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Abstract. The inflation or inflated graph GI of a graph G with n vertices is obtained from G by replacing
every vertex xi of degree d(xi) of G by a clique Xi, which is isomorphic to the complete graph Kd(xi), and each
edge (xi, x j) of G is replaced by an edge (u, v) in such a way that u ∈ Xi, v ∈ X j, and two different edges of G
are replaced by non-adjacent edges of GI. For integer k ≥ 1, the k-tuple total domination number γ×k,t(G) of
G is the minimum cardinality of a k-tuple total dominating set of G, which is a set of vertices in G such that
every vertex of G is adjacent to at least k vertices in it. For existing this number, must the minimum degree of
G be at least k. Henning and Kazemi in [Total domination in inflated graphs, Discrete Applied Mathematics
160 (2012) 164-169] have studied the k-tuple total domination number of inflated graphs, when k = 1. Here,
we continue their studying when k ≥ 2. First we prove nk ≤ γ×k,t(GI) ≤ n(k + 1) − 1 when δ(G) ≥ k + 1, and
then we characterize graphs G that the k-tuple total domination number number of GI is either nk or nk+ 1.
Also we find some bounds for this number in the inflated graph GI, when G has a cut-edge e or a cut-vertex
v, in terms of the k-tuple total domination number of the inflation of the components of G − e or of the
v-components of G − v, respectively. Finally, we calculate this number for the inflation of some graphs.

1. Introduction

All graphs considered here are finite, undirected and simple. For standard graph theory terminology
not given here we refer to [2]. Let G = (V,E) be a graph with the vertex set V of order n(G) and the edge set E
of size m(G). The open neighborhood and the closed neighborhood of a vertex v ∈ V are NG(v) = {u ∈ V | uv ∈ E}
and NG[v] = NG(v) ∪ {v}, respectively. The degree of a vertex v is also de1G(v) =| NG(v) |. The minimum
and the maximum degree of G are denoted by δ = δ(G) and ∆ = ∆(G), respectively. We say that a graph is
connected if there is a path between every two vertices of the graph, and otherwise is called disconnected. In
a connected graph G, a vertex (resp. edge) v is called a cut-vertex or (resp. cut-edge) if G− v is disconnected.
Every maximal connected subgraph of G− v is called a (connectedness) component of it. Let v be a cut-vertex
of a graph G and let S be the vertex set of a component of G − v. The induced subgraph by S ∪ {v} of G
is called a v-component of G. We also write Kn, Cn and Pn for the complete graph, the cycle and the path of
order n, respectively, while G[S] and Kn1,n2,...,np denote the subgraph induced of G by a vertex set S of G and
the complete p-partite graph, respectively.

An edge subset M in G is called a matching in G if any two edges of M has no vertex in common. If
e = vw ∈ M, then we say either M saturates two vertices v and w or v and w are M-saturated (by e). A
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matching M is a perfect matching or a maximum matching if all vertices of G are M-saturated or there is no
other matching M′ with |M′ |>|M |, respectively.

Domination in graphs is now well studied in graph theory and the literature on this subject has been
surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [2, 3]. A set S ⊆ V is a total
dominating set if each vertex in V is adjacent to at least one vertex of S, while the minimum cardinality of a
total dominating set is the total domination number γt(G) of G.

In [4] Henning and Kazemi generalized the definition of the total domination number to the k-tuple
total domination number as follows: for each integer k ≥ 1, a subset S of V is a k-tuple total dominating set of
G, abbreviated kTDS, if for every vertex v ∈ V, | N(v) ∩ S |≥ k, that is, S is a kTDS of G if every vertex has at
least k neighbors in S. The k-tuple total domination number γ×k,t(G) of G is the minimum cardinality of a kTDS
of G. We remark that γt(G) = γ×1,t(G). For a graph to have a k-tuple total dominating set, its minimum
degree must be at least k. A kTDS of cardinality γ×k,t(G) is called a γ×k,t(G)-set. When k = 2, a k-tuple total
dominating set is called a double total dominating set, abbreviated DTDS, and the k-tuple total domination
number is called the double total domination number. The redundancy involved in k-tuple total domination
makes it useful in many applications. For more information see [5–7].

For the notation for inflated graphs, we follow that of [9]. The inflation or inflated graph GI of the graph
G without isolated vertices is obtained as follows: each vertex xi of degree d(xi) of G is replaced by a clique
Xi � Kd(xi) (that is, Xi is isomorphic to the complete graph Kd(xi)) and each edge (xi, x j) of G is replaced by
an edge (u, v) in such a way that u ∈ Xi, v ∈ X j, and two different edges of G are replaced by non-adjacent
edges of GI. An obvious consequence of the definition is that n(GI) =

∑
xi∈V(G) dG(xi) = 2m(G), δ(GI) = δ(G)

and ∆(GI) = ∆(G). There are two different kinds of edges in GI. The edges of the clique Xi are colored red
and the Xi’s are called the red cliques (a red clique Xi is reduced to a point if xi is a pendant vertex of G).
The other ones, which correspond to the edges of G, are colored blue and they form a perfect matching of
GI. Every vertex of GI belongs to exactly one red clique and one blue edge. Two adjacent vertices of GI
are said to red-adjacent if they belong to a same red clique, blue-adjacent otherwise. In general, we adopt
the following notation: if xi and x j are two adjacent vertices of G, the end vertices of the blue edge of GI
replacing the edge (xi, x j) of G are called xix j in Xi and x jxi in X j, and this blue edge is (xix j, x jxi). Clearly
an inflation is claw-free. More precisely, GI is the line-graph L(S(G)) where the subdivision S(G) of G is
obtained by replacing each edge of G by a path of length 2. The study of various domination parameters in
inflated graphs was originated by Dunbar and Haynes in [8]. Results related to the domination parameters
in inflated graphs can be found in [9–11].

