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k-tuple total domination in inflated graphs
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Abstract. The inflation or inflated graph G; of a graph G with n vertices is obtained from G by replacing
every vertex x; of degree d(x;) of G by a clique X;, which is isomorphic to the complete graph Ky, and each
edge (x;, x;) of G is replaced by an edge (1, v) in such a way that u € X;, v € X;, and two different edges of G
are replaced by non-adjacent edges of G;. For integer k > 1, the k-tuple total domination number yy(G) of
G is the minimum cardinality of a k-tuple total dominating set of G, which is a set of vertices in G such that
every vertex of G is adjacent to at least k vertices in it. For existing this number, must the minimum degree of
G be at least k. Henning and Kazemi in [Total domination in inflated graphs, Discrete Applied Mathematics
160 (2012) 164-169] have studied the k-tuple total domination number of inflated graphs, when k = 1. Here,
we continue their studying when k > 2. First we prove nk < y,;(Gy) < n(k +1) — 1 when 6(G) > k+ 1, and
then we characterize graphs G that the k-tuple total domination number number of G, is either nk or nk + 1.
Also we find some bounds for this number in the inflated graph G;, when G has a cut-edge e or a cut-vertex
v, in terms of the k-tuple total domination number of the inflation of the components of G — e or of the
v-components of G — v, respectively. Finally, we calculate this number for the inflation of some graphs.

1. Introduction

All graphs considered here are finite, undirected and simple. For standard graph theory terminology
not given here we refer to [2]. Let G = (V, E) be a graph with the vertex set V of order n(G) and the edge set E
of size m(G). The open neighborhood and the closed neighborhood of a vertex v € V are Ng(v) = {u € V | uv € E}
and Ng[v] = Ng(v) U {0}, respectively. The degree of a vertex v is also degg(v) =| N¢g(v) |. The minimum
and the maximum degree of G are denoted by 6 = 6(G) and A = A(G), respectively. We say that a graph is
connected if there is a path between every two vertices of the graph, and otherwise is called disconnected. In
a connected graph G, a vertex (resp. edge) v is called a cut-vertex or (resp. cut-edge) if G — v is disconnected.
Every maximal connected subgraph of G — v is called a (connectedness) component of it. Let v be a cut-vertex
of a graph G and let S be the vertex set of a component of G — v. The induced subgraph by S U {v} of G
is called a v-component of G. We also write K,,, C, and P, for the complete graph, the cycle and the path of
order 7, respectively, while G[S] and Ky, u,,..,n, denote the subgraph induced of G by a vertex set S of G and
the complete p-partite graph, respectively.

An edge subset M in G is called a matching in G if any two edges of M has no vertex in common. If
e = vw € M, then we say either M saturates two vertices v and w or v and w are M-saturated (by e). A
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matching M is a perfect matching or a maximum matching if all vertices of G are M-saturated or there is no
other matching M’ with | M’ |>| M |, respectively.

Domination in graphs is now well studied in graph theory and the literature on this subject has been
surveyed and detailed in the two books by Haynes, Hedetniemi, and Slater [2, 3]. A set S C V is a total
dominating set if each vertex in V is adjacent to at least one vertex of S, while the minimum cardinality of a
total dominating set is the total domination number y(G) of G.

In [4] Henning and Kazemi generalized the definition of the total domination number to the k-tuple
total domination number as follows: for each integer k > 1, a subset S of V is a k-tuple total dominating set of
G, abbreviated kTDS, if for every vertexv € V, | N(v) N S |> k, that is, S is a kTDS of G if every vertex has at
least k neighbors in S. The k-tuple total domination number Y (G) of G is the minimum cardinality of a kTDS
of G. We remark that y¢(G) = yx1+(G). For a graph to have a k-tuple total dominating set, its minimum
degree must be at least k. A kTDS of cardinality y«(G) is called a yx+(G)-set. When k = 2, a k-tuple total
dominating set is called a double total dominating set, abbreviated DTDS, and the k-tuple total domination
number is called the double total domination number. The redundancy involved in k-tuple total domination
makes it useful in many applications. For more information see [5-7].

For the notation for inflated graphs, we follow that of [9]. The inflation or inflated graph G; of the graph
G without isolated vertices is obtained as follows: each vertex x; of degree d(x;) of G is replaced by a clique
Xi = Ky, (that is, X; is isomorphic to the complete graph Kj(,,)) and each edge (x;, x;) of G is replaced by
an edge (u,v) in such a way that u € X;, v € X, and two different edges of G are replaced by non-adjacent
edges of G;. An obvious consequence of the definition is that n(Gy) = }.,.cv(g) dc(x:) = 2m(G), 6(G1) = 6(G)
and A(Gy) = A(G). There are two different kinds of edges in G;. The edges of the clique X; are colored red
and the X;’s are called the red cliques (a red clique X; is reduced to a point if x; is a pendant vertex of G).
The other ones, which correspond to the edges of G, are colored blue and they form a perfect matching of
G;. Every vertex of G; belongs to exactly one red clique and one blue edge. Two adjacent vertices of G;
are said to red-adjacent if they belong to a same red clique, blue-adjacent otherwise. In general, we adopt
the following notation: if x; and x; are two adjacent vertices of G, the end vertices of the blue edge of G;
replacing the edge (x;, x;) of G are called x;x; in X; and x;x; in X;, and this blue edge is (x;x}, x;x;). Clearly
an inflation is claw-free. More precisely, Gy is the line-graph L(S(G)) where the subdivision S(G) of G is
obtained by replacing each edge of G by a path of length 2. The study of various domination parameters in
inflated graphs was originated by Dunbar and Haynes in [8]. Results related to the domination parameters
in inflated graphs can be found in [9-11].

