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Weighted Approximation by New Bernstein-Chlodowsky-Gadjiev
Operators
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Abstract. In the present paper, we introduce Bernstein-Chlodowsky-Gadjiev operators taking into con-
sideration the polynomials introduced by Gadjiev and Ghorbanalizadeh [2]. The interval of convergence
of the operators is a moved interval as polynomials given in [2] but grows as n — oo as in the classical
Bernstein-Chlodowsky polynomials. Also their knots are shifted and depend on x.

We firstly study weighted approximation properties of these operators and show that these operators
are more efficient in weighted approximating to function having polynomial growth since these operators
contain a factor b, tending to infinity. Secondly we calculate derivative of new Bernstein-Chlodowsky-
Gadjiev operators and give a weighted approximation theorem in Lipchitz space for the derivatives of
these operators.

1. Introduction

Due to the polynomials have significant applications in a lot of area such as mathematics and physics,
nowadays a variety of their generalizations have been studied increasingly. Recently, in [2] Gadjiev and
Ghorbanalizadeh constructed a new generalization of Bernstein-Stancu type polynomials given by

n+ B nznv‘ r+aq\(n w \(n+a "
n ey n+pi/\r n+px) \n+po
where ni%z <x < Z:gi and ay, Br, k = 1,2 are positive real numbers satisfying 0 < a, < a1 < B < Br.

They studied convergence properties of these operators, showed that the new polynomials are sequences
of linear positive operators in the space of continuous functions and the interval of convergence of these
polynomials is a moved interval and grows to [0, 1].

Following polynomials were introduced by I. Chlodowsky [1]in 1937 as a generalization of the Bernstein
polynomials. The classical Bernstein-Chlodowsky operators are
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where f is a function defined on [0, o) and bounded on every finite interval [0,b] C [0, o) and (b,),5; is a
positive increasing sequence with the properties

bn—>ooandl;—"—>0asn—>oo. (2)

In [8], weighted approximation properties of Bernstein-Chlodowsky operators were investigated and some
generalization of Bernstein-Chlodowsky operators were given in [4] and [7].

In the present paper, using above ideas, we introduce a new construction of Bernstein-Chlodowsky-
Gadjiev type operators as following:

reto= (5] Lol n 0] O - ) (555

< Z:g; by, by satisfies (2) and o, Bi, k = 1,2, 3 are positive real numbers satisfying as + 3 = 1
and 0 < ap < a3 < B < Br. If we chose

a1 = ap = az = 1 = fo = 0 with b, = 1, then we obtain the classical Bernstein polynomials,

a1 = ap = az = 1 = f2 = 0, then we obtain the classical Bernstein-Chlodowsky polynomials,

ar = az = = 0 with b, = 1, then we obtain the classical Bernstein-Stancu polynomials given in [9],
as = 0 with b, = 1, then we obtain the Bernstein-Stancu polynomials defined by (1).

Ll NS

The new Bernstein-Chlodowsky-Gadjiev operators, based on functions defined on [0, o0), which are
bounded on every [0, b,] C [0, c0) with (2), become an approximation process in approximating unbounded
functions on the unbounded infinite interval [0, o). Also as known that, since an immediate analog of the
Bohman-Korovkin theorem does not hold in the unbounded interval, some restrictions are needed. Now
we give these restrictions and notations will be used throughout the paper.

Let B;[0, o0) be the space of all functions f defined on the semi-axis [0, o) satisfying the inequality

()] < Mp(1 + %),
where My is a positive constant only depending on function f. Introduce
C2[0, 00) = B5[0, o0) N C[0, 00)

and

G;[0, ) = {f € (5[0, 00) : lim )f(X)‘ =Ky < oo}.

x—o0 1 + x2

These spaces endowed with the norm

|f )

1+x2

I1l, = @

As it follows from the Gadjiev papers [5] and [6], the Korovkin-type theorems for positive linear
operators does not hold in the space C;[0, o) but holds in the space of C;[0, o) in the norm of B;[0, o) and
has the following forms:

Theorem 1.1. If the sequence of positive linear operators L, from C3[0, 00) to B;[0, 00) satisfies conditions
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lim [|L, (;x) = x"|l, =0, v=10,1,2.
then for any function f € C;[0, c0)
tim [l - £], = 0.

