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Some fixed point results on weak partial metric spaces
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Abstract. The concept of partial metric p on a nonempty set X was introduced by Matthews [13] and it was
slightly modified by Heckmann [11] as weak partial metric. In [12], the authors studied fixed point result of
new extension of Banach’s contraction principle to partial metric space and give some generalized versions
of the fixed point theorem of Matthews. In the present paper, we extend and generalize the previous results
to weak partial metric spaces.

1. Introduction

One of the simplest and most useful result in the fixed point theory is the Banach fixed point theorem:
Let (X, d) be a complete metric space and T be self mapping of X satisfying

d(Tx,Ty) ≤ λd(x, y) for all x, y ∈ X, (1)

whereλ ∈ [0, 1), then T has a unique fixed point. A mapping satisfying the condition (1) is called contraction
mapping. As well as, there are a lot of extensions of this famous fixed point theorem in metric space which
are obtained generalizing contractive condition, there are a lot of generalizations of it in different space
which has metric type structure. For example, generalized metric space, fuzzy metric space and uniform
space. One of the most interesting is partial metric space, which was introduced by Matthews [13] as a part
of the study of denotational semantics of data flow networks. It is widely recognized that partial metric
spaces play an important role in constructing models in the theory of computation. In a partial metric
spaces, the distance of a point in the self may not be zero. After the definition of partial metric space,
Matthews proved the partial metric version of Banach fixed point theorem. Recently, fixed point theory
studies on partial metric space have been rapidly developed. Valero [18], Oltra and Valero [14], Altun et al
[3, 5, 8], Ciric et al [9] and Romaguera [15, 16] gave some generalizations of the result of Matthews. Also, in
[1, 2, 6] some Caristi type fixed point theorems and characterization of completeness of partial metric space
are given.

First, we recall some definitions of partial metric space and some properties of theirs. See [7, 11, 13, 14,
17, 18] for details.

A partial metric on a nonempty set X is a function p : X×X→ R+ (nonnegative real numbers) such that
for all x, y, z ∈ X :
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(i) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y) (T0-separation axiom), (ii) p(x, x) ≤ p(x, y) (small self-distance
axiom), (iii) p(x, y) = p(y, x) (symmetry) and (iv) p(x, y) ≤ p(x, z) + p(z, y) − p(z, z) (modified triangular
inequality).

A partial metric space (for short PMS) is a pair (X, p) such that X is a nonempty set and p is a partial
metric on X. One of the most interesting properties of a partial metric is that p(x, x) may not be zero for
x ∈ X. A basic example of a PMS is the pair (R+, p), where p(x, y) = max{x, y} for all x, y ∈ R+ (nonnegative
real numbers). For another example, let I denote the set of all intervals [a, b] for any real numbers a ≤ b.
Let p : I × I→ R+ be the function such that p([a, b], [c, d]) = max{b, d} −min{a, c}. Then (I, p) is a PMS. Other
examples of PMS which are interesting from a computational point of view may be found in [10, 13].

The other interesting properties of partial metric space is that each partial metric p on a nonempty set X
generates a T0 topology τp on X which has as a base the family open p-balls

{Bp(x, ε) : x ∈ X, ε > 0},

where

Bp(x, ε) = {y ∈ X : p(x, y) < p(x, x) + ε}

for all x ∈ X and ε > 0.

If p is a partial metric on X, then the functions dp, dw : X × X→ R+ given by

dp(x, y) = 2p(x, y) − p(x, x) − p(y, y) (2)

and

dw(x, y) = max{p(x, y) − p(x, x), p(x, y) − p(y, y)} (3)
= p(x, y) −min{p(x, x), p(y, y)}

are ordinary metrics on X. It is easy to see that dp and dw are equivalent metrics on X.

According to [13], a sequence {xn} in a partial metric (X, p) converges, with respect to τps , to a point x ∈ X
if and only if

lim
n,m→∞

p(xn, xm) = lim
n→∞

p(xn, x) = p(x, x).