Henning and Kazemi in [6] have studied the k-tuple total domination number of inflated graphs, when
k = 1. Here, we continue their studying when k > 2.

This paper is organized as follows. In Section 2, we prove that if k > 2 is an integer and G is a graph of
order n with 6 > k + 1, then nk < Y, +(Gy) < n(k + 1) — 1, and then we characterize graphs G that y.(Gr)
is either nk or nk + 1. In Section 3, we find some upper and lower bounds for the k-tuple total domination
number of the inflation of a graph G with a cut-edge ¢, in terms of the k-tuple total domination number of
the inflation of the components of G —e. In a similar manner, we find some upper and lower bounds for
the k-tuple total domination number of the inflation of a graph G with a cut-vertex v, in terms of the k-tuple
total domination number of the inflation of the v-components of G —v. Finding the k-tuple total domination
number of the inflation of the complete graphs is our next work. Finally, in Section 4, we calculate the
k-tuple total domination number of the inflation of the generalized Petersen graphs, the Harary graphs and
the complete bipartite graphs. Also we get an upper bound for this number in the inflation of the complete
multipartite graphs.
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2. Some bounds

First we give two general upper and lower bounds for the k-tuple total domination number of inflated
graphs, where 6 > k > 2.

Theorem 2.1. Let k > 2 be an integer, and let G be a graph of order n.
i. If 6 = k, then vy 1(Gy) = nk,
ii. if 0 > k+1, then e (Gr) <n(k+1) - 1.

Proof. Case i. Let S be an arbitrary kTDS of G;. Since every vertex v of the red clique X; is adjacent to
only one vertex of another red clique and is adjacent to deg(v) —1 > 6 — 1 > k — 1 vertices in X;, we have
| SN X; [=| Nx,(v) | +1 > k, for each vertex v € S N X;. Hence yx+(Gr) = nk.

Caseii. Let V(G) = {x; |1 <i<n}. Set S =51 U...US§, such that S; = {x1x; | 2 < j < k + 1} is a k-subset of
Xy,andif2<j<k+1,thenS; = {x;x1} U S} that S;"is a k-subset of X; — {x;x1},and if k+ 1 < j < n, then S; is
a (k + 1)-subset of X;. Since S is a kKTDS of G; of cardinality n(k + 1) — 1, we get yui:(Gy) <n(k+1)-1. O

Now, we characterize graphs G of order n that the k-tuple total domination number of their inflations is
either nk or nk + 1. First we define the following three new concepts.

We know that a graph G is a Hamiltonian graph if it has a Hamiltonian cycle, that is, a cycle that contains
all vertices of the graph. We extend this definition in such a way:

Definition 2.2. A graph G is a Hamiltonian-like decomposable graph if there exist t vertex-disjoint Hamiltonian
subgraphs Gi, Gy, ..., Gt of G such that V(G) = V(G1) U V(G2) U ... U V(Gy). A such partition we call a
Hamiltonian-like decomposition of G and simply write G = HLD(G;, G, ..., Gy).

In generally, for each integer k > 1, we present the next definitions.

Definition 2.3. A graph G is a k-Hamiltonian-like decomposable graph, briefly kKHLD-graph, if it has k Hamilton
ian-like decomposition G = HLD(G(;),G(;), vy Gg)) of Hamiltonian subgraphs (where 1 < i < k) such that

every two distinct Hamiltonian subgraphs Gg) and Gg ) have vertex-disjoint Hamiltonian cycles CS) and Cg),
respectively.

We note that 1-Hamiltonian-like decomposable graph is the same Hamiltonian-like decomposable
graph.

Definition 2.4. A k-Hamiltonian-like decomposable graph G is a kKHLPM-graph or a kKHLMM-graph if G
has a perfect matching or a maximum matching M, respectively, of cardinality [n/2] such that for each
Hamiltonian-like decomposition G = HLD(G?, G(Z'), vy GS)) of Hamiltonian subgraphs (where 1 <i < k) M
satisfies the condition:

MnN E(C(Z)) =0, foreach1 < ¢ <t (1)

where Cg) is a Hamiltonian cycle of Gg_).

The next two theorems characterize graphs G with yy+(G;) = nk.