Henning and Kazemi in [6] have studied the k-tuple total domination number of inflated graphs, when
k = 1. Here, we continue their studying when k ≥ 2.

This paper is organized as follows. In Section 2, we prove that if k ≥ 2 is an integer and G is a graph of
order n with δ ≥ k + 1, then nk ≤ γ×k,t(GI) ≤ n(k + 1) − 1, and then we characterize graphs G that γ×k,t(GI)
is either nk or nk + 1. In Section 3, we find some upper and lower bounds for the k-tuple total domination
number of the inflation of a graph G with a cut-edge e, in terms of the k-tuple total domination number of
the inflation of the components of G − e. In a similar manner, we find some upper and lower bounds for
the k-tuple total domination number of the inflation of a graph G with a cut-vertex v, in terms of the k-tuple
total domination number of the inflation of the v-components of G−v. Finding the k-tuple total domination
number of the inflation of the complete graphs is our next work. Finally, in Section 4, we calculate the
k-tuple total domination number of the inflation of the generalized Petersen graphs, the Harary graphs and
the complete bipartite graphs. Also we get an upper bound for this number in the inflation of the complete
multipartite graphs.
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2. Some bounds

First we give two general upper and lower bounds for the k-tuple total domination number of inflated
graphs, where δ ≥ k ≥ 2.

Theorem 2.1. Let k ≥ 2 be an integer, and let G be a graph of order n.
i. If δ ≥ k, then γ×k,t(GI) ≥ nk,
ii. if δ ≥ k + 1, then γ×k,t(GI) ≤ n(k + 1) − 1.

Proof. Case i. Let S be an arbitrary kTDS of GI. Since every vertex v of the red clique Xi is adjacent to
only one vertex of another red clique and is adjacent to de1(v) − 1 ≥ δ − 1 ≥ k − 1 vertices in Xi, we have
| S ∩ Xi |≥| NXi (v) | +1 ≥ k, for each vertex v ∈ S ∩ Xi. Hence γ×k,t(GI) ≥ nk.

Case ii. Let V(G) = {xi | 1 ≤ i ≤ n}. Set S = S1 ∪ ...∪ Sn such that S1 = {x1x j | 2 ≤ j ≤ k + 1} is a k-subset of
X1, and if 2 ≤ j ≤ k + 1, then S j = {x jx1} ∪ S′j that S j’ is a k-subset of X j − {x jx1}, and if k + 1 < j ≤ n, then S j is
a (k + 1)-subset of X j. Since S is a kTDS of GI of cardinality n(k + 1) − 1, we get γ×k,t(GI) ≤ n(k + 1) − 1.

Now, we characterize graphs G of order n that the k-tuple total domination number of their inflations is
either nk or nk + 1. First we define the following three new concepts.

We know that a graph G is a Hamiltonian graph if it has a Hamiltonian cycle, that is, a cycle that contains
all vertices of the graph. We extend this definition in such a way:

Definition 2.2. A graph G is a Hamiltonian-like decomposable graph if there exist t vertex-disjoint Hamiltonian
subgraphs G1, G2, ..., Gt of G such that V(G) = V(G1) ∪ V(G2) ∪ ... ∪ V(Gt). A such partition we call a
Hamiltonian-like decomposition of G and simply write G = HLD(G1,G2, ...,Gt).

In generally, for each integer k ≥ 1, we present the next definitions.

Definition 2.3. A graph G is a k-Hamiltonian-like decomposable graph, briefly kHLD-graph, if it has k Hamilton
ian-like decomposition G = HLD(G(i)

1 ,G
(i)
2 , ...,G

(i)
ti

) of Hamiltonian subgraphs (where 1 ≤ i ≤ k) such that

every two distinct Hamiltonian subgraphs G(i)
si

and G( j)
s j

have vertex-disjoint Hamiltonian cycles C(i)
si

and C( j)
s j

,
respectively.

We note that 1-Hamiltonian-like decomposable graph is the same Hamiltonian-like decomposable
graph.

Definition 2.4. A k-Hamiltonian-like decomposable graph G is a kHLPM-graph or a kHLMM-graph if G
has a perfect matching or a maximum matching M, respectively, of cardinality ⌊n/2⌋ such that for each
Hamiltonian-like decomposition G = HLD(G(i)

1 ,G
(i)
2 , ...,G

(i)
ti

) of Hamiltonian subgraphs (where 1 ≤ i ≤ k) M
satisfies the condition:

M ∩ E(C(i)
ℓi

) = ∅, for each 1 ≤ ℓi ≤ ti, (1)

where C(i)
ℓi

is a Hamiltonian cycle of G(i)
ℓi

.

The next two theorems characterize graphs G with γ×k,t(GI) = nk.

Theorem 2.5. Let G be a graph of order n with δ(G) ≥ 2k ≥ 1. Then γ×(2k),t(GI) = 2kn if and only if G is a
kHLD-graph.

Proof. Let V(G) = {xi | 1 ≤ i ≤ n}. For 1 ≤ i ≤ k and some ti ≥ 1, let G = HLD(G(i)
1 ,G

(i)
2 , ...,G

(i)
ti

) be k
Hamiltonian-like decompositions of G. For 1 ≤ i ≤ k and 1 ≤ ℓi ≤ ti, let C(i)

ℓi
: x(i)

1 x(i)
2 ...x

(i)
ci,ℓi

be a Hamiltonian

cycle of G(i)
ℓi

. Set

Si,ℓi = {x
(i)
m x(i)

m−1, x
(i)
m x(i)

m+1 | 1 ≤ m ≤ ci,ℓi}.
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Then S(i) = Si,1∪Si,2∪ ...∪Si,ti is a DTDS of GI of cardinality 2n. Since G is k-Hamiltonian-like decomposable,
we conclude that every two distinct S(i) and S(ℓ) are disjoint. Hence S(1) ∪ S(2) ∪ ... ∪ S(k) is a 2kTDS of GI of
cardinality 2kn. Thus γ×(2k),t(GI) ≤ 2kn, and Theorem 2.1 implies γ×(2k),t(GI) = 2kn.

