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On Weighted Slant Hankel operators

Gopal Datt?, Deepak Kumar Porwal®

®Department of Mathematics, PGDAV College, University of Delhi, Delhi - 110065 (INDIA).
YDepartment of Mathematics, University of Delhi, Delhi - 110007 (INDIA).

Abstract. In this paper, we introduce and study the notion of weighted slant Hankel operator Kf;, ¢ € L*(B)

on the space L*(8), B = {Bu}ucz being a sequence of positive numbers with f = 1. In addition to some
algebraic properties, the commutant and the compactness of these operators are discussed.

1. Preliminaries and Introduction

Laurent operators [8] or multiplication operators My(f = ¢f) on L*(T) induced by ¢ € L*(T), T being
the unit circle, play a vital role in the theory of operators with their tendency of inducing various classes of
operators. In the year 1911, O. Toeplitz [15] introduced the Toeplitz operators given as T, = PM,,, where P
is an orthogonal projection of L*(T) onto H*(T) and later in 1964, Brown and Halmos [4] studied algebraic
properties of these operators. We refer [1, 2, 4, 7, 9 and 12] for the applications and extensions of study to
Hankel operators, slant Toeplitz operators, slant Hankel operators and k'"-order slant Hankel operators. In
the mean time, the notions of weighted sequence spaces H*(8) and L?(g) also gained momentum. Shield
[14] made a systematic study of the Laurent operators on L?(8). We prefer to call the Laurent operator on
L*(B) as weighted Laurent operator. Weighted Toeplitz operators, Slant weighted Toeplitz operators and
weighted Hankel operaots on L?(B) are discussed in [10], [3] and [5, 6] respectively. In this paper, we extend
the study to a new class of operators namely, weighted slant Hankel operators and describe its algebraic
properties. We now begin with the notations and preliminaries that are needed in the paper.

We consider the space L?(8) of all formal Laurent series f(z) = Y. a,z", a, € C, (whether or not the series
nez.

converges for any value of z) for which

AR =) lanB.? < oo,

nez

where § = {$,},cz is a sequence of positive numbers with fy =1, r < lfil <lforn>0andr < lf—fl <1 for
n <0, for some r > 0.

L?(B) is a Hilbert space with the norm || - ||s induced by the inner product

(£0) =Y 0B

nez
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for f(z) = Y a,z", 9(z) = Y, byz". The collection {e,(z) = z""/Bu}uez forms an orthonormal basis for L?(B).
nez nez.

The collection of all f(z) = Y, a,z" (formal power series) for which ||f ||§ = Y la,B.* < oo, denoted by
n=| n=0

H?(B) and is a subspace of L2().

The symbol L*(8) denotes the set of formal Laurent series ¢(z) = Y. a,z" such that ¢pL?(8) C L*() and
nez

there exists some ¢ > 0 satisfying [|¢f||s < cl|fl|s for each f € L*(B). For ¢ € L*(B), define the norm ||¢|| as

lgllo = inf{c > 0: [l fllg < clIfllp for each f € Lz(,B)}.

L*(B) is a Banach space with respect to || - [lo. Also, L*(B) € L?*(8). By H*(8) we mean the set of all formal
Power series ¢ such that pH?(8) C H*(B). We refer [14] as well as the references therein, for the details of
the spaces L*(B), H*(8), L*(B) and H*(B). If B, = 1 for each n € Z, and the functions under consideration
are complex-valued measurable functions defined over the unit cicle T then these spaces coincide with

the classical spaces L?(T), H*(T), L°(T) and H*(T). We reserve the symbols 5, ¢ and 5 corresponding to

¢ € L®(B) given by ¢(2) = Y. a,2", a, € C, to represent the expressions ¢(z) = ¥, @,z™", ¢*(z) = ¥, a,2" and
nez. nez. nez

P(z) = ), a_,z".

nez
Let W be an operator on L*(B) given by

We,(z) = [i,:, en(z) ifn=2mforsomeme Z
0 otherwise

and J# denote the reflection operator on L?(B) defined as Jff = Y a,Bue—, for each f(z) = Y, a,z" in L?(B).
nez nez
It is easy to see the following.

1. JPe, = e_, for each n € Z.

2. Wl =1=IJ.

3. If the sequence {B,},cz is semi-dual i.e. B, = f_, for each n, then WJF = JFW.
4. JF* = Jf and JF* = I, the identity operator on L(f).

We recall the definitions of weighted Hankel operators on H2(8) and L?(B).

Definition 1.1 ([5]). The weighted Hankel operator H", on H2(B) is defined as Hi = PBJPM? , where PP denotes the
orthogonal projection of L*() onto H*(B) and Mi is the weighted Laurent operator on L*(B) induced by ¢ € L®(B).