Theorem 1.2. For any sequence of linear positive operators (L,)us1 satisfying the conditions of Theorem 1.1, there
exists a function f* € C;[0, 00), for which

lim ||L, f* = £,

n—oo

#0.

2. Weighted Approximation
In this section we study approximation properties of T}, 44 (f) using the Theorem 1.1.

Theorem 2.1. We have
. | T (F3%) = f ()
lim sup =0

n—oo n+a2b ]. + x2
n

ay
ef; OnSYSig)

for any function f € C;[0, o).

Proof. We use the method given in [8]. For simplification, we shall use following definition:

n+p2\" v r\(n\{ x v \V(n+a x\7
. fy = r X I 5
ana,ﬁ(f’x) ( n ) ;f(n)(r)(bn n+ﬁ2) (n+ﬁ2 bn) ©)
By the binomial expansion and (3) it is obvious that

Tn,a,ﬁ (Lx) = T;/a,ﬁ (1;%)

n+p2\" v (n\[ x a V(n+a x\"7
(=5 506 -+55) ()

_ (ntB\'(x  a  n+ar x\'_
a ( n )(bn n+ﬁ2+n+ﬁ2 bn) =1 ©)

It follows that

|Tn,a,ﬁ (1/ X) - 1| -0

lim sup T3 2

n a n+a
© ap ntay
iy OnSXS g b

From (5), we have

= (1) x w \(n+a i’H
Zﬁ(r)(ﬁ‘ n+ﬁz) (n+ﬁz ‘bn)

n+pa\' = (n=1\( x a i n+ap x "7
n ) 0( r )(E_Hﬁz) (n+ﬁz‘E)
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and
e (o _ (ntB\ o An\(x a \(nta x\T
T”ra/ﬁ(t ’x) - ( n )VZZO‘nz r bn n+ﬁ2 n+ﬁ2 bn
_ (n+p "o r(r=1)(n X m ' ”+a2_£n_r
- n — n2 \rJ\b, n+p)\n+p by

+n+ﬁznnln X m rn+oc2_£n_r
n £ m2\rf\b, n+p) \n+p by

r+2 n—r-2
x an n+a2_£
bn n+ﬁ2) (1’1+‘32 bn)
. n+ﬁ2nln—l n—1 i_ a r+1 1’1+0(2_£”_r_2
n n r by, n+p n+py by
_=D(nepo)x V(e l(x e ©
) n by, n+pa n Jn\b, n+p)’

By the definitions (3) and (5) we have

Il

—_
=
=+
=

N
~——
=

=

S|
—_
=
IIM|
o N
—_
=

~ |
N
~————
—_——
=

. B n+‘82nn r+ o n\(x  a rw_in—r
Tnap (52) = ( n );(d3x+ﬁ3n+ﬁ1b")(r)(bn n+ﬁ2) (n+ﬁz bn)
B n+ P2\ xo (n\ [ x ay \(n+ax x\"
- a3x( n );(f)(a_”Jfﬁz) ("+[32_E)

n n r n-r
N n+pa\ nps b rin\(x @ nta  x
n n+pr " < n\rJ\b, n+pa) \n+p by

(S e XU - )
< \r by n+p) \n+p2 by

n n+p -
. 1nps3 . . Ly
— a3XTn,a,[3 (1, x) + mbnﬂwﬁ (t, X) + Tn,a,ﬁ (1IX) 7+ ﬁl bn.