Theorem 2.5. Let G be a graph of order n with 6(G) > 2k > 1. Then yyon(Gr) = 2kn if and only if G is a
kHLD-graph.

Proof. Let V(G) = {x; | 1 < i <n}. Forl <i <kandsomet; >1,letG = HLD(Gf), G?,...,Ggf)) be k

Hamiltonian-like decompositions of G. For 1 <i <kand 1 < {; <t;, let Cg) : x(li) (zl)xg)[ be a Hamiltonian

cycle of Gg). Set
Sy = (e

DINO
y O a0 11 <m <),

m+1
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Then S® = S;1US;,U...US;;, isa DTDS of G of cardinality 2. Since G is k-Hamiltonian-like decomposable,
we conclude that every two distinct S” and S are disjoint. Hence S U S® U ... U S® is a 2kTDS of G; of
cardinality 2kn. Thus Yo +(G1) < 2kn, and Theorem 2.1 implies Yy :(Gr) = 2kn.

Conversely, let yxor (Gr) = 2kn and let S be a yx o) (Gr)-set. Then we may partition every S N X; to k

2-subsets D;i) (when 1 < j < k) such that D}l) U D;Z) u...u D;”) is a union of some vertex-disjoint cycles. Since

foreach 1 <i<n,|SNX;|=2k. Without loss of generality, we may assume that D;l) U DE.Z) U..u DE.”) is the
cycle

Cj P X1Xn, X1X2; X2X1, X2X3; X3X2, X3X4; «vey XnXp—1, XnX1.

Then G has the corresponding cycle C’ : x1X2X3%4...X,,. Therefore, for every partition D;l) uDPu..u D;.")

there is a corresponding partition G = HLD(Ggi), Gg), s Gg)) of Hamiltonian subgraphs G, Gg), ... and Gg).
Hence G is a KHLD-graph. [

Theorem 2.6. Let G be a graph of order n with 5(G) > 2k +1 > 1. Then yxok+1)(Gr) = 2k + 1)n if and only if G is
a kHLPM-graph.

Proof. Let V(G) = {x; | 1 <i < n}. Let G be a kKHLPM-graph with perfect matching M. We follow exactly the
notation and terminology introduced in the first and second paragraphs of the proof of Theorem 2.5. Then
similarly S U S@ U ... U S® is a 2kTDS of G; of cardinality 2kn. Set M; = {(x;x;, xjx;) | xixj; € M}. Since for
every partition G = HLD(G(li), Gg), ey Gg)) of Hamiltonian subgraphs, M satisfies the condition (1), we have
VM) N (SP USSP U...uS®) = 0. One can verify that V(M) U SO U S@ U ... U S® is a (2k+1)TDS of G; of
cardinality (2k + 1)n. Thus yx(r41)+(Gr) < (2k + 1)n and Theorem 2.1 implies yxk+1)£(G1) = (2k + 1)n.
Conversely, let yxx+1):(Gr) = (2k + 1)n and let S be a yx@k+1),:(Gr)-set. Since | S N X; |= 2k + 1 for each
1 <7 < n, similar to the proof of Theorem 2.5, we may partition every S N X; to k 2-subsets D;i) (when

1 < j <k) such that pPup?u..u D;”) is a union of some disjoint cycles. Hence there is a corresponding
partition G = HLD(G?, Gg), - GS)) of Hamiltonian subgraphs for it, and also U, <j<,(S — (Ui<jk Dﬁ.i))) makes

a blue matching M; in G; with size | 5 |. It can be easily verified that M = {x;x; | (x;x;, xjx;) € M} is a perfect
matching in G that satisfies the condition (1). Hence G is a kKHLPM-graph. O

Theorems 2.5 and 2.6 imply the next result.

Theorem 2.7. Let G be a graph of order n with 6(G) > k > 1. Then yxy.(Gr) > nk + 1 if and only if k and n are odd
or k is even and G is not a kHLD-graph or k is odd and G is not a kHLPM-graph.

By closer look at the proofs of Theorems 2.5 and 2.6 we obtain the following observation.

Observation 2.8. Let k be an integer and let G be a graph of order n with v +(G) = nk. Then for every v +(Gr)-set
S, the induced subgraph Gi[S] by S in G; contains a union of vertex-disjoint Hamiltonian cycles (of some of the its
subgraphs) and probably a perfect matching. Therefore, if we reduce the number of vertices of S in a red clique of Gy
to less than k vertices, then there exist another unique red clique X of Gr and an unique vertex w of X N S such that
INw)N S |< k.

The next theorem states a necessary and sufficient condition for y.¢(Gr) = nk+1, when k and n are both
odd.