Conversely, let γ×(2k),t(GI) = 2kn and let S be a γ×(2k),t(GI)-set. Then we may partition every S ∩ Xi to k
2-subsets D(i)

j (when 1 ≤ j ≤ k) such that D(1)
j ∪D(2)

j ∪ ...∪D(n)
j is a union of some vertex-disjoint cycles. Since

for each 1 ≤ i ≤ n, | S ∩Xi |= 2k. Without loss of generality, we may assume that D(1)
j ∪D(2)

j ∪ ... ∪D(n)
j is the

cycle

C j : x1xn, x1x2; x2x1, x2x3; x3x2, x3x4; ...; xnxn−1, xnx1.

Then G has the corresponding cycle C′j : x1x2x3x4...xn. Therefore, for every partition D(1)
j ∪ D(2)

j ∪ ... ∪ D(n)
j

there is a corresponding partition G = HLD(G(i)
1 ,G

(i)
2 , ...,G

(i)
ti

) of Hamiltonian subgraphs G(i)
1 , G(i)

2 , ... and G(i)
ti

.
Hence G is a kHLD-graph.

Theorem 2.6. Let G be a graph of order n with δ(G) ≥ 2k+ 1 ≥ 1. Then γ×(2k+1),t(GI) = (2k+ 1)n if and only if G is
a kHLPM-graph.

Proof. Let V(G) = {xi | 1 ≤ i ≤ n}. Let G be a kHLPM-graph with perfect matching M. We follow exactly the
notation and terminology introduced in the first and second paragraphs of the proof of Theorem 2.5. Then
similarly S(1) ∪ S(2) ∪ ... ∪ S(k) is a 2kTDS of GI of cardinality 2kn. Set MI = {(xix j, x jxi) | xix j ∈ M}. Since for
every partition G = HLD(G(i)

1 ,G
(i)
2 , ...,G

(i)
ti

) of Hamiltonian subgraphs, M satisfies the condition (1), we have
V(MI) ∩ (S(1) ∪ S(2) ∪ ... ∪ S(k)) = ∅. One can verify that V(MI) ∪ S(1) ∪ S(2) ∪ ... ∪ S(k) is a (2k+1)TDS of GI of
cardinality (2k + 1)n. Thus γ×(2k+1),t(GI) ≤ (2k + 1)n and Theorem 2.1 implies γ×(2k+1),t(GI) = (2k + 1)n.

Conversely, let γ×(2k+1),t(GI) = (2k + 1)n and let S be a γ×(2k+1),t(GI)-set. Since | S ∩ Xi |= 2k + 1 for each
1 ≤ i ≤ n, similar to the proof of Theorem 2.5, we may partition every S ∩ Xi to k 2-subsets D(i)

j (when

1 ≤ j ≤ k) such that D(1)
j ∪D(2)

j ∪ ... ∪D(n)
j is a union of some disjoint cycles. Hence there is a corresponding

partition G = HLD(G(i)
1 ,G

(i)
2 , ...,G

(i)
ti

) of Hamiltonian subgraphs for it, and also
∪

1≤i≤n(S− (
∪

1≤ j≤k D(i)
j )) makes

a blue matching MI in GI with size ⌊ n
2 ⌋. It can be easily verified that M = {xix j | (xix j, x jxi) ∈ MI} is a perfect

matching in G that satisfies the condition (1). Hence G is a kHLPM-graph.

Theorems 2.5 and 2.6 imply the next result.

Theorem 2.7. Let G be a graph of order n with δ(G) ≥ k ≥ 1. Then γ×k,t(GI) ≥ nk + 1 if and only if k and n are odd
or k is even and G is not a kHLD-graph or k is odd and G is not a kHLPM-graph.

By closer look at the proofs of Theorems 2.5 and 2.6 we obtain the following observation.

Observation 2.8. Let k be an integer and let G be a graph of order n with γ×k,t(G) = nk. Then for every γ×k,t(GI)-set
S, the induced subgraph GI[S] by S in GI contains a union of vertex-disjoint Hamiltonian cycles (of some of the its
subgraphs) and probably a perfect matching. Therefore, if we reduce the number of vertices of S in a red clique of GI
to less than k vertices, then there exist another unique red clique X of GI and an unique vertex w of X ∩ S such that
| N(w) ∩ S |< k.

The next theorem states a necessary and sufficient condition for γ×k,t(GI) = nk+ 1, when k and n are both
odd.

Theorem 2.9. Let G be a graph of odd order n and let 1 ≤ 2k+ 1 ≤ δ. Then γ×(2k+1),t(GI) = (2k+ 1)n+ 1 if and only
if G is a kHLMM-graph.
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Proof. Let V(G) = {xi | 1 ≤ i ≤ n} and let G be a kHLMM-graph with maximum matching M. Without
loss of generality, we may assume that M does not saturate xn. For 1 ≤ i ≤ k and some ti ≥ 1, let
G = HLD(G(i)

1 ,G
(i)
2 , ...,G

(i)
ti

) be k Hamiltonian-like decompositions of G. For 1 ≤ ℓi ≤ ti, let C(i)
ℓi

: x(i)
1 x(i)

2 ...x
(i)
ci,ℓi

be

a Hamiltonian cycle in G(i)
ℓi

. Set

Si,ℓi = {x
(i)
m x(i)

m−1, x
(i)
m x(i)

m+1 | 1 ≤ m ≤ ci,ℓi}.