Taking into account (6) and (8) we get

Thap(t;x) = azx + (n il ﬁz)ﬁgx + (0&1 — a2) B3by.

n+ ﬁl n+ ﬁl
Therefore
) |Tn,a,ﬁ (t;x) — x|

L T e

iizbngxg "VI'HIZ bn

n+fp n+pp

} n+pa ay —ap
< lim |as + -1 +|——= b
el i (n+‘81)ﬁ3 ‘ (n+,81 Pabu

=0(3+ﬁ3—1=0. (10)
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Similarly

. _ (n+p rvar, V([ x a \(n+va x\7
Tn'a'ﬁ(tz,x) - (T p (a3x+ﬁ3n+—ﬁ1b") (r)(_n_n+ﬁz) (Tl+—ﬁz_a)
_ [N+ p2 "o (n) [ x an ’
- G () Y ()5 - )

r=0
n+p2\" v r+ao n\( x v YV (n+a x\7
() e () - ) (5 -5

n+ﬁ2"; r+a1b 2\ [ x a Vin+a x\"7
+( n )ro(ﬁ3”+ﬁl n) (7)(5_’”&) (”ﬂ‘gz_E) '

Tl+ﬁ2 _bn

Again using (5) we can write
Thap (tz;x) = (ag,x) Mﬁ (1Lx)+ (2xa3ﬁ3 F ) ap (t; x)
aq " . 1np3 .
+ (Zxagﬁgn s bn) T g (LX) + (n A b ) Tmﬁ( x)

2p50n 2 {1 Ba1 : . )
d e R re R R

and from (6), (8) and (9) we get

2.\ = 2 a Bz
Tn,a,ﬁ (t ,X) = ((0(33() + 2XC¥3‘B3n n ﬁl bn + (l’l n ﬁl bn) )+

ﬁZ ar
ﬁ3(n+ﬁ ) (x_n+ﬁzb”)

-1 +
x [2xas + ﬁ3a1bn+ﬂ3(n ) (ntPe X - azb + Ps by,
n+ B n n+p n+ B n+ By
Obviously
Thap (tz; x) - xz‘
lim sup
n—=00 oy < 1+ 2
n+py by<x< n+py by .
2 -1 +
= lim sup { al 2[ ﬁs( '82)( ﬁ3(n )(n '82)) 1]
nme0 a bn<x<::;2b T+x .8 n n+'81
N x 2331 b, + B n+ B2\ (2B31 b, — B3 (n=1)( azby, " B3 b,
1+x2| n+p n+p1)\n+p n n+pi) n+p

agby, ﬁs(n 1) (n+p2 1 Bzar g
_ﬁS(”Jrﬁl)(za n (”+ﬁl))]+1+x2[("+ﬁ1b”)

azby, \ ([ 2B3a1 B3 n-1
_ﬁ3(n+,81)(n+ﬁ1b"_n+‘61bn( n az—l))]}

= a3 +2a3B3+p3-1=0.

375

(11)

(12)
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If we use the operators

f) if 0<x< 2D,

71+ﬂ1
To(f;x) =4 Tnap(fix) if 552by <x < 552by (13)
fx) if Z:g;b,, <x <o

then we can write

. , T (fi %) = f ()]
lim |7, () - £, = lim~ ~ sup - R

2 s}
n+py b” <x< n+fp b”

From (7), (10) and (12) it follows that

Hm [T (#7) = [l = 0.

(14)

As an immediate application of Theorem 1.1, we have
,}I_I,IQOHT"(f)_f”z =0
for f € C,[0, 00). From (14), we have desired result. [

Theorem 2.2. We have
T (i) = f )] .

1+ 2

. 1
lim N sup
n—oo a n+a
" gy baSx< st by

for any function f € C;[0, o).
)

Proof. Since f € C;[0, c0) we can write limy e 757 =

lf@l _

1+22

K. Itis sufficient to study with the functions satisfying

the condition limy_, 0 (for example ¢ (x) = f (x) — K¢ (1 + xz)) . Thatis, there exist a sufficiently large

number xy > 0 such that |1fi’;>2| < ¢ for x > xj. Considering the operators defined in (13), we get
1 n(i-f@ y T (f;2) = f ()] L |T. (f;3) = f ()]
\/E 0$x<poo 1 + x2 h \/E OSXSE(O 1 + x2 \/E x>ng) 1 + x2