A sequence {xn} in a partial metric (X, p) is called a Cauchy sequence if there exists (and is finite) limn,m→∞ p(xn, xm).
(X, p) is called complete if every Cauchy sequence {xn}n∈ω in X converges, with respect to τp, to a point x ∈ X
such that p(x, x) = limn,m→∞ p(xn, xm).

Finally, the following crucial facts are shown in [13]:

(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, ps).

(b) (X, p) is complete if and only if (X, ps) is complete.

Now we recall Matthews’ fixed point theorem: Let (X, p) be a complete partial metric space and T : X→ X
be a map such that

p(Tx,Ty) ≤ αp(x, y)

for all x, y ∈ X, where α ∈ [0, 1), then T has a unique fixed point.

A very nice generalizations of fixed point result of Matthews was given by Ilic et al.

Theorem 1.1 ([12]). Let (X, p) be a complete partial metric space, α ∈ [0, 1) and T : X → X be a map. Suppose for
each x, y ∈ X the following condition holds

p(Tx,Ty) ≤ max{αp(x, y), p(x, x), p(y, y)}. (4)
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Then
(i) the set Xp = {x ∈ X : p(x, x) = ρp} is nonempty, where ρp = inf{p(x, y) : x, y ∈ X},
(ii) there is unique u ∈ Xp such that Tu = u,
(iii) for each x ∈ Xp, the sequence {Tnx} converges with respect to the metric dp to u.

By omitting the small self distance axiom, Heckmann [11] introduced the concept of weak partial metric
space (for short WPMS), which is generalized version of Matthews’ partial metric space. That is, the
function p : X × X → R+ is called weak partial metric on X if it satisfies T0 separation axiom, symmetry
and modified triangular inequality. Heckmann also shows that, if p is weak partial metric on X, then for all
x, y ∈ X we have the following weak small self-distance property

p(x, y) ≥ p(x, x) + p(y, y)
2

. (5)

Weak small self-distance property shows that WPMS are not far from small self-distance axiom. It is clear
that PMS is a WPMS, but the converse may not be true. A basic example of a WPMS but not a PMS is the

pair (R+, p), where p(x, y) =
x + y

2
for all x, y ∈ R+. For another example, let I denote the set of all intervals

[a, b] for any real numbers a ≤ b. Let p : I × I → R+ be the function such that p([a, b] , [c, d]) =
b + d − a − c

2
.

Then (I, p) is a WPMS but not PMS. Again, for x, y ∈ R the function p(x, y) =
ex + ey

2
is a non partial metric

weak partial metric on R.

Remark 1.2. As mentioned in [4], if (X, p) be a WPMS, but not PMS, then the function dp as in (2) may not be an
ordinary metric on X, but dw as in (3) is still an ordinary metric on X.

The concepts of convergence of a sequence, Cauchy sequence and completeness in WPMS are defined
as in PMS. The following lemma, which is very important for fixed point theory on WPMS, was given in
[4] without small self-distance axiom.

Lemma 1.3. Let (X, p) be a WPMS.
(a) {xn} is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, dw).
(b) (X, p) is complete if and only if (X, dw) is complete. Furthermore

lim
n→∞

dw(xn, x) = 0

if and only if

p(x, x) = lim
n→∞

p(xn, x) = lim
n,m→∞

p(xn, xm).

2. Fixed Point Results

In this section we give fixed point result of new extensions of Banach’s contraction principle on weak
partial metric spaces and we prove fixed point result for single map satisfying (ψ,φ)-weakly contractive
condition.

