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Abstract. We establish the formulas of the maximal rank of a 3x3 partial banded block matrix

Mn M, X
My Y My
Z Mz Ms

where X, Y, and Z are three variant quaternion matrices subject to linear matrix equationsA; X = C;, XB; =
Cy, AY =Dn, YB, = D,, A3Z = E;, ZB; = E;. In order to demonstrate the feasibility of the result obtained,
we present a necessary and sufficient condition for the solvability to the cubic system A;X = C;, XB; =
Cy, AYY =Dn, YBy =D,, A3Z = E1, ZB3 = E;, XYZ = ] over the quaternion algebra.

1. Introduction

Throughout this paper, we denote the real number field by IR, the set of all m X n matrices over the
quaternion algebra

H = {ay + mi + ayj + ask | * = # =k* = ijk = -1, a9, a1, 2y, a3 € R}

by H™", the identity matrix with the appropriate dimension by I, the rank of matrix A by r(A), and a
reflexive inverse of matrix A over H by A* which satisfies simultaneously AA*A = A, A*YAA* = A".
Moreover, R4 and L4 stand for the two projectors Ry = I — AA*, Ly = I — A*A induced by A, where A is
any but fixed reflexive inverse of A. Clearly, R4 and L, are idempotent and one of its reflexive inverses is
itself.

In matrix theory, the solvability of matrix equations is one of the important topics. In recent years, some
authors ([2]-[9]) investigate the extremal ranks of the general solutions of systems subject to consistent
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systems and provide applications over the quaternion algebra H. In this paper, We formulate the maximal
rank of a kind of 3x3 partial banded block matrix

Mu M X
MXY,Z) =| Ma Y My |, (1.1)
Z Mz Mz

where M;[(i,j) = (1,1);(1,2);(2,1);(2,3);(3,2);(3,3)] € H"™" are known, X € H">, Y € H" and
Z € H™>™ are three independent variant matrices subject to consistent system

A1X=Cy, XB1 =Cy, AY=D1, YBy =Dy, AsZ=Eq, ZB3 =E; (1.2)

over IH. As an application of the result derived, in Section 3, we present a necessary and sufficient condition
for the solvability to the cubic system

A1X=Cy, XBy =Cy, A2Y =Dy, YBy =Dy, A3Z=Ey, ZB3=E;, XYZ =] (1.3)

over IH by the rank equalities. It demonstrates that the simple non-linear matrix equations (1.3) are solvable.

2. Maximal rank of (1.1) subject to system (1.2)
By Lemma 2.1 in [5], we can obtain the following lemma.

Lemma 2.1. Let A; € H™ A, € H?", A3 € HP*"™, By € H™*", B, € H™*%, B3 € H"*%,

Cy; € HPYs,C, € H™*", Dy € HP>™, D, € H"™*?,E; € HP?™, E, € H"™*® be known, and X € H™>*™,Y €
H™>", 7 e H"™*™ be unknown. Then the following statements are equivalent:

(1) The system (1.2) is consistent.

2)
Ra,C1 =0, CoLg, =0, A1C, = C1B.
Ru,Dy =0, DyLg, =0, AyD; = DyB,.
Ra,E1 =0, EoLp, =0, AsE = E1Bs.
3)

B
A1Cy = CiBy, r[A1, C1] = r(Av), 7[ Ci ] = r(B1).

B
A;D; = DBy, 1Ay, D1] = 1(Ay), r[ D22 ] = 1(By).
Bs
A3E2 = E1B3, T[A3, El] = I’(Ag), r E2 = l’(B3).

In that case, the general solution of (1.2) can be expressed as

X= AI’Cl + LAl CZB-{ + LAl URB1/ (24)
Y = A;Dl + LAZDZB; + LAz VRBZ, (25)
Z = A;El + LA3EzB; + LA3WR33, (26)

where U, V.and W are arbitrary matrices over IH with compatible dimensions.
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Lemma 2.2. (Lemma 2.4in [6]) Let A € H™", B € H™*,C e H*", D e H* E e H™, U € H*1,and V € H™.
Then the following rank equalities are true:

(a)
ety =r| |-, =[5 4],
(b)
r[B,ALc1=r[§ é‘]—r(cx r[RfA]ﬂ[ﬁ 2]—«3»
(c)
r[RBALc1=r[é‘ Ig]—r(B)—r(C),
[ ][ 3 2 oeen

Lemma 2.2 below plays an important role in simplifying ranks of various kinds of block matrices.
Tian in [10] has given the following Lemma over a field. The result can be generalized to H.