1 1 T, (1 + tz;x)
N T (F) = Fllego, oy + s 111, SWPT T
r L up L

b, X>,€ 1+x2

The first term of above summation tends to zero as n — oo by the Korovkin’s theorem. Since % < ¢ for
X > xg, the last term of above summation tends to zero as n — co. Also we can write from (11)
1 up T, (1 + 12, x) g a2 + 2a3ps Lo _an - 1 ( Bzt n)z
b, x>x 1+x2 \b, b, 1+ 1 b, \n+ B
L1 251 L] B3 (n—1) , 1 p3 )
Vb, n+p1 - B, n VB, n+pr "
which tend to zero as n — 0. Since
lim L sup |Tn (i) - f(X)) = lim ! su |Tn'a’ﬁ i) - f(x)|, (15)
1= b, 0<r<co 1+ x2 n—o \fp ey, 1+ x2

the proof is completed. [
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3. Convergence of Derivative of T}, .4 (f; x)

In this section we choose a3 = 0. Convergence of derivative of Bernstein operators was given in [3].
Let i be a positive real number. The forward differences Ajof f at the abscissas xo, x1, ..., x, are defined
recursively as

Nf() = f(x)
() = AF (o) = A7 f (x)

for r > 0. It follows that we can express the forward differences in terms a summation as

NS () = Z( 1)’”() (xss).

where x; = xo + jh.
The derivative of the T, 4 g (f; x) may be expressed in terms of kth forward differences of f as following:

Lemma 3.1. For any integer k > 0, we have
(n+k)!( 1 )k n+k+p n+ki ALF _rtm n
n! \bux n+k WAn+k+p kI

N ay ' ntk+ay  x "
busk n+k+p) \n+k+p2 by !

where A’,; is kth differences operator of f with step h = b, /n + k + 1.

(k) . _
T ke B (f;x) =

Proof. According to (3) we write

n+k n+k
Tosas () = (n +k +ﬁ2) Zf( r+ap n+k) (n + k)

n+k n+k+p T

n+k—r
« X an n+k+a2_ x
(bn+k n+k+ﬁ2) (n+k+ﬁ2 bn+k)

and differentiate k times, we have

B 7’l+k+ﬁ2 n+k n+k r+a n+k
n+ka,8(f) ( n+k ) Zf(n+k+ﬁ n+k)( )P( ),

where

P(x)—d—k x as ' ntk+a, x kT
Ak \bux n+k+p) \n+k+pr b '

If we use the Leibnitz rule for P (x) with

e ){ i (a5) (55 - i) 7520
0

dxs \bysx n+k+p2 ,r—5<0

and

& (n+k+ay  x ke (k! ( —1 )k_s (m _ L)“*S" r—s<n
R ——— = (Vl+5*r)! bn+k Vl+k+ﬁ2 bn+k 4 - .
dxks n+k+‘82 bn+k 0 ,r—s>n



A. Aral, T. Acar / Filomat 27:2 (2013), 371-380 378

then we have
k

1 v (K 1 (m+k-1)
P = (bn+k)z(_l) (s)(r—s)!(n+s—r)!

s=0
r—s n+s—r
y X an n+k+a x
bn+k Tl+k+ﬁ2 n+k+[32 bn+k ’
Since

n+k\ 1 (m+k-r)! (n+k)!f n
r—s

(r=s)!'(n+s—r)!  nl

we can write the kth derivative of 77 4kq4 (f; X)

nm+k)!( 1 n+k+p nt o kes r+s+a n
n! (b,,+k)( n+k ) ZZ(D () (”"‘k"‘ﬁ bn+k)(”)

r=0 s=0

X a "(n+k+a x \'7
X|— — - — .
bpok n+k+po) \n+k+p by

Since

k—s r+s+ o r+oq
Z( 1) () (I’l+k+ﬂ n+k) hf(?l+k+ﬁ bn+k)

where the operator Ay, is applied with step I = b,/ + k + 1, we have desired result. [

Theorem 3.2. Let the function f be a (k — 1)-times continuous differentiable on [0, oo) and its kth derivative belongs
to Lipma, 0 < a < 1 for some integer k > 1. Then we have