Then S(i) = Si,1∪Si,2∪...∪Si,ti is a DTDS of GI of cardinality 2n. Also every two distinct S(i) and S(ℓ) are disjoint.
Hence S(1)∪S(2)∪...∪S(k) is a 2kTDS of GI of cardinality 2kn. Since G is k-Hamiltonian-like decomposable. Set
MI = {(xix j, x jxi) | xix j ∈ M}. Since for each partition G = HLD(G(i)

1 ,G
(i)
2 , ...,G

(i)
ti

) of Hamiltonian subgraphs
M satisfies the condition (1), we have V(MI) ∩ (S(1) ∪ S(2) ∪ ... ∪ S(k)) = ∅. One can verify that for every
two arbitrary vertices α, β ∈ Xn − (S(1) ∪ S(2) ∪ ... ∪ S(k)), the set V(MI) ∪ S(1) ∪ S(2) ∪ ... ∪ S(k) ∪ {α, β} is a
(2k + 1)TDS of GI of cardinality (2k + 1)n + 1. Thus γ×(2k+1),t(GI) ≤ (2k + 1)n + 1 and Theorem 2.7 implies
γ×(2k+1),t(GI) = (2k + 1)n + 1.

Conversely, let γ×(2k+1),t(GI) = (2k + 1)n + 1 and let S be a γ×(2k+1),t(GI)-set. Without loss of generality,
we may assume that for each 1 ≤ i ≤ n − 1, | S ∩ Xi |= 2k + 1 and | S ∩ Xn |= 2k + 2. Similar to the
proofs of the previous theorems, we may partition every S ∩ Xi to k 2-subsets D(i)

j (when 1 ≤ j ≤ k) such

that D(1)
j ∪ D(2)

j ∪ ... ∪ D(n)
j is a union of some disjoint cycles. Hence there is a corresponding partition

G = HLD(G(i)
1 ,G

(i)
2 , ...,G

(i)
ti

) of Hamiltonian subgraphs for it, and also
∪

1≤i≤n−1(S − (
∪

1≤ j≤k D(i)
j )) makes a blue

matching MI in GI with size ⌊ n
2 ⌋. It can be easily verified that M = {xix j | (xix j, x jxi) ∈ MI} is a maximum

matching in G with size ⌊ n
2 ⌋ such that does not saturate xn and for every partition G = HLD(G(i)

1 ,G
(i)
2 , ...,G

(i)
ti

)
of Hamiltonian subgraphs it satisfies the condition (1). Hence G is a kHLMM-graph.

3. The inflation of a connected graph which has a cut-edge or a cut-vertex

In the next theorem we present some upper and lower bounds for the k-tuple total domination number
of the inflation of a graph F which contains a cut-edge e, in terms of the k-tuple total domination numbers
of the inflation of the components of F − e.

Theorem 3.1. Let F be a graph with a cut-edge e such that G and H are the components of F − e. If 2 ≤ k ≤
min{δ(G), δ(H)}, then

γ×k,t(GI) + γ×k,t(HI) − k ≤ γ×k,t(FI) ≤ γ×k,t(GI) + γ×k,t(HI).

Proof. Let V(G) = {xi | 1 ≤ i ≤ n} and let V(H) = {yi | 1 ≤ i ≤ m}. Without loss of generality, we may assume
that e = x1y1. Then V(FI) = V(GI) ∪ V(HI) ∪ {x1y1, y1x1} and

E(FI) = E(GI) ∪ E(HI) ∪ {(x1x j, x1y1) | x1x j ∈ X1}∪
{(y1y j, y1x1) | y1y j ∈ Y1} ∪ {(x1y1, y1x1)}.

Let X′1 = X1 ∪ {x1y1} and let Y′1 = Y1 ∪ {y1x1}. Let SG and SH be γ×k,t(GI)-set and γ×k,t(HI)-set, respectively.
Since SG ∪ SH is a kTDS of FI of cardinality γ×k,t(GI) + γ×k,t(HI), we obtain γ×k,t(FI) ≤ γ×k,t(GI) + γ×k,t(HI).

Now let SF be a γ×k,t(FI)-set. If SF ∩ {x1y1, y1x1} = ∅, then SF ∩ V(GI) and SF ∩ V(HI) are k-tuple total
dominating sets of GI and HI, respectively. Hence

γ×k,t(GI) + γ×k,t(HI) ≤ | SF ∩ V(GI) | + | SF ∩ V(HI) |
= | SF |
= γ×k,t(FI).

Therefore, we assume that SF ∩ {x1y1, y1x1} , ∅, and in the next two cases we will complete our proof.
Case i. | SF ∩ {x1y1, y1x1} |= 1.
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Let SF ∩ {x1y1, y1x1} = {x1y1}. Then SF ∩ V(HI) is a kTDS of HI and | SF ∩ X1 |≥ k. Since k ≥ 2 and each
clique of every inflated graph contains at least k vertices of every kTDS and also | SF ∩ X1 |> k implies
| SF ∩Y′1 |= k− 1, we get | SF ∩X1 |= k. If de1G(x1) = k, then (SF ∩V(GI))∪ {xix1 | x1xi ∈ X1} is a kTDS of GI of
cardinality at most | SF ∩ V(GI) | +k. Hence

γ×k,t(GI) + γ×k,t(HI) ≤ | SF ∩ V(GI) | +k+ | SF ∩ V(HI) |
= γ×k,t(FI) + k − 1.

If de1G(x1) , k, then for every x1x j ∈ X1 − SF the set (SF ∩ V(GI)) ∪ {x1x j} is a kTDS of GI. Hence

γ×k,t(GI) + γ×k,t(HI) ≤ | (SF ∩ V(GI)) ∪ {x1x j} | + | SF ∩ V(HI) |
= γ×k,t(FI).