Lemma 2.3. Let f(X3, X2, X3) = A+ B1X1C1 + B2 X,Cy + B3 X3C3 be a matrix expression over H. Then the maximal
rank of f(X1, X2, X3) can be shown as the following:

A
C1 A B2 B3 A Bl B3
r[A B B B3]”c2 "[cl 0 o]'r[c2 0 o]'
max r[f(X1, Xz, X3)] = min Cs
X1 X2 X: 1 B B A B A B, A B
r[c 01 02],1' C, 0|, rl ¢ o}m C o‘
3 C; 0 C; 0 C, 0

Now we consider the maximal rank of M(X, Y, Z) subject to the consistent systems (1.2) and (1.3). For
convenience of representation, the following notations are adopted:

Ji = (X e H"" A1 X =Cy, XB; = ()
Jo = {Y € H"™" |A,Y = Dy, YBy = Dy} \. 2.7)
Js =1{Z e H"™*™ |A3Z = Ey, ZB3 = E;}

Theorem 2.4. The maximal rank of the matrix expression (1.1) subject to the consistent system (1.2) is given in the
following:

max T[M(X, Yr Z)] = min {Slr $2,53,54,55,56,57, SS} 7
(Xeh, Y€, Ze]3)

where
[ AiMy1 AiMy, G

sy =r| AxMy Dy AyM>3
Ey  AsMsz AzMs3

= 1(A1) — 1(A2) — r(A3) + my + my + m3,

[ Mi1Bs MppB, G
s =tr| MyBs D,  MxB
E,  MsBy, Ms3By

—1(B1) — 1(Bz) — r(B3) + ny + ny + n3,
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M M (@)
S3 =71 A2M21 D1 A2M23Bl - I”(Bl) - I”(Az) - T’(Ag,) + my + m3 + ns,
E AsM3zy A3Mz3By |

[ AiMu1 AiMpB, G
sg=r| My D, Moz | = 1(A1) — 1(B2) — 1(A3) + my + ny + ms,
E;r  AsMzBy AzMss |

[ AiM11Bs AitMi G
S5 =71 A2M21B3 D1 A2M23 - T(Al) - T(Az) — 1’(33) +mi+my+nq,

E, M3, M3
[ AiM11Bs AiMipBy, G
se=r| M>nB3 D, Mys | = (A1) — r(B2) — r(B3) + my + ny + 1,
E; MzBy,  Mss |

MuBs My 6}
sy =r| A2MnBz D1 AxMpBy | —1(B1) —r(Az) —r(B3) + mp + 11 + 113,
E, Mz,  Mz3By

My MippB, G
and Ssg=7r M21 Dz M23Bl — 1’(31) — T’(Bz) - T’(A3) + m3 + ny + ns.
E1  AsMzB, AsMs3By

Proof. Substituting (2.4), (2.5) and (2.6) into (1.1)

My Mp O I 0
MXY,Z)=| My 0 M23+0X[001]+1y[010]+oz[100]
0 Mz Mss 0 0 I
M11 M12 ATCl + LAl C2BIr
= My A;D1 + LAZDzB; Mpys
| A;El + LASEzB; M32 M33
La, 0 0
+| 0 [u[0 O Ry |+| La [V[O Rs, O]+ O |[W[Rs, 0 0].
0 0 LAs
Let
M1 Mo A'{C1 + LA1 CzB'{ .
M21 A;Dl + LAZDzB; M23 = A,
| AJE1 + La,E2B; Ms; Mz3
[ La, . 0 _ 0 .
0 = Bl/ LAZ = BZ/ 0 = BB/
0 0 La,
[0 0 Ry, |=Ci, [0 Ry, 0]=Cpand[Rs 0 0]=Gs.
Then

max rIM(X, Y, Z)] = maxr [A\+ Ig’\llla + BAZV@ + §3W53]
(XeJ1, Ye]a, Z€]3) uv,w
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A
~ Ci A B, B A B B
"' A By B, By |, r| = |, 7| — r{ — ,
[ 1B B C, [ CC 0 0 ] [ G 0 0 ]
= min Cs ,
-~ = = A B A B, A B
A B B A 1 A 2 A 3
r 6 0 o |’ rf C, 0 |,r{ C, O |, r{ C4 O
’ G o G 0 G o
where
—_ M Mo ATC1 + L, CzBI’ 0
é Bs Moy A;Dl + LAZDQB; M23 0
rl C, 0 |=r1 A;El + LA3E2B§ M3 M3ss Ly,
G 0 0 0 Rg, 0
0 Rs, 0 0
M11 M12 ATCl + LA1 CZBT 0 0 0
My A;Dl + LAzDzB; M3 0 0
A+E1 + Ly E2B+ M32 M33 Im 0 0
— 3 3 3 3 —_ —_ —
=r 0 0 In3 0 Bl 0 r(Bl) T’(Bz) T’(A3)
0 I, 0 0 0 B,
0 0 0 As 0 0
M 0 0 0 —(AfCi+LaGCB})B, ~Mi2B;
My 0 0 0 ~MpB; —(A$Dy + La,D2B}) By
_, 0 0 0 I, 0 0
0 0 I, O By 0
0 I, 0 0 0 B,
| —As(A3Ei +LaE2BY) 0 0 Aj A3M33B, AsM3,B,
—1(B1) — 1(B2) — r(A3).
Note that
(ATC1+La,C2BY)B1 = &y,
(A;D1 + LAZDZB;)BZ =D,,
A3 (A3E + La,EoB}) = Ey,
SO
A By
rf C4 0 = Sg.
C, 0
Similarly,
A
— — — —_ Cl A B2 B3 A Bl B3
rf'A By B, B =81, r| =~ |=8, 1| —~ =53, 7| — =3y,
[ LB B = G| 7 [ G o o] *[&G o of ™