Definition 1.2 ([6]). A weighted Hankel operator Si on L2(B) is given by 55; = ]ﬁMs).

It is easily seen that IISiII = IIMiII and Hg) = PﬁSile(ﬁ)' Throughout the paper, we use the notions Mi and

S’i to represent the weighted Laurent and weighted Hankel operators on L?(8) induced by the symbol ¢
respectively.

2. Weighted Slant Hankel Operator

For ¢ € L®() with formal Laurent series expression ¢(z) = }. a,z", the weighted Hankel operator Hi
nez

on H2(p) is also given by

1 v ,
Hie] = e Za_n_]'ﬁ_nen, ] > 0.
‘B] n=0
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and similarly the weighted Hankel operator Sf; on L*(B) is given by

1
Siej = ﬁ_ Z A—p—jB-nen

! nez
for j e Z.
Now we introduce the following notion.

Definition 2.1. The weighted slant Hankel operator Ki induced by ¢p(z) = Y, a,z" in L*(B), is an operator on L*(B)
nezZ
defined as, for each j € Z,
1
Kiej = ﬁ_ Z a,zn,]‘ﬁ,nen.
! nez.

The matrix representation of K(ﬁp with respect to the orthonormal basis {e, : n € Z} is

) B2 B2 B2 B2 B2

3 B2 as B Agip- as B a B2 m Bs
ﬂz% Cll‘f—i 006—3 ﬂ_lz—? ﬂ_z% LZ_3§—S
B-1 B-1 B-1 B-1 B-1 B-1
Llol? a_q E ﬂ_zﬁ—o ﬂ_3ﬁﬁ—1 ﬂ_4§—2 ﬂ_5l£—3
2 2 -2 2 -2 -2
Cl_zﬁ—_z ﬂ_3ﬁ—_1 ll_4ﬁ—0 a_5ﬁ—1 ll_éﬁ—z ﬂ_7ﬁ—3
ﬂ_4§%z ﬂ_5% ﬂ_6ﬁ;03 ﬂ_7% ﬂ_gﬁﬁ;; 11_9%3

If we take ¢(z) = 1 then the corresponding weighted slant Hankel mapping is denoted by Kf . Itis
interesting to see that JFW = K?, as for each integer k, we have

ﬁL Z a_Zn_zkﬁ—nen (Z)

k nezZ

= %ek(z) = JFWex(z)

K’fEZk(Z)

and
Kiey1(2) = 0 = [ Weai1 (2).
In order to justify the boundedness of the weighted slant Hankel operator, we need the following lemma.
Lemma 2.2. Forany ¢ € L*(B), KZ = ]ﬁWMZ = K’fMi
Proof. It again follows with a straightforward computation that

PWs Y i)

nez

JPWM{ex(z)

= %]ﬁ(é A2u—kP2n %en(z))
= é Z a—2n—k,8—nen(z) = Kiek(z)

nez
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for each integer k. [

It is clear from the Lemma 2.2 that Kg) is a bounded operator on L?(8) and ||Ké|| < 1Plloo-

Lemma 2.3. Forany ¢ € L¥(B), Kfl(i =0ifand only if ¢ = 0.

Proof. 1f K/f KZ = 0 then it gives

for each m € Z. 1t yields that a_g,—,, = 0 for each m,n € Z, which provides a,, = 0 for each n so that ¢ = 0.
Converse is obvious. [

We can also conclude from Lemma 2.2 that the class of all weighted slant Hankel operators on L*(B)
forms a subspace of B(L?(8)). One can also prove the following.

Theorem 2.4. ¢ — Ki is an injective linear mapping from L™ (B) into B(L(B)).

Proof. Linearity follows using the Lemma 2.2, by which Ki = J WM?). Injectiveness can be viewed as
follows. Ki =0 for ¢(z) = Y, a,z" in L*(B) implies that Ki ey = 0 for each n € Z, which provides a, = 0 for
nez

each n. Hence the proof is completed. [

It is known [1, Theorem 3] that an operator K on L*(T) is a slant Hankel operator if and only if
M. K = KM,>, where M, stands for the Laurent operator on L?(T). We first observe that this result does
not hold, in general, in case of weighted slant Hankel operator on L?(8). For, consider the weighted slant

Hankel operator Ki on the space L?(8), where the sequence 8 = {8,}xcz is given by

5y = 1 ifn<?2
"T)2 ifn>2

and ¢(z) = z. Then one can see that
Mf _J(fel (2) =272,
whereas
KIME, = PWMEMY, = PML, = K,
and
Kfe (z) =222
2301 :

However, we find that the weighted slant Hankel operator satisfies the above relation under certain
conditions.