Theorem 2.9. Let G be a graph of odd order nand let 1 < 2k +1 < 6. Then yyxok+1),/(G1) = 2k + 1)n + 1 if and only
if G is a kKHLMM-graph.
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Proof. Let V(G) = {x; | 1 < i < n} and let G be a KHLMM-graph with maximum matching M. Without
loss of generality, we may assume that M does not saturate x,. For 1 < i < k and some t; > 1, let

G= HLD(Ggi), G(Zi), ey Gg)) be k Hamiltonian-like decompositions of G. For 1 < {; < t;, let Cgf) : x(li)xg)...xf:f?f_ be
a Hamiltonian cycle in Gg). Set

Sie, = {xfj,)xiz)_l,xs,)xi)ﬂ |1<m<cig).

Then S® = S;1US;,U...US;, isa DTDS of G, of cardinality 2n. Also every two distinct S® and S¥) are disjoint.
Hence SVUS@U...US® is a 2kTDS of G; of cardinality 2kn. Since G is k-Hamiltonian-like decomposable. Set
My = {(xixj, xjx;) | x;xj € M}. Since for each partition G = HLD(G(Z),G(Z’), .y GS)) of Hamiltonian subgraphs
M satisfies the condition (1), we have V(M;) N (SY U S@ U ... U S®) = 0. One can verify that for every
two arbitrary vertices a, € X, — (5P U S@ U ... U W), the set V(M) USD USSP U ..U S® U {a,p} is a
(2k + 1)TDS of Gy of cardinality (2k + 1)n + 1. Thus yx@+1)+(G1) < (2k + 1)n + 1 and Theorem 2.7 implies
Vx@k+1),4(Gr) = 2k + Dn + 1.

Conversely, let yxr+1)£(G1) = 2k + 1)n + 1 and let S be a yx@k+1),(G1)-set. Without loss of generality,
we may assume that foreach1 <i <n-1,|5NX; |=2k+1and | SN X, |= 2k +2. Similar to the

proofs of the previous theorems, we may partition every S N X; to k 2-subsets Di.i) (when 1 < j < k) such
that D" UD® U ... U D" is a union of some disjoint cycles. Hence there is a corresponding partition
G= HLD(Ggi), G(Zi), wer GS)) of Hamiltonian subgraphs for it, and also U1 <j<y-1(S = (U1<j« D;i))) makes a blue
matching M; in G; with size |5 ]. It can be easily verified that M = {x;x; | (x;xj, x;x;) € Mj} is a maximum

matching in G with size | 5 | such that does not saturate x,, and for every partition G = HLD(G?), Gg), ey Gg))
of Hamiltonian subgraphs it satisfies the condition (1). Hence G is a kKHLMM-graph. [

3. The inflation of a connected graph which has a cut-edge or a cut-vertex

In the next theorem we present some upper and lower bounds for the k-tuple total domination number
of the inflation of a graph F which contains a cut-edge ¢, in terms of the k-tuple total domination numbers
of the inflation of the components of F —e.

Theorem 3.1. Let F be a graph with a cut-edge e such that G and H are the components of F —e. If2 < k <
min{6(G), 6(H)}, then

ka,t(GI) + ka,t(HI) -k< ka,t(FI) < ka,t(GI) + ka,t(HI)-

Proof. Let V(G) = {x; | 1 <i <n}and let V(H) = {y; | 1 <i < m}. Without loss of generality, we may assume
thate = X1Y1. Then V(P[) = V(G[) U V(HI) U {X1y1, y1X1} and

E(F1) = E(GnVEH) U{(x1xj, x1y1) | x1x; € X3}V
{1y, yix1) | yay; € Y1 U {(x1ya, yaxn)}

Let X] = X3 U {xjy1} and let Y] = Y7 U {y1x1}. Let Sg and Sy be yx(Gy)-set and yw :(H))-set, respectively.
Since Sg U Sy is a KTDS of F; of cardinality yu ¢(Gr) + V¢ (Hi), we obtain Yy :(F1) < Vs (Gr) + Vst (Hp).

Now let Sp be a yxi¢(Fr)-set. If Sy N {x1y1, y1x1} = 0, then Sr N V(G) and Sr N V(H)) are k-tuple total
dominating sets of G; and Hj, respectively. Hence

| SENV(Gy) |+ | SenNV(H) |
| Sk |
Vit (F1).

Vst (Gr) + Vsrt (Hp)

I IA

Therefore, we assume that Sr N {x1y1, y1x1} # 0, and in the next two cases we will complete our proof.
Casei. | SN {xlyl, ylxl} |=1.
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Let Sr N {x1y1, y1ix1} = {x1y1}. Then Sp N V(H)) is a KTDS of Hy and | S N X; |> k. Since k > 2 and each
clique of every inflated graph contains at least k vertices of every kTDS and also | S N Xj |> k implies
| SEN Y; |=k-1,we get | SN Xy |= k. If degc(xl) =k, then (Sp N V(G[)) U {xix1 | x1x; € X1} is a kKTDS of Gy of
cardinality at most | Sp N V(Gy) | +k. Hence

| SENV(Gy) | +k+ | S, N V(H)) |
ka,t(PI) +k-1.