(6]
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-~ = A B A B,
A B B, =~ 1 207

r 6 0 0 =s5,1r Co 0 =8, 1| C; O = s7.
3 G 0 G 0

This completes the proof of Theorem 2.4. [

3. Some solvability conditions of system (1.3)

386

In order to demonstrate the power of Theorem 2.4, in this section, we apply it to the solvability conditions

to cubic matrix equations (1.3).

Theorem 3.1. Let the linear matrix equations (1.2) be consistent and the solution set of (1.2) be (2.7). Then only one

of following conclusions

A 0 G
0 D -A
E1 Aj 0

r[A] =m

r =r[Ax] +7[As]

[ JB; 0 G,
r 0 D2 —Bl
| E, B, 0
r[Bs]l=m

[ ] 0 @)

r 0 D1 —AzBl

| E1 Aj 0
r[Bi] = n3

=71[B1] +r[B:]

=r[Ax] +r[As]

[ Ai] CiDy | _

_ El A3B2 ]— T’[Bz]
r[A] =m ’
r[Az] =m3

A1JBy Cp | _
V[ 1)1E2 Az ]—F[Az]
r[A] =m ’
r[Bs] = m

[ AiJB; CiDy | _

EZ BZ ] - T’[BZ]
r[A] =m
r[Bs] =m

JBs Gy | _
| DiE, AsBy | T r[Bi]
r[Ax] = my ’
r[Bs]=m

J 0 6}

0 D, -B;

E1 AzB, 0
r[As] = m;

-

7

<

r =r[B1] +r[B;]

or

is true, the cubic matrix equations (1.3) are consistent too, and the solution set of (1.3) is equal to that of (1.2).

(3.8

(3.9)

(3.10)

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)
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Proof. Use the following rank formula

J 0 X
r(J—-XYZ)=r Y I, |-m3—n;.
Z I, O

Let My in Theorem 2.4 be replaced by |, Mps by —1,,,, Mss by L, M12, M1, Ms3 by zero matrices with dimensions,
my = n3,np = my respectively. According to Theorem 2.4, we can obtain the following equality:

Al 0 G
rl 0 Dy —-Ay |—-r[A]-r[A2]-r[As] +my,
E, As 0
JBs 0 G
T[ 0 Dy =By |=r[Bi]—r[By] —7[B3] +mny,
E, B 0
J 0 @)
r| 0 Dy —ABy [—r[Bi]-r[A2] —r[Az] +my,
Ei Az 0

A1] C1D,
- XYZ) = mi r —T[Al]—r[Bz]—T’[A3]+m1+m3,
ocen B ey U ) = min \ A3B,

A1JBs C
Il B B 7 B S s
B O A - B - (B o+,
]Bs Cz B _
D1E2 A,B, |~ Bl —rlA] = r[Bs] +my+my,
0 @)}
7’ D> =By | —r[Bi] - r[By] - r[As] + m3
E1 AsB, 0

It is obvious that

max r(J—XYZ)>0.
(X€h, Y€, Z€]3)

If one of the conditions from (3.8) to (3.15) is satisfied, then

max r(J-XYZ)=
(Xeh, Y€o, Z€]3)

Conversely, assume that

Ai] O C1
r 0 Dy -A |-r [A1] -r [Az] -r [A3] +my =0.
E, Aj 0
Note that
Ai] O Cy
r 0 Dy -A |>r [A2] +r [A3]
E1 Az 0

and

r[A] < my.
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Therefore, the condition (3.8) is satisfied.
Similarly, assume that one of conditions from (3.9) to (3.15) is satisfied, then

max r(J—-XYZ)=0.
(Xeh, Y€, Z€]3)

This corresponds to

=]

(Xe]1, Ye]a, Z€]3)

It demonstrates that the cubic matrix equations (1.3) are consistent, and the solution set of (1.3) covers that of (2.7).
On the other hand, the cubic matrix equations (1.3) contain the linear matrix equations (1.2), and the solution set of
(1.3) covers that of (2.7), Therefore, the solution set of (1.3) is equal to that of (2.7). O

4. Conclusion

In this paper, we derive the maximal rank of a kind of 3x3 partial banded block variant matrix (1.1)
subject to the consistent system (1.2). Moreover, in order to demonstrate the feasibility of the result
obtained, Theorem 2.4 is applied to derive the necessary and sufficient conditions for the solvability to the
cubic system (1.3) by the rank equalities. It means the non-linear matrix equations (1.3) are solvable.
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