Theorem 2.1. Let (X, p) be a complete weak partial metric space, α ∈ [0, 1) and T : X→ X a mapping. Suppose that
for each x, y ∈ X the following condition holds:

p(Tx,Ty) ≤ max
{
αp(x, y),min

{
p(x, x), p(y, y)

}}
(6)

Then:
(1) the set Xp is nonempty
(2) there is a unique u ∈ Xp such that u = Tu
(3) for each x ∈ Xp the sequence {Tnx} converges with respect to the metric dw to u.
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Proof. Let x ∈ X. Clearly, (6) implies

p(Tx,Tx) ≤ max
{
αp(x, x),min

{
p(x, x), p(x, x)

}}
= p(x, x)

So
{
p(Tnx,Tnx)

}
is a nonincreasing sequence and

p(Tnx,Tmx) ≤ max
{
αp(Tn−1x,Tm−1x),
min
{
p(Tn−1x,Tn−1x), p(Tm−1x,Tm−1x)

} }
≤ max

{
αp(Tn−1x,Tm−1x), p(Tm−1x,Tm−1x)

}
.

for all m > n ≥ 1.
Set

rx := lim
n→∞

p(Tnx,Tnx) = inf
n∈N

p(Tnx,Tnx) ≥ 0

and

Mx :=
1

1 − αp(x,Tx) + p(x, x).

Let us prove that, for any n ≥ 0

p(x,Tnx) ≤Mx (7)

Clearly, (7) is true for n = 0, 1. Suppose that (7) is true for each n ≤ n0 − 1, and let us prove it for n = n0 ≥ 2.
Here, we have

p(x,Tn0 x) ≤ p(x,Tx) + p(Tx,Tn0 x)

≤ p(x,Tx) +max
{
αp(x,Tn0−1x),min

{
p(x, x), p(Tn0−1x,Tn0−1x)

}}
≤ p(x,Tx) +

α
1 − αp(x,Tx) + p(x, x) =Mx.

Thus by induction we obtain (7). Now, we shall prove

lim
n,m→∞

p(Tnx,Tmx) = rx. (8)

Using the weak small self distance property (5), we have for all n,m ∈N

2p(Tnx,Tmx) ≥ p(Tnx,Tnx) + p(Tmx,Tmx) ≥ 2rx.

Given any ϵ > 0 find n0 ∈N such that p(Tn0 x,Tn0 x) < rx + ϵ and 2Mxαn0 < rx + ϵ. Now, for any n,m ≥ 2n0

rx ≤ p(Tnx,Tmx)

≤ max
{
αp(Tn−1x,Tm−1x),
min
{
p(Tn−1x,Tn−1x), p(Tm−1x,Tm−1x)

} }
≤ max

{
α2p(Tn−2x,Tm−2x)
min
{
p(Tn−2x,Tn−2x), p(Tm−2x,Tm−2x)

} }
...

≤ max
{
αn0 p(Tn−n0 x,Tm−n0 x)
min
{
p(Tn−n0 x,Tn−n0 x), p(Tm−n0 x,Tm−n0 x)

} }
< rx + ϵ.
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Thus we obtain (8), it follows that {Tnx} is Cauchy sequence. Since (X, p) is a complete there is zx ∈ X such
that

rx = p(zx, zx) = lim
n→∞

p(zx,Tnx) = lim
n,m→∞

p(Tnx,Tmx). (9)

Let us prove

p(zx,Tzx) ≤ p(zx, zx). (10)

For each n ∈N we have

p(zz,Tzx) ≤ p(zz,Tnx) + p(Tnx,Tzx) − p(Tnx,Tnx) (11)

From (6) it follows that there is a subsequence {nk}k≥1 of positive integers such that p(Tzx,Tnk x) ≤ αp(zx,Tnk−1x)
or p(Tzx,Tnk x) ≤ p(Tnk−1x,Tnk−1x) or p(Tzx,Tnk x) ≤ p(zx, zx), k ≥ 1. In each of these cases from (11) taking the
limit as k→∞ it follows p(zx,Tzx) ≤ p(zx, zx). Thus we obtain (10).