If degc(x1) # k, then for every x1x; € X1 — S the set (Sp N V(Gy)) U {x1x;} is a KTDS of G;. Hence

Vst (Gr) + Vit (Hp)

I IA

Vxkt(GI) + Vxit(Hr) [ (SN V(GD) U ixaxs} |+ | SeNV(H)) |

ka,t(PI)-

I IA

Caseii. | Sp N {xlyl,ylxl} |= 2.

Since | SFN X7 |2 k, | SPN Y] [> kand {x1y1,y1x1} € Sp, wehave | S,N Xy |=k—1or|SpNYy |= k-1
Let | SN Xy 2] SN Y1 |= k= 1. If degy(y1) = k, then there exists a vertex y1y; € Y1 — Sp such that
(SeNV(HD) U{y1yj, yjy1}is a kTDS of H;. If degy(y1) = k + 1, then there are two disjoint vertices y1y;, y1yi €
Y1 — Sr such that (Sp N V(H})) U {y1y}, y1yi} is a KTDS of Hj.

Now, in each possible case, we will present a k-tuple total dominating set of G;. If | SpN X [> k + 1,
then Sp N V(Gy) is a kKTDS of G;. Let | Sp N X; |= k and let degg(x1) = k. Then (Sp N V(G1)) U {xixq | x1x5 € X1}
is a KTDS of Gj of cardinality at most | Sp N V(G) | +k. If either | Sr N X; |= k and degg(x1) = k+ 1 or
| SN Xq |= k—1and degg(x1) = k, then for each x1x; € X; — S the set (Sp N V(Gy)) U {x1x}, xjx1} is a KTDS of
Gi. Finally, if either | SpN X; |= kand degg(x1) > k+2or| SrNX; |= k—1and degg(x1) > k+ 1, then for every
two distinct vertices x1x;, x1x; € X; — Sf, the set (Sp N V(Gy)) U {x1x}, x1x;} is a KTDS of G;. Thus in Case (ii)
we have proved that Yy +(Gr1) + Vst (Hi) — k <y e (F1).

With comparing the obtained bounds in Case (i) and Case (ii), we obtain y xi +(Gr) + Vxk+(H1) =k < Yt (F1),
and this completes our proof. [J

By closer look at the proof of Theorem 3.1 we have the next theorem.

Theorem 3.2. Let F be a graph with a cut-edge e such that G and H are the components of F —e. If2 < k <
min{6(G), 6(H)} — 1, then

ka,t(GI) + ka,t(HI) -2< )/xk,t(FI) < ka,t(GI) + ka,t(Hl)-

We now calculate the k-tuple total domination number of the inflation of the complete graphs and then
continue our discussion.

Proposition 3.3. Let n > k > 2 be integers. Then every complete graph Ky, is | 5 |-Hamiltonian-like decomposable
graph and

| nk+1 ifkandnareodd,
Ykt (K1) = { nk otherwise.

Proof. Let V(K,) ={i |1 <i < n}. Since foreach1 <i < [(n—1)/2] theedgesetE; = {(j,j+i) |1 < j < n}
is the union of some disjoint cycles and Ulsiﬂ%l | Ei is a partition of V(K,), we conclude that K,, is I_%J-
Hamiltonian-like decomposable graph. We also see that M = {(i,i + [ 5]) | 1 <i < | 7]} is a perfect matching
or a maximum matching in K, with size | 5], when 7 is even or odd, respectively. Then Theorems 2.6 and
2.9 complete our proof. [

Proposition 3.4. Let 2 < k < n < mand let F be a graph with a cut-edge e such that G = K,, and H = K,,, are the
components of F —e. Then

F) = k(n+m)+1 ifkisoddandn=m+1 (mod 2),
Vxt(Fr) = k(n +m) otherwise.



Adel P. Kazemi / Filomat 27:2 (2013), 341-351 347

Proof. Let V(G) = {x; | 1 <i<n}, V(H) ={y; | 1 <i < m}and let e = x,y,,. Since every complete graph
K;is L%J—Hamiltonian—like decomposable graph and n < m, we conclude that F is L"T_lj—Hamiltonian—hke
decomposable graph. We now continue our discussion in the next two cases.

Casei. n=m+1 (mod 2).

If k is odd, then Theorem 2.7 implies that yx ((Fr) > k(n +m) + 1. Without loss of generality, we may assume
that  is odd and m is even. Then vy, +(Gr) = kn + 1 and yx:(H) = km, by Proposition 3.3. If S and Sy are
¥xkt(Gr)-set and yyi+(Hj)-set, respectively, then Sg U Sy is a KTDS of F; of cardinality k(n + m) + 1. Hence
Yxkt(F1) = k(n + m) + 1. For even k it can be similarly verified that yx:(F;) = k(n + m).

Case ii. n = m (mod 2).