Case ii. | SF ∩ {x1y1, y1x1} |= 2.
Since | SF ∩ X′1 |≥ k, | SF ∩ Y′1 |≥ k and {x1y1, y1x1} ⊆ SF, we have | SF ∩ X1 |= k − 1 or | SF ∩ Y1 |= k − 1.
Let | SF ∩ X1 |≥| SF ∩ Y1 |= k − 1. If de1H(y1) = k, then there exists a vertex y1y j ∈ Y1 − SF such that
(SF ∩V(HI))∪ {y1y j, y jy1} is a kTDS of HI. If de1H(y1) ≥ k+ 1, then there are two disjoint vertices y1y j, y1yi ∈
Y1 − SF such that (SF ∩ V(HI)) ∪ {y1y j, y1yi} is a kTDS of HI.

Now, in each possible case, we will present a k-tuple total dominating set of GI. If | SF ∩ X′1 |≥ k + 1,
then SF ∩ V(GI) is a kTDS of GI. Let | SF ∩ X1 |= k and let de1G(x1) = k. Then (SF ∩ V(GI)) ∪ {xix1 | x1xi ∈ X1}
is a kTDS of GI of cardinality at most | SF ∩ V(GI) | +k. If either | SF ∩ X1 |= k and de1G(x1) = k + 1 or
| SF ∩X1 |= k − 1 and de1G(x1) = k, then for each x1x j ∈ X1 − SF the set (SF ∩V(GI)) ∪ {x1x j, x jx1} is a kTDS of
GI. Finally, if either | SF ∩X1 |= k and de1G(x1) ≥ k+ 2 or | SF ∩X1 |= k− 1 and de1G(x1) ≥ k+ 1, then for every
two distinct vertices x1x j, x1xi ∈ X1 − SF, the set (SF ∩ V(GI)) ∪ {x1x j, x1xi} is a kTDS of GI. Thus in Case (ii)
we have proved that γ×k,t(GI) + γ×k,t(HI) − k ≤ γ×k,t(FI).

With comparing the obtained bounds in Case (i) and Case (ii), we obtain γ×k,t(GI)+γ×k,t(HI)−k ≤ γ×k,t(FI),
and this completes our proof.

By closer look at the proof of Theorem 3.1 we have the next theorem.

Theorem 3.2. Let F be a graph with a cut-edge e such that G and H are the components of F − e. If 2 ≤ k ≤
min{δ(G), δ(H)} − 1, then

γ×k,t(GI) + γ×k,t(HI) − 2 ≤ γ×k,t(FI) ≤ γ×k,t(GI) + γ×k,t(HI).

We now calculate the k-tuple total domination number of the inflation of the complete graphs and then
continue our discussion.

Proposition 3.3. Let n > k ≥ 2 be integers. Then every complete graph Kn is ⌊ n−1
2 ⌋-Hamiltonian-like decomposable

graph and

γ×k,t((Kn)I) =
{

nk + 1 if k and n are odd,
nk otherwise.

Proof. Let V(Kn) = {i | 1 ≤ i ≤ n}. Since for each 1 ≤ i ≤ ⌊(n − 1)/2⌋ the edge set Ei = {( j, j + i) | 1 ≤ j ≤ n}
is the union of some disjoint cycles and

∪
1≤i≤⌊ n−1

2 ⌋ Ei is a partition of V(Kn), we conclude that Kn is ⌊ n−1
2 ⌋-

Hamiltonian-like decomposable graph. We also see that M = {(i, i + ⌊ n
2 ⌋) | 1 ≤ i ≤ ⌊ n

2 ⌋} is a perfect matching
or a maximum matching in Kn with size ⌊ n

2 ⌋, when n is even or odd, respectively. Then Theorems 2.6 and
2.9 complete our proof.

Proposition 3.4. Let 2 ≤ k < n ≤ m and let F be a graph with a cut-edge e such that G � Kn and H � Km are the
components of F − e. Then

γ×k,t(FI) =
{

k(n +m) + 1 if k is odd and n ≡ m + 1 (mod 2),
k(n +m) otherwise.
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Proof. Let V(G) = {xi | 1 ≤ i ≤ n}, V(H) = {yi | 1 ≤ i ≤ m} and let e = xnym. Since every complete graph
Kt is ⌊ t−1

2 ⌋-Hamiltonian-like decomposable graph and n ≤ m, we conclude that F is ⌊ n−1
2 ⌋-Hamiltonian-like

decomposable graph. We now continue our discussion in the next two cases.
Case i. n ≡ m + 1 (mod 2).

If k is odd, then Theorem 2.7 implies that γ×k,t(FI) ≥ k(n+m)+ 1. Without loss of generality, we may assume
that n is odd and m is even. Then γ×k,t(GI) = kn + 1 and γ×k,t(HI) = km, by Proposition 3.3. If SG and SH are
γ×k,t(GI)-set and γ×k,t(HI)-set, respectively, then SG ∪ SH is a kTDS of FI of cardinality k(n + m) + 1. Hence
γ×k,t(FI) = k(n +m) + 1. For even k it can be similarly verified that γ×k,t(FI) = k(n +m).

Case ii. n ≡ m (mod 2).
In this case, Theorem 2.1 implies that γ×k,t(FI) ≥ k(n +m). If either n ≡ m ≡ 0 (mod 2) or n ≡ m ≡ 1 (mod 2)
and k is even, then γ×k,t(GI) = kn, and γ×k,t(HI) = km, by Proposition 3.3. If SG and SH are γ×k,t(GI)-
set and γ×k,t(HI)-set, respectively, then obviously SG ∪ SH is a kTDS of FI of cardinality k(n + m) and so
γ×k,t(FI) = k(n +m).

