(xnk , xnk+1), d(x,Tx),
d(xnk ,Tx) + d(x, xnk+1)

2
})

= ϕ(d(x,Tx))

and so d(x,Tx) = 0. Since T has comparable approximative valued property, there exists y ∈ Tx such that
(x, y) ∈ E(G) and d(x,Tx) = d(x, y). Hence, d(x, y) = 0 and so x = y ∈ Tx.

Corollary 2.2. Let (G, d) be a complete graph-metric space, ϕ ∈ Φ and also T : G → 2G a weakly generalized
ϕ-quasi-contractive and compact valued multifunction such that for each x ∈ G and y ∈ Tx we have (x, y) ∈ E(G). If
G is a (C)-graph, then T has a fixed point.

Corollary 2.3. Let (G, d) be a complete graph-metric space, ϕ ∈ Φ and f a selfmap on G which preserves edges of G
and d( f x, f y) ≤ ϕ(M(x, y)) for all x, y ∈ X with y ∈ [x]G. If G is a (C)-graph, then f has a fixed point.

Proof. It is sufficient we define T : G→ 2G by Tx = { f x} for all x ∈ G.

Finally by using [15], we can find also some equivalent conditions for some presented results. Note that,
one can present more similar results via interesting corollaries by considering above ones.

Proposition 2.4. Let ψ : [0,∞) → [0,∞) a lower semi-continuous function, η : [0,∞) → [0,∞) a map such that
η−1({0}) = {0} and lim inft→∞ η(t) > 0 for all t > 0, (G, d) be a complete graph-metric space and T : G → 2G a
multifunction such that has comparable approximative valued property and

ψ(H(Tx,Ty)) ≤ ψ(M(x, y)) − η(M(x, y))

for all x, y ∈ X with y ∈ [x]G. If G is a (C)-graph, then T has a fixed point.

Denote by Ψ the family of nondecreasing functions ψ : [0,+∞) → [0,+∞) such that
∑+∞

n=1 ψ
n(t) < +∞ for

each t > 0. It is well known that ψ(t) < t for all t > 0.
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Proposition 2.5. Let (G, d) be a complete graph-metric space, ψ ∈ Ψ a nondecreasing map which is continuous from
right at each point, ϕ : [0,∞)→ [0,∞) a map such that ϕ(t) < t for all t > 0 and T : G→ 2G a multifunction such
that has comparable approximative valued property and

ψ(H(Tx,Ty)) ≤ ϕ(ψ(M(x, y)))

for all x, y ∈ X with y ∈ [x]G. If G is a (C)-graph, then T has a fixed point.

Let (G, d) be a graph-metric space, α : G×G→ [0,∞) a mapping and T : G→ CB(G) a multifunction. We say
that T is α-admissible whenever for each x ∈ G and y ∈ Tx with α(x, y) ≥ 1 we have α(y, z) ≥ 1 for all z ∈ Ty.
Finally, recall that T is continuous whenever H(Txn,Tx)→ 0 for all sequence {xn} in G with xn → x. Finally,
we say that G is a (Cα)-graph whenever for each sequence {xn}n≥0 in X with xn → x, there is a subsequence
{xnk }k≥0 such that α(xnk , x) ≥ 1 for all k ≥ 0. By following a similar proof of Theorem 2.1 in [3], we provide
next result.

Theorem 2.6. Let (G, d) be a complete graph-metric space, ψ ∈ Ψ a strictly increasing map, α : G × G → [0,∞) a
function and T : G→ CB(G) an α-admissible multifunction such that α(x, y)H(Tx,Ty) ≤ ψ(d(x, y)) for all x, y ∈ G
and there exist x0 ∈ G and x1 ∈ Tx0 with α(x0, x1) ≥ 1. If T is continuous or G is a (Cα)-graph, then T has a fixed
point.