In this case, Theorem 2.1 implies that yu¢(Fr) > k(n + m). If either n = m = 0 (mod 2) or n = m = 1 (mod 2)
and k is even, then v,.+(Gr) = kn, and y«(H;) = km, by Proposition 3.3. If Sg and Sy are yxi:(G)-
set and yx:(Hi)-set, respectively, then obviously S¢ U Sy is a kKTDS of F; of cardinality k(n + m) and so
Vsikt(Fr) = k(n +m).

Now let n = m = 1 (mod 2) and let k be odd. Then yx(G)) = kn + 1 and yu(H;) = km + 1, by
Proposition 3.3. Let Sg = 51 U {a, B} be the given y,;:(Gj)-set in the second paragraph of the proof of
Theorem 2.9 such that S; = V(M) USD US@ U...US® and a, B € X, — (S1 — V(M)). With applying Theorem
2.9 for H, let also similarly Sy = §] U {a’, B’} be the given y:(Hj)-set in the second paragraph of the proof
of Theorem 2.9 such that $; = V(M) USD USSP U ..U S and a’,p’ €Y, — (S} — V(M})). Then obviously
S5 =ScUSHU Xy Ym, Ymxn} —{a, B, &, B’} is a kTDS of F; of cardinality k(n + m). Hence yxx:(F1) = k(n+m). O

Proposition 3.3 implies that if G = K,, and H = K,;,, then

k(n +m) if k is odd and m and n are both even,
Vst (GL) + Vs t(Hy) =8 k(n+m)+1 ifkisoddand n=m+1 (mod 2),
k(n+m)+2 ifk, m and n are odd.

Thus Proposition 3.4 implies the next result which states the given bounds in Theorem 3.1 are sharp.

Corollary 3.5. Let 2 < k < n < m and let F be a graph with a cut-edge e such that G = K,, and H = K,, are the
components of F —e. Then

Vi t(G1) + Vi t(Hr) =2 if k, m and n are all odd,

Vxit(Fr) = { Voot (G) + Vaer (HI) otherwise.

Now in the next theorem we give some upper and lower bounds for the k-tuple total domination number
of the inflation of a graph F, which contains a cut-vertex v, in terms of the k-tuple total domination numbers
of the inflation of the v-components of F — v.

Theorem 3.6. Let F be a graph with a cut-vertex v such that G!, G%, ..., G™ are all v-components of F — v. If
2 <k <min{6(G') | 1 < i < m} —1and G is the inflation of G', then

Y vkn(Gh) = mlk+ 1)+ k < pa(F) < Y yui(GY),
1<i<m 1<i<m
and the given upper bound is sharp.

Proof. Let V(G') = {xj. |1 <j<mfori=12,.,m Without loss of generality, we may assume that

xt=x2=..=xI"=v. Then V(F}) = Uj<ic,, V(G)) and

E(F)) = ( U E(G)) U{(x;x;',xfl'x{) | xixi € X', and x/x] € X, for 1 <i < j < m}.
1<i<m

Let S'be a )/xk,t(Gé)—set fori =1,2,..,m. Since J;<ic,y S’ is @ KTDS of F; of cardinality Y.<, yxk’t(Gé), we
have Yy (Fr) < Licicm Vxkt(Gy)-
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Now let Sbe a i (Fr)-set. Let S = SN V(G}), where 1 < i < m. Then each §' is a kTDS of G} — X!, where
X is the corresponding clique of the vertex x|. Let| S N X] |= t;, where 1 <i < m. Then Y, t; 2 k. The
condition 8(G') > k allows us that by adding at most k + 1 — ¢; vertices of X to S, we obtain a kKTDS S’ of F;
such that every S’ N V(G)) is a kTDS of G;. Then

leiSm ka,t(G;) < leiSm | S;T N V(Gll) |
< |Spl+mk+1) = Yiganm ti
< i) +mk+1) — k.
Hence
Y k(G = mlle+ 1) +k < ye(F) < Y, paa(G).
1<i<m 1<i<m

Now we show that the upper bound Y,.;.,, xk(G}) is sharp. Let F be a graph with a cut-vertex v
such that G!, G?, ..., G" are the all v-components of F — v and yx(G}) = nik, where n; = n(G’). Let
V(G = {xlj', |1<j<n}andx] = .. =x" = 0. Let Y be the corresponding red clique with the vertex v in F.
Let S be a yx+(Gh)-set, where 1 < i < m. Then every clique in G} contains exactly k vertices of S, and so
S = Uj<icn S is a KTDS of F; of cardinality Y1, Vxkt(G}) = Yi<i<p, ik such that Y2 contains mk vertices of
S.