Now let n ≡ m ≡ 1 (mod 2) and let k be odd. Then γ×k,t(GI) = kn + 1 and γ×k,t(HI) = km + 1, by
Proposition 3.3. Let SG = S1 ∪ {α, β} be the given γ×k,t(GI)-set in the second paragraph of the proof of
Theorem 2.9 such that S1 = V(MI)∪S(1)∪S(2)∪ ...∪S(k) and α, β ∈ Xn− (S1−V(MI)). With applying Theorem
2.9 for H, let also similarly SH = S′1 ∪ {α′, β′} be the given γ×k,t(HI)-set in the second paragraph of the proof
of Theorem 2.9 such that S′1 = V(M′

I) ∪ S′(1) ∪ S′(2) ∪ ... ∪ S′(k) and α′, β′ ∈ Ym − (S′1 −V(M′
I)). Then obviously

S = SG∪SH ∪{xnym, ymxn} − {α, β, α′, β′} is a kTDS of FI of cardinality k(n+m). Hence γ×k,t(FI) = k(n+m).

Proposition 3.3 implies that if G = Kn and H = Km, then

γ×k,t(GI) + γ×k,t(HI) =


k(n +m) if k is odd and m and n are both even,
k(n +m) + 1 if k is odd and n ≡ m + 1 (mod 2),
k(n +m) + 2 if k, m and n are odd.

Thus Proposition 3.4 implies the next result which states the given bounds in Theorem 3.1 are sharp.

Corollary 3.5. Let 2 ≤ k < n ≤ m and let F be a graph with a cut-edge e such that G � Kn and H � Km are the
components of F − e. Then

γ×k,t(FI) =
{
γ×k,t(GI) + γ×k,t(HI) − 2 if k, m and n are all odd,
γ×k,t(GI) + γ×k,t(HI) otherwise.

Now in the next theorem we give some upper and lower bounds for the k-tuple total domination number
of the inflation of a graph F,which contains a cut-vertex v, in terms of the k-tuple total domination numbers
of the inflation of the v-components of F − v.

Theorem 3.6. Let F be a graph with a cut-vertex v such that G1, G2, ..., Gm are all v-components of F − v. If
2 ≤ k ≤ min{δ(Gi) | 1 ≤ i ≤ m} − 1 and Gi

I is the inflation of Gi, then∑
1≤i≤m

γ×k,t(Gi
I) −m(k + 1) + k ≤ γ×k,t(FI) ≤

∑
1≤i≤m

γ×k,t(Gi
I),

and the given upper bound is sharp.

Proof. Let V(Gi) = {xi
j | 1 ≤ j ≤ ni} for i = 1, 2, ...,m. Without loss of generality, we may assume that

x1
1 = x2

1 = ... = xm
1 = v. Then V(FI) =

∪
1≤i≤m V(Gi

I) and

E(FI) = (
∪

1≤i≤m

E(Gi
I)
∪
{(xi

1xi
l, x

j
1x j

t) | xi
1xi

l ∈ Xi, and x j
1x j

t ∈ X j, for 1 ≤ i < j ≤ m}.

Let Si be a γ×k,t(Gi
I)-set for i = 1, 2, ...,m. Since

∪
1≤i≤m Si is a kTDS of FI of cardinality

∑
1≤i≤m γ×k,t(Gi

I), we
have γ×k,t(FI) ≤

∑
1≤i≤m γ×k,t(Gi

I).
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Now let S be a γ×k,t(FI)-set. Let Si = S∩V(Gi
I), where 1 ≤ i ≤ m. Then each Si is a kTDS of Gi

I −Xi
1, where

Xi
1 is the corresponding clique of the vertex xi

1. Let | S ∩ Xi
1 |= ti, where 1 ≤ i ≤ m. Then

∑
1≤i≤m ti ≥ k. The

condition δ(Gi) > k allows us that by adding at most k + 1 − ti vertices of Xi
1 to S, we obtain a kTDS S′ of FI

such that every S′ ∩ V(Gi
I) is a kTDS of Gi

I. Then∑
1≤i≤m γ×k,t(Gi

I) ≤ ∑
1≤i≤m | S′F ∩ V(Gi

I) |
≤ | SF | +m(k + 1) −∑1≤i≤m ti
≤ γ×k,t(FI) +m(k + 1) − k.

Hence∑
1≤i≤m

γ×k,t(Gi
I) −m(k + 1) + k ≤ γ×k,t(FI) ≤

∑
1≤i≤m

γ×k,t(Gi
I).

Now we show that the upper bound
∑

1≤i≤m γ×k,t(Gi
I) is sharp. Let F be a graph with a cut-vertex v

such that G1, G2, ..., Gm are the all v-components of F − v and γ×k,t(Gi
I) = nik, where ni = n(Gi). Let

V(Gi) = {xi
j | 1 ≤ j ≤ ni} and x1

1 = ... = xm
1 = v. Let YF

v be the corresponding red clique with the vertex v in F.
Let Si be a γ×k,t(Gi

I)-set, where 1 ≤ i ≤ m. Then every clique in Gi
I contains exactly k vertices of Si, and so

S =
∪

1≤i≤m Si is a kTDS of FI of cardinality
∑

1≤i≤m γ×k,t(Gi
I) =
∑

1≤i≤m nik such that YF
v contains mk vertices of

S.
We claim that S has minimum cardinality among all k-tuple total dominating sets of FI. Observation 2.8

implies that every red clique other than YF
v must contains at least k vertices of every kTDS of FI. Thus we

cannot reduce the number of vertices of S in cliques (except probably YF
v). Since also reducing the number

of the vertices of S ∩ YF
v reduce the cardinality of the k-tuple total domination number of Gi

I, we cannot
do it, by Observation 2.8. Therefore S is a minimal kTDS of FI. Now let S′ be an arbitrary γ×k,t(FI)-set of
cardinality less than

∑
1≤i≤m nik. Then, by the previous discussion, there exists a v-component Gi of F−v and

a clique X of it other than Xi
1 = YF

v ∩ V(Gi
I) such that | S′ ∩ X |< k. But this is not possible, by Observation

2.8. Therefore S is a γ×k,t(FI)-set, and so γ×k,t(FI) =
∑

1≤i≤m γ×k,t(Gi
I) =
∑

1≤i≤m nik.