Let us prove that Xp is nonempty. For each k ∈N choose xk ∈ X with p(xk, xk) < ρp +
1
k . Let us show

lim
n,m→∞

p(zxn , zxm ) = ρp (12)

Given ϵ > 0 find n0 :=
[

3
ε(1−α)

]
+ 1. If k ≥ n0 then we have

ρp ≤ p(Tzxk ,Tzxk ) ≤ p(zxk , zxk ) = rxk ≤ p(xk, xk)

< ρp +
1
k
≤ ρp +

1
n0
< ρp +

ε(1 − α)
3

.

Hence we conclude

Uk := p(zxk , zxk ) − p(Tzxk ,Tzxk ) <
ε(1 − α)

3
, for k ≥ n0. (13)

Also, if k ≥ n0 then p(zxk , zxk ) = rxk ≤ p(xk, xk) ≤ ρp +
1
n0

implies

p(zxk , zxk ) ≤ ρp +
ε
3

(1 − α) for all k ≥ n0. (14)

Now if n,m ≥ n0 then

p(zxn , zxm ) ≤ p(zxn ,Tzxn ) + p(Tzxn ,Tzxm ) + p(Tzxm , zxm )
−p(Tzxn ,Tzxn ) − p(Tzxm ,Tzxm )

and (10) imply

p(zxn , zxm ) ≤ Un +Um + p(Tzxn ,Tzxm )
< Un +Um +max

{
αp(zxn , zxm ),min

{
p(zxn , zxn ), p(zxm , zxm )

}}
.

Whence using (13) and (14) we obtain

ρp ≤ p(zxn , zxm ) ≤ max
{2

3
ε,

2
3
ε(1 − α) + p(zxn , zxn ),

2
3
ε(1 − α) + p(zxm , zxm )

}
≤ max

{2
3
ε, ρp + ε(1 − α)

}
< ρp + ε

This shows (12). Now by completeness of the weak partial metric space (X, p) there is y ∈ X such that

p(y, y) = lim
n→∞

p(y, zxn ) = lim
n,m→∞

p(zxn , zxm ) = ρp
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In particular y ∈ Xp so Xp , ∅.
Now let x ∈ Xp be arbitrary. Then, by (9) we have

ρp ≤ p(zx,Tzx) ≤ p(zx, zx) = rx = ρp

so Tzx = zx ∈ Xp. From (9) and Lemma 1.3, {Tnx} converges with respect to the metric dw to zx.
If u, v ∈ Xp are both fixed points of T then from

p(u, v) = p(Tu,Tv) ≤ max
{
αp(u, v),min

{
p(u,u), p(v, v)

}}
and so we have either (1 − α)p(u, v) ≤ 0, i.e. p(u, v) = 0 or p(u, v) ≤ p(u, u) or p(u, v) ≤ p(v, v). Since u, v ∈ Xp
then p(u, u) = p(v, v) = ρp and so from (5) we have p(u, v) = p(u,u) = p(v, v) in all cases. Therefore, u = v.

Now we give an illustrative example.

Example 2.2. Let X = [0, 1] ∪ [2, 3] and p : X × X→ R

p(x, y) =


x + y

2
,
{
x, y
} ∩ [2, 3] , ∅∣∣∣x − y

∣∣∣ ,
{
x, y
} ∩ [2, 3] = ∅

for all x, y ∈ X. Then (X, p) is a complete WPMS. Define T : X→ X by

Tx =


0 , x ∈ [0, 1]

x − 2 , x ∈ [2, 3]
.

Then, we claim that (6) holds. Indeed,
If x, y ∈ [0, 1], then

p(Tx,Ty) = p(0, 0)
≤ max

{
αp(x, y),min

{
p(x, x), p(y, y)

}}
for any α ≥ 0.