We claim that S has minimum cardinality among all k-tuple total dominating sets of F;. Observation 2.8
implies that every red clique other than Yzf must contains at least k vertices of every kTDS of F;. Thus we
cannot reduce the number of vertices of S in cliques (except probably Y!). Since also reducing the number
of the vertices of S N YL reduce the cardinality of the k-tuple total domination number of Gi, we cannot
do it, by Observation 2.8. Therefore S is a minimal kTDS of F;. Now let S’ be an arbitrary Vxkt(F1)-set of
cardinality less than ), ;.,, nik. Then, by the previous discussion, there exists a v-component G’ of F —v and
a clique X of it other than X/ = YEn V(G}) such that | " N X |< k. But this is not possible, by Observation
2.8. Therefore S is a yx¢(F)-set, and s0 Yk (F1) = Yicicm Vxkt(G)) = Xicicm ik, O

We see that if G!, G2, ..., G" and F are the given graphs in the second part of the proof of Theorem 3.6,
thenn = n(F) = Y 1<,y ti —m + 1 and

Vet (Fr) = Liciem nik
nk + (m - 1)k
nk+1)-1.

IA I

Thus this family of graphs are examples of the graphs G of order n with v, +(Gr) = nk + ak < n(k+1) -1,
where a is an arbitrary positive integer.

4. The inflation of some graphs

In Section 3, we calculated the k-tuple total domination number of the inflation of the complete graphs.
Now we find this number in the inflation of the generalized Petersen graphs, the Harary graphs and the
complete bipartite graphs. Also we give an upper bound for this number of the inflation of the complete
multipartite graph.

In [12], Watkins introduced the notion of generalized Petersen graph (GPG for short) as follows: for
any integer n > 3 let Z, be additive group on {1,2,...,n} and m € Z, — {0}. The generalized Petersen graph
P(n,m) is defined on the set {a;, b; | i € Z,} of 2n vertices with edges a,a;11, a;b;, bibjy, for all i. If m = 7,
then every vertex b; has degree 2 and every vertex a; has degree 3, and otherwise P(n, m) is 3-regular. Thus
Vxa4((P(n,m);) = n(Gy) = 6n, when m # 7. Since M = {a;b; | i € Z,} is a perfect matching in P(n, m), we get
S ={abi, bia; | i € Z,} as a y:((P(n, m));)-set and so y¢((P(n, m);) = 2n. In the next proposition we calculate

yx2(P(n, m)p).
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Proposition 4.1. Let n > 3 and m > 1 be integers. Then

dn+2 ifm=%isodd,
yx2,(P(n, m))r) = { 4n ({therwizse.

Proof. Let G = P(n,m). We first assume that m # 4 and d is the greatest common divisor of m and n. Then
the induced subgraph by {b; | i € Z,} of G has a partition to d disjoint cycles C; : bibiimbisom...biva—m, where
1 <i<dand a = minf{tm | tm = 0 (mod n)}. Since the induced subgraph by {a; | i € Z,} of G is the cycle
C, : manas...a,, we conclude that G is a Hamiltonian-like decomposable graph and Theorem 2.5 implies
Vx24(Gr) = 4n.

Now let m = 7. In this case, b;b; € E(G) if and only if j = i +m (mod n). Hence every vertex b; has degree
2 and every vertex a; has degree 3. Then there exist the | 7 | disjoint cycles b;aia;11bi+1Dis1+m@i+1+m@irmbivm
with eight vertices. If m is even, then these cycles form a partition of V(G). Hence G is a Hamiltonian-like
decomposable graph and Theorem 2.5 implies yx2+(Gi) = 4n. Otherwise, these cycles form a partition of
V(G) — {am, by, by, a,}. We notice that the induced subgraph of G by {a,,, by, by, a,} is the path Py : ay,by,bya,,.
Set

S = 5 U52U...US|_%JU
{Amms1, Amm—1, A b, bmbn; bubim, buty; by, ana1, a,a,-1},
where
Si = Abibism, bia;; a;ib;, a;ai41;0i414;, 8110415 b1 a1 U

{biv1biv14ms bis14mbict, Divma1 Qivmat; Aieme1 bizma1 VU
{ai+m+1ai+m} AiymAivm+1, AismDivm; DismAizm, bi+mbi}/

foreach 1 <i < [7%]. One can verify that S is a minimum DTDS of G; and 50 yx2+(G;) =4n+2. O

We now consider the Harary graphs which make an interesting family of graphs. Given m < n, place n
vertices 1, 2, ..., n around a circle, equally spaced. If m is even, form H,, , by making each vertex adjacent to
the nearest 7 vertices in each direction around the circle. If m is odd and # is even, form H,,, by making
each vertex adjacent to the nearest 25! vertices in each direction and to the diametrically opposite vertex.
In each case, H,,, is m-regular. When m and n are both odd, index the vertices by the integers modulo 7.
Construct Hy, , from H,,_1 , by adding the edges (i,i + "74), for0<i< % (see [13]).

Proposition 4.2. Let2 < k < m < n be integers. Then the Harary graph Hy, , is | 5 J-Hamiltonian-like decomposable
graph and

nk+1 ifkand n are both odd,
Vot (Hmn)r) = { nk oftherwise.