We see that if G1, G2, ..., Gm and F are the given graphs in the second part of the proof of Theorem 3.6,
then n = n(F) =

∑
1≤i≤m ni −m + 1 and

γ×k,t(FI) =
∑

1≤i≤m nik
= nk + (m − 1)k
≤ n(k + 1) − 1.

Thus this family of graphs are examples of the graphs G of order n with γ×k,t(GI) = nk + αk ≤ n(k + 1) − 1,
where α is an arbitrary positive integer.

4. The inflation of some graphs

In Section 3, we calculated the k-tuple total domination number of the inflation of the complete graphs.
Now we find this number in the inflation of the generalized Petersen graphs, the Harary graphs and the
complete bipartite graphs. Also we give an upper bound for this number of the inflation of the complete
multipartite graph.

In [12], Watkins introduced the notion of generalized Petersen graph (GPG for short) as follows: for
any integer n ≥ 3 let Zn be additive group on {1, 2, ..., n} and m ∈ Zn − {0}. The generalized Petersen graph
P(n,m) is defined on the set {ai, bi | i ∈ Zn} of 2n vertices with edges aiai+1, aibi, bibi+m for all i. If m = n

2 ,
then every vertex bi has degree 2 and every vertex ai has degree 3, and otherwise P(n,m) is 3-regular. Thus
γ×3,t((P(n,m)I) = n(GI) = 6n, when m , n

2 . Since M = {aibi | i ∈ Zn} is a perfect matching in P(n,m), we get
S = {aibi, biai | i ∈ Zn} as a γt((P(n,m))I)-set and so γt((P(n,m)I) = 2n. In the next proposition we calculate
γ×2,t((P(n,m)I).
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Proposition 4.1. Let n ≥ 3 and m ≥ 1 be integers. Then

γ×2,t((P(n,m))I) =
{

4n + 2 if m = n
2 is odd,

4n otherwise.

Proof. Let G = P(n,m). We first assume that m , n
2 and d is the greatest common divisor of m and n. Then

the induced subgraph by {bi | i ∈ Zn} of G has a partition to d disjoint cycles Ci : bibi+mbi+2m...bi+α−m, where
1 ≤ i ≤ d and α = min{tm | tm ≡ 0 (mod n)}. Since the induced subgraph by {ai | i ∈ Zn} of G is the cycle
Ca : a1a2a3...an, we conclude that G is a Hamiltonian-like decomposable graph and Theorem 2.5 implies
γ×2,t(GI) = 4n.

Now let m = n
2 . In this case, bib j ∈ E(G) if and only if j ≡ i+m (mod n). Hence every vertex bi has degree

2 and every vertex ai has degree 3. Then there exist the ⌊m
2 ⌋ disjoint cycles biaiai+1bi+1bi+1+mai+1+mai+mbi+m

with eight vertices. If m is even, then these cycles form a partition of V(G). Hence G is a Hamiltonian-like
decomposable graph and Theorem 2.5 implies γ×2,t(GI) = 4n. Otherwise, these cycles form a partition of
V(G) − {am, bm, bn, an}. We notice that the induced subgraph of G by {am, bm, bn, an} is the path P4 : ambmbnan.
Set

S = S1 ∪ S2 ∪ ... ∪ S⌊ m
2 ⌋∪

{amam+1, amam−1, amam; bmam, bmbn; bnbm, bnan; anbn, ana1, anan−1},

where

Si = {bibi+m, biai; aibi, aiai+1; ai+1ai, ai+1bi+1; bi+1ai+1}∪
{bi+1bi+1+m; bi+1+mbi+1, bi+m+1ai+m+1; ai+m+1bi+m+1}∪
{ai+m+1ai+m; ai+mai+m+1, ai+mbi+m; bi+mai+m, bi+mbi},

for each 1 ≤ i ≤ ⌊m
2 ⌋. One can verify that S is a minimum DTDS of GI and so γ×2,t(GI) = 4n + 2.

We now consider the Harary graphs which make an interesting family of graphs. Given m < n, place n
vertices 1, 2, ..., n around a circle, equally spaced. If m is even, form Hm,n by making each vertex adjacent to
the nearest m

2 vertices in each direction around the circle. If m is odd and n is even, form Hm,n by making
each vertex adjacent to the nearest m−1

2 vertices in each direction and to the diametrically opposite vertex.
In each case, Hm,n is m-regular. When m and n are both odd, index the vertices by the integers modulo n.
Construct Hm,n from Hm−1,n by adding the edges (i, i + n−1

2 ), for 0 ≤ i ≤ n−1
2 (see [13]).

Proposition 4.2. Let 2 ≤ k ≤ m < n be integers. Then the Harary graph Hm,n is ⌊m
2 ⌋-Hamiltonian-like decomposable

graph and

γ×k,t((Hm,n)I) =
{

nk + 1 if k and n are both odd,
nk otherwise.

Proof. Since for each 1 ≤ i ≤ m the edge subset Ei = {( j, j + i) | 1 ≤ j ≤ n} is the union of some disjoint cycles
and
∪

1≤i≤m Ei is a partition of V(Hm,n), we conclude that Hm,n is a m-Hamiltonian-like decomposable graph.
Let m be odd. Then M = {(i, i + ⌊ n

2 ⌋) | 1 ≤ i ≤ ⌊ n
2 ⌋} is a perfect matching or a maximum matching of Hm,n

with size ⌊ n
2 ⌋ if n is even or odd, respectively. Now Theorems 2.6 and 2.9 complete our proof.