Theorem 2.5. Let Ki be a non-zero weighted slant Hankel operator on L*(B). Then Mf _1Ki = KiMf , if and only if
the sequence B = {Bulnez is semi-dual.
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Proof. Suppose B, = B, for each n € Z and ¢(z) = ), a,z" is in L*(B). Then we have
nez

ﬂk+2

e = Bk
1
= — Z {Z_zn_z—kﬁnen(z)
ﬁk nez
and also,

M K ex(z) Mﬁ(lk Z 020 iB-nen(2))

-1
¢ ‘B nez
1
= -0 Z a—2n—kﬁn—1en—l(z)
ﬁk nezZ
1
= — Z A_op—2-kPnen(2).
ﬁ k vz
Conversely, suppose that Kg is a non-zero weighted slant Hankel operator on L?(g) satisfying Mf 71K§) =
KéMle where ¢ is given by ¢(z) = IEZ a,z". Then for each k € Z, Mf _J(iek = KiMf ,ex and this gives
a—Zn—k—2% = a—2n—k—2% (2.5.1)
for each 1, k € Z. Now we split the proof into two parts.
case (i): Let ay,, # 0 for some integer ny. Then on substituting k = —2 and n = —ny in equation (2.5.1), we
find that
ﬁ”o—l _ ﬁno
B-to-n)  Bony
From equation (2.5.1), on putting k = 0 and n = —(np + 1), we have
ﬁ"o+1 _ ‘Bno
B-(no+1) Bno

Similarly on substituting k = 2, +4, £6, - - - in equation (2.5.1) and giving appropriate value to n each time
so that —2n — k — 2 = 2ny, we conclude that

ﬁ_n _ ﬁn+1
B P-n-1)
for each n € Z. This gives 5, = f_, for each n € Z being o = 1.

case (ii): Suppose ay, = 0 for each integer n then, Ki being a non-zero weighted slant Hankel operator, we
can find an integer my such that a,,-1 # 0. Now on substituting k = —1 and n = —m in equation (2.5.1), we

get
;Bmo—l — ‘B‘mo
ﬁ—(mo—l) ﬁ—mo

Now on substituting k = 1, +£3, 5, - - - in equation (2.5.1) and giving values to n so that —2n —k -2 = 2mg -1,
we can again conclude that
ﬁ _ ﬁn+1

p-n p-n-1)
for each n € Z, which yields that §, = B, for each n € Z.

This completes the proof. [
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It is interesting to know the following application of the condition of semi-duality.

Theorem 2.6. Let the sequence f = {Bulnez semi-dual. Then WKZ is a weighted slant Hankel operator on L*(B) if

and only if ¢ = 0. Further, JF WK([; is a weighted slant Hankel operator on L*(B) if and only if ¢ = 0.

Proof. Suppose -, = B, foreachn € Zand ¢(z) = Y, a,z"isin L¥(B). Let WKi = Kﬁ forsome Y(z) = Y, byz"
nez nez

in L*(B). Then for eachi € Z, WKiei = Kﬁei, which provides

.

,BZn

foreachi,n € Z.
As the sequence = {f,}nez is semi-dual, the above equation on n = 0 gives ax = by for each k € Z. Now

when substituting i = 0, the equation gives ay = ag4 and on i = 1, it provides a1 = au1 for each k € Z.

Since a, — 0 as n — oo, we get for each k € Z, ay, = 0 = ag41. Thus ¢ = 0.

The converse is obvious.

Further, on applying the similar techniques and arguments, we can prove that Jf WK‘S5 is a weighted slant

Hankel operator on L?(8) if and only if ¢ = 0. [

A—gn—-if-on—— = b_op—if-n

The spaces L%(T) and L®(T) have the property that whenever it contains any function f then it contains
f(z%) as well and this fact is very helpful in the study made over these spaces. However, this fact does not
hold in case of the spaces L?(8) and L(B). Before we proceed to provide an example, we characterize a
condition at which the norm of the weighted Laurent operator induced by z coincides with the inverse of
the norm of its own inverse.

-1
Theorem 2.7. ||M:|| = M2 || if and only if B, = 1 for each n € Z.
Proof. Sulfficient part of the theorem is obvious. However, the necessary part follows using the observations
made in [14] so that
-1
IME|| = sup ﬁﬁ—” >1 and M |I! = infﬁ;—” <1,
n

n

which provide

,Bn+l

n

sup Pron =1 and ing =1.

n>0 Pn n<
Hence,
Bne1 =Puforn >0 and fu41 =, forn < 0.