If x, y ∈ [2, 3], then

p(Tx,Ty) = p(x − 2, y − 2)

=
∣∣∣x − y

∣∣∣
≤ max

{
α

x + y
2

,min
{
x, y
}}

= max
{
αp(x, y),min

{
p(x, x), p(x, x)

}}
for α ≥ 1

2 .
If x ∈ [0, 1] and y ∈ [2, 3], then

p(Tx,Ty) = p(0, y − 2)

=
∣∣∣y − 2

∣∣∣
≤ α

x + y
2

= max
{
αp(x, y),min

{
p(x, x), p(x, x)

}}
for α ≥ 2

3 . Therefore 6 holds for α ∈ [ 2
3 , 1). Thus from Theorem 2.1, Xp is nonempty, there is a unique u ∈ Xp such

that u = Tu and for each x ∈ Xp the sequence {Tnx} converges with respect to the metric dw to u. It is clear that
Xp = [0, 1] and T0 = 0 ∈ Xp. Note that, if X endowed the usual metric d(x, y) =

∣∣∣x − y
∣∣∣, then the Banach contraction

can not be applicable to this example.
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Now we prove fixed point result for single map satisfying (ψ,φ)-weakly contractive condition. At first,
we recall the definition of altering distance function that will be used later.

Definition 2.3. φ : R+ → R+ is called an altering distance function if the following properties are satisfied:

(a) φ is continuous and nondecreasing,
(b) φ(t) = 0⇐⇒ t = 0.

Theorem 2.4. Let (X, p) be a complete WPMS and suppose T : X→ X be a mapping such that

ψ(p(Tx,Ty)) ≤ ψ(p(x, y)) − φ(p(x, y)) (15)

for all x, y ∈ X, where ψ and φ are altering distance functions. Then T has a unique fixed point.

Proof. Let x0 ∈ X be an arbitrary point and construct a sequence {xn} in X as xn+1 = Txn for n ∈ {0, 1, 2, · · · }.
Then for n ≥ 1, from (15) we get

ψ(p(xn, xn+1)) = ψ(p(Txn−1,Txn))
≤ ψ(p(xn−1, xn)) − φ(p(xn−1, xn)) (16)
≤ ψ(p(xn−1, xn)).

Using the fact that ψ is nondecreasing, we have

p(xn, xn+1) ≤ p(xn−1, xn) (17)

so the sequence
{
p(xn, xn+1)

}
is nonincreasing and bounded below. If there exist n0 ∈N such that p(xn0 , xn0+1) =

0 then xn0 = xn0+1 = Txn0 and xn0 is a fixed point. In other case, suppose that p(xn, xn+1) , 0 for all n ∈ N.
Since the sequence

{
p(xn, xn+1)

}
is nonincreasing and bounded below, there exists r ≥ 0 such that

lim
n→∞

p(xn, xn+1) = r. (18)

Now suppose that r > 0. Therefore, taking n→∞ in (16) we get

ψ(r) ≤ ψ(r) − φ(r),

which is a contradiction because φ(r) > 0. Therefore it must be r = 0 and so

lim
n→∞

p(xn, xn+1) = 0. (19)

By weak small self-distance property lim
n→∞

p(xn, xn) = 0.

Now we claim that {xn} is a Cauchy sequence in the metric space (X, dw). Suppose to the contrary. Then
there exists ε > 0 for which we can find two subsequences

{
xnk

}
and
{
xmk

}
of {xn} such that nk is the smallest

index for which

nk > mk > k ; dw(xmk ,xnk ) ≥ ε. (20)

This means that

dw(xmk,xnk−1) < ε. (21)
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Using (20), (21) and the triangular inequality, we have