_ T s (i) = [0 ()
lim sup =

n—oo 1+ xa

_a
kB bk SYS g n+k+f§2 2 Dk

Proof. We know that

ALf ( . n+k) 70 ) — o)

n+k+pi (n+k+ﬁ1)
where(r + a1) b/ (n+k+ 1) < & < (r+ a1 + k) b/ (n + k + B1) . If we take
_r+ar+06k
& = 1’l+k+ﬁ1 bn+kr 0<6,<1

we can write by Lemma 3.1

k n
(n+k)!  (n+k+pa\" r+ay+ 6,k n
n+kaﬁ(f ) = k Zf(k) . - bn+k
n!(n+k+p1) n+k o n+k+p r
« x ay ' n+k+a2_ x \'7
busk n+k+pa) \n+k+pB2  buuk ’
We can easily verify that

. (n+k)!
lim ————— =
e pl(n+k+ 1)
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Thus we have

Tn(?kaﬁ (f;0) = fO )
e )
r=0

nl(n+k+p) n+k n+k+p
N an ' ntk+a  x T
by n+k+p) \n+k+p bk

+fO (x)( (n + b (”+k+52)k- 1].

nt(n+k+p)\ n+k

Since f® € Lipya we have

T s 10 = O @)
(n + k)! (n+k+/32)k{(n+k+ﬁ2)” -
r=0

n!(n+k+ﬁ1)k n+k n+k
N a ' ntk+a; x T
bpie n+k+B) \n+k+pB2 bk

NP My RS

n!(n+k+ﬁl)k n+k

r+ a1+ 6,k
1/l+k+’31

IA

()

vk — X

Applying Holder’s inequality and use the inequality
|F® @) < |F® ()] + Mx® < My (1+x%)

we have

T s () = 9 )
1 k k k n on 2
M (n +k)! k(n+ +ﬁ2) (n+ +,82) Z(r+a1+6rkbn+k—x) (n)
nl(n+k+pi) n+k n+k — n+k+p r
r n—ry a/2
X an n+k+a X
x —_— —
(b,,+k n+k+ﬁ2) (n+k+ﬁz bn+k) }

(1 4 K)! (n+k+ﬁz)k_1‘

nl(n+k+p)\ n+k

IA

+My (1 +x7)

It is obvious that

70 (Fix) - fO x)| < M (n+k)! (n+k+,82) [Tnaﬁ<(f—x) x)]%

Vst nl(n+k+p)\ n+k

+Mf (1 + Xa)

7

(n + k! (n+k+ﬁz)k_1

nt(n+k+p)\ n+k

where
" n r n—r
= . _ [ n+k+pa r+ag+k X _a ntk+ar  _x \'7
Tn,a,ﬁ (f/ X) - ( n+k ) f<n+k+[§1 b””‘) ( ) (bmk n+k+ﬁz) <n+k+ﬁz b,,+k) :
r=0




A. Aral, T. Acar / Filomat 27:2 (2013), 371-380 380

By calculating 77,45 ((t - x)? ;x), we get

T8 (Fix) = fO () u k k .
kb | < py—th (n+ +[32) ! [xzyn+xan+m]2

1+ x4 - n!(n+k+[31)k n+k 1+ x4

(1 +k)! (n+k+ﬁ2)k_1

nt(n+k+p)\ n+k

where

_ n \(n+k+pa 2 1 \V(n+k+p2
Vn= [((n+k)(n+k+ﬁ1)_1) _n(n+k) (n+k+/31)]’

. :( bk )[( 2n )az_z(a1+k)_2( n )2(n+k+ﬁz)a2

n+k+p1)|\n+k n+k/ n+k+p
n (Tl+k+ﬁ2)
+2(a1+k+1)(n+k) n+k+p ]

o bk : n [/ 2 n
T”'_(n+k+ﬁ1) [(n+k)a2_(a1+k)(n+k+ﬁ1)] +2a2(m)

Taking supremum overall x € [J—jﬁzbwk, %—:%bwk] and passing to limit with
n — oo respectively, we obtain

| T8 s () = 1O )
lim sup =0,

(44
n—=00 g, b <x< 02 1+x
Py TN Py TN

which is desired. O
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