This fulfills our need. O

Example 2.8. Consider the spaces L (B) and L*(B), where the sequence B = {Bu}nez is given by B, = 2" for each
neZz.

Define a formal Laurent series p(z) = Y, a,z", where

n=—oo

{o ifn<0
an = 1 .
ifn>1.

n22n

1

Then ¢ is analytic in the domain |z| < 2 being the radius of convergence — =2 and is bounded as well.
lim (55)"

Also, we find that
Pust _ o and a7 = inf Bt = L
B B 2

IME|| = sup
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-1
Thus, ¢ is bounded and analytic in the domain ||M§ 7! < |z| < IIMQ || and hence on applying [14, Theorem 10’(b)],
we have ¢ € L®(B) and so ¢p € L*(B) as well.

Now consider (z) = ¢p(z%) = E a,z*". Then for ey € L*(B),
n=1

X on

(@) = 2) = Y Zea(2),

n=1

which is not in L*(B) as the series Z (2,1}12 YB3, = Z % being divergent. Hence { = ¢(z%) does not belong to L ().
1

n=

In fact, 1 does not belong to Lz(,B)

If we consider the space S(B8) = {f € L?(B) : ¢(z%) € L%(8)}. Then we see that it contains all the formal Laurent
polynomials and hence is dense in L?(8). In general, S(B) is not a closed subspace of L*(8). However, we
prove the following.

Theorem 2.9. If S(B) is a closed subspace of L*(B) then ((z*) € L™ (B) for each ¢ € L™ ().
Proof. Let ¢ € L*(B). Let f be an arbitrary element of L*(8) given by f(z) = ). a,z". Then f can be
nez

decomposed as f(z) = fo(z2) + zf1(z%), where

fo(z) = Zaz,lz” and fi(z) = Z Aop1Z" .

nez nez

Also, fo, fi € L*(B) being

2 22 202
AIE = ) a2 < ) lanul?B3, < o0

nez nez

and

AR =) laoalB2

nez
202 202

= Z la2n+11°By, + Z |a2u+11°B5

n<0 n=>0
< Z 241 B3, + Z |a2n+17B3,,.1

n<0 n>0
< = Z |a2n+1| ﬁ2n+l + Z |a2n+1| ﬁ2n+1

n<0 n>0

< 00,

Now, by using the definition of L*(8) and the fact that S(B) is closed subspace of L*(8) so that S(8) = L*(B), we
find that L?(B) contains each of the functions fy(z%), f1(z%), $(z%) fo(z%), d(z?) f1(z%) and (z%)zf1(z%). Therefore,
D2 f(2) = () (fo(z%) + zf1(z%)) € L*(B) and hence ¢(z%) € L=(B). O

This theorem helps us to conclude the following.
Corollary 2.10. If the sequence {%}nez is bounded then for each ¢ € L¥(B), ¢(z%) € L¥(B).

Proof. Proof follows on using result [3, Lemma 2.4]. [
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3. Algebraic Properties of Weighted Slant Hankel Operator

This section is devoted to study various algebraic properties for the class of weighted slant Hankel
operators on L*(B). We recall that a sequence 8 = {8,}uez is called a semi-dual sequence if B, = -, for each

n € Z. Throughout this section, we consider the spaces, unless otherwise stated, under the assumption

that the sequence f = {Bn}nez is semi-dual and {%}nez is bounded. The sequence f = {B,}nez, Where

Bn = VIn|+1, is one of such sequences. With these assumptions on the sequence = {,}, we have the
accessibility of the following facts:

1. Ifp(z) = ¥ a,z"is in L(B) then ¢(z%) = ¥ a,22" and ¢(z) = ¥, a_,z" are also in L(p).
nez nez. nez

2. ¢(z%) € L(B) for each ¢ € L2(B).

We have seen, in general, that a weighted slant Hankel operator on L?(8) may not satisfy Mf LK = KMf .
But, with the additional assumptions made on the sequence f in this section, we can prove the following.

Theorem 3.1. An operator K on L?() is a weighted slant Hankel operator if and only if Mf K= KMf 5

Proof. Necessary part follows using Theorem 2.5. We prove the converse only. For, let K be an operator
on L*(B) satisfying Mf LK = KMS ,. Let f(z) = Y, a,2" be an arbitrary element of L2(8). Put g(z) = f(z) =
nez.