ε ≤ dw(xmk,xnk )
≤ dw(xmk,xmk+1) + dw(xmk+1,xnk−1) + dw(xnk−1, xnk )
≤ dw(xmk,xmk+1) + dw(xmk+1,xnk ) + 2dw(xnk−1, xnk )
≤ dw(xmk,xmk+1) + dw(xmk+1,xmk ) + dw(xmk ,xnk ) + 2dw(xnk−1, xnk )
≤ 2dw(xmk ,xmk+1) + dw(xmk,xmk+1) + dw(xmk+1,xnk ) + 2dw(xnk−1, xnk )
= 3dw(xmk ,xmk+1) + dw(xmk+1,xnk ) + 2dw(xnk−1, xnk )
≤ 3dw(xmk ,xmk+1) + dw(xmk+1,xnk−1) + dw(xnk−1, xnk ) + 2dw(xnk−1, xnk )
= 3dw(xmk ,xmk+1) + dw(xmk+1,xnk−1) + 3dw(xnk−1, xnk )
≤ 3dw(xmk ,xmk+1) + dw(xmk+1,xmk ) + dw(xmk,xnk−1) + 3dw(xnk−1, xnk )
= 4dw(xmk ,xmk+1) + dw(xmk,xnk−1) + 3dw(xnk−1, xnk )
< 4dw(xmk ,xmk+1) + ε + 3dw(xnk−1, xnk )

Letting k→∞we get that

lim
k→∞

dw(xmk ,xnk ) = lim
k→∞

dw(xmk+1,xnk−1)

= lim
k→∞

dw(xmk+1,xnk )

= lim
k→∞

dw(xmk ,xnk−1)

= ε.

Since dw(x,y) = p(x, y) −min
{
p(x, x), p(y, y)

}
for all x, y ∈ X, then by using by lim

n→∞
p(xn, xn) = 0 we conclude

that

lim
k→∞

p(xmk,xnk ) = lim
k→∞

p(xmk+1,xnk−1)

= lim
k→∞

p(xmk+1,xnk )

= lim
k→∞

p(xmk,xnk−1)

= ε.

Now we can use the inequality 15 for xmk ,xnk−1 then we have

ψ(p(xmk+1,xnk )) = ψ(p(Txmk ,Txnk−1))
≤ ψ(p(xmk,xnk−1)) − φ(p(xmk ,xnk−1))

Letting k→∞ and using the continuity of ψ and φ, we get

ψ(ε) ≤ ψ(ε) − φ(ε),

which is a contradiction because φ(ε) > 0. Thus {xn} is a Cauchy sequence in (X, dw). Since (X, p) is complete
then from Lemma 1.3, the sequence {xn} converges in the metric space (X, dw), thus there exists z ∈ X such
that

lim
n→∞

dw(xn, z) = 0

and then

p(z, z) = lim
n→∞

p(xn, z) = lim
n,m→∞

p(xn, xm) (22)
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Moreover, since lim
n,m→∞

dw(xn, xm) = 0 and lim
n→∞

p(xn, xn) = 0, then from the definition dw, we have lim
n,m→∞

p(xn,xm) =

0. Therefore from (22) we have

p(z, z) = lim
n→∞

p(xn,z) = lim
n,m→∞

p(xn,xm) = 0.

Now we claim that Tz = z. From 15 we have

ψ(p(xn+1,Tz)) = ψ(p(Txn,Tz))
≤ ψ(p(xn, z)) − φ(p(xn, z))

and letting n→∞ we get (note that p(z, z) = 0)

ψ(p(z,Tz)) ≤ ψ(p(z, z)) − φ(p(z, z)) = 0.

Therefore p(z,Tz) = 0 and so from weak small self distance property and T0-separation axiom we have
z = Tz. The uniqueness of fixed point follows from 15.

Now we give an illustrative example.

Example 2.5. Let X = [0, 1
2 ] and p : X × X → R, p(x, y) =

x + y
2

. Then (X, p) is a complete WPMS. Define

T : X→ X, Tx = x2. Then for all x, y ∈ X, we obtain

p(Tx,Ty) ≤ p(x2, y2)

=
x2 + y2

2

≤
1
2 x + 1

2 y
2

=
1
2

(
x + y

2
)

=
1
2

p(x, y)

= p(x, y) − 1
2

p(x, y).

Therefore the condition 15 is satisfied for the altering distance function ψ(t) = t and φ(t) = t
2 and thus T has a unique

fixed point in X.
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