Proof. If x1 = x0, then we have nothing to prove. Let x1 , x0. If x1 ∈ Tx1, then x1 is a fixed point of T. Let
x1 < Tx1 and q > 1 be given. Then

0 < d(x1,Tx1) ≤ α(x0, x1)H(Tx0,Tx1) < qα(x0, x1)H(Tx0,Tx1).

Hence, there exists x2 ∈ Tx1 such that

d(x1, x2) < qα(x0, x1)H(Tx0,Tx1) ≤ qψ(d(x0, x1)).

It is clear that x2 , x1. Put t0 = d(x0, x1) > 0. Then, d(x1, x2) < qψ(t0). since ψ is strictly increasing,
ψ(d(x1, x2)) < ψ(qψ(t0)). Put q1 =

ψ(qψ(t0))
ψ(d(x1,x2)) . Then q1 > 1. If x2 ∈ Tx2, then x2 is a fixed point of T. Assume

that x2 < Tx2. Then,

0 < d(x2,Tx2) ≤ α(x1, x2)H(Tx1,Tx2) < q1α(x1, x2)H(Tx1,Tx2).

Hence, there exists x3 ∈ Tx2 such that

d(x2, x3) < q1α(x1, x2)H(Tx1,Tx2) ≤ q1ψ(d(x1, x2)) = ψ(qψ(t0)).

It is clear that x3 , x2 and ψ(d(x2, x3)) < ψ2(qψ(t0)). Put q2 =
ψ2(qψ(t0))
ψ(d(x2,x3)) . Then q2 > 1. If x3 ∈ Tx3, then x3 is a

fixed point of T. Assume that x3 < Tx3. Then,

0 < d(x3,Tx3) ≤ α(x2, x3)H(Tx2,Tx3) < q2α(x2, x3)H(Tx2,Tx3).

Thus, there exists x4 ∈ Tx3 such that

d(x3, x4) < q1α(x2, x3)H(Tx2,Tx3) ≤ q2ψ(d(x2, x3)) = ψ2(qψ(t0)).

By continuing this process we obtain a sequence {xn} in G such that xn ∈ Txn−1, xn , xn−1 and d(xn, xn+1) ≤
ψn−1(qψ(t0)) for all n. Now for each m > n we have

d(xn, xm) ≤ Σm−1
i=n d(xi, xi+1) ≤ Σm−1

i=n ψ
i−1(qψ(t0)).

Hence, {xn} is a Cauchy sequence in G. Since G is complete, there exists x⋆ ∈ G such that xn → x⋆. Now if T
is continuous, then

d(x⋆,Tx⋆) = lim
n→∞

d(xn+1,Tx⋆) ≤ lim
n→∞

H(Txn,Tx⋆) = 0
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and so x⋆ ∈ Tx⋆. If G is a (Cα)-graph, then

d(x⋆,Tx⋆) = lim
k→∞

d(xnk+1,Tx⋆) ≤ lim
k→∞

H(Txnk ,Tx⋆)

≤ lim
k→∞

α(xnk , x
⋆)H(Txnk ,Tx⋆) ≤ lim

k→∞
ψ(d(xnk , x

⋆)) = 0.

Hence, x⋆ ∈ Tx⋆.

Corollary 2.7. Let (G, d) be a complete graph-metric space, ψ ∈ Ψ a strictly increasing map and T : G → CB(G) a
multifunction such that

H(Tx,Ty) ≤ ψ(d(x, y))

for all x, y ∈ G with o(x, y) ≥ 3. Assume that for each x ∈ G and y ∈ Tx with o(x, y) ≥ 3 we have o(y, z) ≥ 3 for
all z ∈ Ty. Suppose that there exist x0 ∈ G and x1 ∈ Tx0 such that o(x0, x1) ≥ 3. If T is continuous or G has this
property that for each sequence {xn}n≥0 in X with xn → x, there is a subsequence {xnk }k≥0 such that o(xnk , x) ≥ 3 for
all k ≥ 0, then T has a fixed point.
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