Proof. Since for each 1 < i < m the edge subset E; = {(j, j + i) | 1 < j < n} is the union of some disjoint cycles
and (J<;<,, Ei is a partition of V(H,,,,), we conclude that H,, , is a m-Hamiltonian-like decomposable graph.
Let m be odd. Then M = {(i,i + |5]) | 1 < i < 5]} is a perfect matching or a maximum matching of H,
with size | 7] if 7 is even or odd, respectively. Now Theorems 2.6 and 2.9 complete our proof. [

In the following two theorems we consider the complete bipartite graphs K ;. First let p = g.

Proposition 4.3. Forintegersp > k > 2, let G be the complete bipartite graph K,,,. Then Gisa (|5 |-1)HLPM-graph
if p is even, and is a | § |-Hamiltonian-like decomposable graph, otherwise. Hence y+(Gj) = 2pk.

Proof. We consider the partition X U Y for V(G), where X = {x; |1 <i<pland Y = {y; | 1 < i < p}. For
0<j< LgJ — 1, we choose LgJ sequences on X U Y with length 2p that are alternatively from X and Y
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with starting of vertex x; such that every three consequence numbers of them are x;, y;1j, and xi;(2j41). Let
0 <j < |5]—2.If p does not divided by 2j + 1, then j-th sequence makes the cycle

Cj 2 1Y jraXojr2lsjs2-Xp-2jYp-j

but if p = (2j + 1)t, for some positive integer ¢, then it makes 2j + 1 disjoint cycles

Cl]' CXiYiw jXirj+ 1) Yit (3j+1) -+ Xit(t=1)2j+1) Yi+ (t-1)(2j+1)+]

with length t, where 1 < i < 2j + 1. We notice that for odd p and j = |5] — 1 there exists another cycle

with length 2p which is vertex-disjoint with the other cycles. If p is even and j = | 5| — 1, the corresponding
sequence makes a perfect matching M which is disjoint of the cycles. Then Theorems 2.5 and 2.6 imply
Yxit(Gr) =2pk. O

Proposition 4.4. For integers q > p >k > 2, let G be the complete bipartite graph K, ;. Then
Vski(Gr) = 2pk + (g = p)k +1).

Proof. We consider the partition X U Y for V(G), where X = {x; |1 <i<pland Y ={y; | 1 <i < g}.
Let S be an arbitrary yy+(Gr)-set such that a red cliques of G; contain k vertices and p + g — « red cliques
of G contain k + 1 vertices of S. Since G is bipartite, then 5 cliques must be selected among the g red
cliques Y;, where 1 < i < g, and the second 5 cliques must be selected among the p red cliques X;, where
1 < i < p. We notice that this choosing is possible. Because, by Proposition 4.3, K,,,, is (L5 | — 1)HLPM-graph

or | 5 |-Hamiltonian-like decomposable graph, when p is even or odd, respectively. Thus a < 2p and so

Yxct(Gr) = min{|S| | SisakTDS of Gy}
minfak+(g+p—-a)k+1) | 0<a <2p)
= min{(g+p)k+1)—a | 0<a <2p}
(@+p)k+1)-2p

= 2pk+(@g-p)k+1).

O

Theorem 2.1 implies that if G is a graph of order n with (G) > k > 2, then n(k + 1) — n < y5+(Gy) <
n(k + 1) — 1. In the next result, we show that for each n(k+1) —n < m = n(k+ 1) — 2¢ < n(k + 1) — 1 there exist
an integer k and a graph G that its k-tuple total domination number is .

Theorem 4.5. For each integers n, k and € with the condition 2 < k < € < | 5], there exists a graph G of order n such
that vy i(Gr) = n(k + 1) — 2¢.

Proof. Let G = Ky ,—¢. Then Proposition 4.4 implies

VYxit(Gr) 20k + (n = 26)(k+ 1)

nk+1) —2¢.

O

The next theorem gives an upper bound for the k-tuple total domination number of the complete
multipartite graphs.

Proposition 4.6. Let G be the complete multipartite graph Ky, n,,..n,, of order n. If 2 <k <n’ = max{Y;ni | ] C
{1,2,.m}and };c;n; < 5}, then vy (Gp) < n(k +1) —2n’.
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Proof. We assume that V(G) = X U X@ U ... U X is the partition of the vertices of G, where X = {x?.") |

1<j<m) Letn =Y gn <4, forsome ] C{1,2,.m}. Let X = U;; X? and Y = U,y X?. Then every
vertex of X is adjacent to all vertices of Y. If H is the complete bipartite with the vertex set X U Y, then it is
a subgraph of G and 5o yxi(G1) < yxt(Hj) = n(k + 1) — 2n’, by Proposition 4.4. [J

At the end of our paper we state the following problems.
Problem 4.7. Can the upper bound n(k + 1) — 1 in Theorem 2.1 be improved?
Problem 4.8. Is the lower bound Y <;<,, Vxit(G)) — m(k + 1) + k in Theorem 3.6 sharp?

Problem 4.9. Characterize all graphs G that satisfy yxi(Gr) = nk + 1.
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