In the following two theorems we consider the complete bipartite graphs Kp,q. First let p = q.

Proposition 4.3. For integers p ≥ k ≥ 2, let G be the complete bipartite graph Kp,p. Then G is a (⌊ p
2 ⌋−1)HLPM-graph

if p is even, and is a ⌊ p
2 ⌋-Hamiltonian-like decomposable graph, otherwise. Hence γ×k,t(GI) = 2pk.

Proof. We consider the partition X ∪ Y for V(G), where X = {xi | 1 ≤ i ≤ p} and Y = {yi | 1 ≤ i ≤ p}. For
0 ≤ j ≤ ⌊ p

2 ⌋ − 1, we choose ⌊ p
2 ⌋ sequences on X ∪ Y with length 2p that are alternatively from X and Y
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with starting of vertex x1 such that every three consequence numbers of them are xi, yi+ j, and xi+(2 j+1). Let
0 ≤ j ≤ ⌊ p

2 ⌋ − 2. If p does not divided by 2 j + 1, then j-th sequence makes the cycle

C j : x1y j+1x2 j+2y3 j+2...xp−2 jyp− j

but if p = (2 j + 1)t, for some positive integer t, then it makes 2 j + 1 disjoint cycles

C j
i : xiyi+ jxi+(2 j+1)yi+(3 j+1)...xi+(t−1)(2 j+1)yi+(t−1)(2 j+1)+ j

with length t, where 1 ≤ i ≤ 2 j + 1. We notice that for odd p and j = ⌊ p
2 ⌋ − 1 there exists another cycle

with length 2p which is vertex-disjoint with the other cycles. If p is even and j = ⌊ p
2 ⌋ − 1, the corresponding

sequence makes a perfect matching M which is disjoint of the cycles. Then Theorems 2.5 and 2.6 imply
γ×k,t(GI) = 2pk.

Proposition 4.4. For integers q ≥ p > k ≥ 2, let G be the complete bipartite graph Kp,q. Then

γ×k,t(GI) = 2pk + (q − p)(k + 1).

Proof. We consider the partition X ∪ Y for V(G), where X = {xi | 1 ≤ i ≤ p} and Y = {yi | 1 ≤ i ≤ q}.
Let S be an arbitrary γ×k,t(GI)-set such that α red cliques of GI contain k vertices and p + q − α red cliques
of GI contain k + 1 vertices of S. Since G is bipartite, then α

2 cliques must be selected among the q red
cliques Yi, where 1 ≤ i ≤ q, and the second α

2 cliques must be selected among the p red cliques Xi, where
1 ≤ i ≤ p. We notice that this choosing is possible. Because, by Proposition 4.3, Kp,p is (⌊ p

2 ⌋ − 1)HLPM-graph
or ⌊ p

2 ⌋-Hamiltonian-like decomposable graph, when p is even or odd, respectively. Thus α ≤ 2p and so

γ×k,t(GI) = min{| S | | S is a kTDS of GI}
= min{αk + (q + p − α)(k + 1) | 0 ≤ α ≤ 2p}
= min{(q + p)(k + 1) − α | 0 ≤ α ≤ 2p}
= (q + p)(k + 1) − 2p
= 2pk + (q − p)(k + 1).

Theorem 2.1 implies that if G is a graph of order n with δ(G) ≥ k ≥ 2, then n(k + 1) − n ≤ γ×k,t(GI) ≤
n(k+ 1)− 1. In the next result, we show that for each n(k+ 1)− n ≤ m = n(k+ 1)− 2ℓ ≤ n(k+ 1)− 1 there exist
an integer k and a graph G that its k-tuple total domination number is m.

Theorem 4.5. For each integers n, k and ℓ with the condition 2 ≤ k < ℓ ≤ ⌊ n
2 ⌋, there exists a graph G of order n such

that γ×k,t(GI) = n(k + 1) − 2ℓ.

Proof. Let G = Kℓ,n−ℓ. Then Proposition 4.4 implies

γ×k,t(GI) = 2ℓk + (n − 2ℓ)(k + 1)
= n(k + 1) − 2ℓ.

The next theorem gives an upper bound for the k-tuple total domination number of the complete
multipartite graphs.

Proposition 4.6. Let G be the complete multipartite graph Kn1,n2,...,nm of order n. If 2 ≤ k < n′ = max{∑i∈J ni | J ⊆
{1, 2, ..m} and

∑
i∈J ni ≤ n

2 }, then γ×k,t(GI) ≤ n(k + 1) − 2n′.
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Proof. We assume that V(G) = X(1) ∪ X(2) ∪ ... ∪ X(m) is the partition of the vertices of G, where X(i) = {x(i)
j |

1 ≤ j ≤ ni}. Let n′ =
∑

i∈J ni ≤ n
2 , for some J ⊆ {1, 2, ..m}. Let X =

∪
i∈J X(i) and Y =

∪
i<J X(i). Then every

vertex of X is adjacent to all vertices of Y. If H is the complete bipartite with the vertex set X ∪ Y, then it is
a subgraph of G and so γ×k,t(GI) ≤ γ×k,t(HI) = n(k + 1) − 2n′, by Proposition 4.4.

At the end of our paper we state the following problems.

Problem 4.7. Can the upper bound n(k + 1) − 1 in Theorem 2.1 be improved?

Problem 4.8. Is the lower bound
∑

1≤i≤m γ×k,t(Gi
I) −m(k + 1) + k in Theorem 3.6 sharp?

Problem 4.9. Characterize all graphs G that satisfy γ×k,t(GI) = nk + 1.
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