Y, byz" = f(z7') and h(z) = f~(zz) = f(z72). Then h,z"'h € L() and hence K(h), K(z"'h) € L(B). But,
nez

K(hz) = K(f@?)=K() biz¥)

i€Z.
= ) baKM, ()
i€Z.
_ Zb_,va_,.K(l)
i€Z
= () bz)K() = fRK()
i€Z.

and

K f@) = KE'f@?) =) bkmi M (1)

i€Z
= Y sMiRME (1)
i€Z
- Z biZ Kz ™Y = fF)K@E ).
i€Z

Thus, if we put ¢9 = K(1) and ¢ = K(z™!) then we have ¢of, ¢1f € L2(B) so that ¢, ¢1 € L*(B). Therefore
$o(z72) = Ppo(z%) and ¢1(z72) are in L¥(B). Now consider the function ¢ defined as

B(2) = po(z7?) +21(27%).

We claim that K = Kf; For, let f € L?(B) be given by f(z) = Y. b;z', then we can write
i€Z

f@) = folz?) +z fiz?),
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where fo(z) = Y. byz7' and fi(z) = Y, byi—1z~" are in L*(8). Now consider
i€Z. i€Z

Kif = JWMf = PW(of)

FPWI(o(z™2) + 201 (22 (foz ™) + 27 fi(z72)]
FPWIdo(z ) folz ) + o1 (22 iz D)].

As fo(z) = Y. diz', where d; = b_y;, a straightforward computation shows that, if ¢o(z) = ), ¢z then
i€Z. ez
JPW(o(z ) fo(z ™)) = po(2) fo(2)- Similarly, PW(¢1(z2)f1(z™2)) = $1(2) fi(z). Consequently,
Kf = ¢o@fE +$i2)fi()
= K(l)f()(Z) + K(Z_l)fl (Z)
= K(foz?) + K& i)
= Kf.

This completes the proof. O

An immedjiate result that follows from Theorem 3.1 is the following.

Corollary 3.2. The class of all weighted slant Hankel operators on L*(B) is strongly closed subspace of B(L*(B)).

Proof. Suppose K € B(L*(8)) and {¢,,} a sequence in L*(B), are such that KZ — A asn — oo. Evidently,

KMP, = lim K M/,

n—co Pz
= Jm MK,
= MK
This gives that the bounded operator K on L?(g) is a weighted slant Hankel operator. []

It is important to note that Theorem 3.1 fails on dropping the assumption of boundedness on {%}nel~
This we can justify through the following example.

Example 3.3. Consider the sequence p = {Bnlnez, where B, = 20 foreachn € Z. Clearly, B = {Bnlnez is semi-dual

and {%}nel is not bounded. Let ¢(z) = }, a,z", where
" nez

0 otherwise .

1 .
_{FF ifn>0
a, =

Then, on proceeding along the lines of computations made in Example 2.8, we find that ¢ € L®(B), whereas L=(B)
does not contain ¢(z%). Define K on L*() as K = SZW, where Sg) is the weighted Hankel operator on L*(B). Then K
is a bounded operator on L*(B) and one can see that for f(z) = Y, c,z" € L*(B),

nezZ

Kf == Z C2n( Z a—mfnﬁ—mem)-

nez mezZ

Then for eachn € Z,

ﬁi Y a_y-zBomen if niseven
Ke‘rl = " mez
0 otherwise .
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If possible, K = Ki for some Y € L=(B). Let Y(z) = ), dyz". Then, Key = Kie% and this gives a_py_ = d_am_ok, for
nez.

each integer k and m. Thus we conclude that a_, = d_y or

de:{uk if k>0

0 otherwise .

This provides that Y(z) = Y, dyz" = Y, dpuz*" = Y, a,z*" = ¢(2), which is not in L®(B). This contradicts our
nez n>0

n>0

assumption that K = Kﬁ for some 1 € L*(B). Hence K can not be a weighted slant Hankel operator on L*(B). However
it is easy to verify that

MP_ Kej = KM e;

foreach j € Z.

The notion of Laurent matrix [8], slant Hankel matrix [1], Toeplitz matrix [8] and weighted Hankel
matrix [6] are discussed and used to characterize their respective named operators. In the same direction,
we begin with the following.

Definition 3.4. A doubly infinite matrix [aij]; jez is said to be a weighted slant Hankel matrix with respect to a
sequence B = {Bnlnez of positive real numbers if

Bi B
ij 2 ik j+2k ’

_0(1] =
B-i Bk

foreachi, j k € Z.

It is clear that the matrix representation of a weighted slant Hankel operator on L(g) is always (without

P = {Bulnez being semi-dual or {% }nez bounded) a weighted slant Hankel matrix. However, the assumptions
of B = {Bu}nez is semi-dual and {%}

way too, as seen in the following.

nez is bounded that are made in this section, help us to prove the other

Theorem 3.5. An operator K on L*(B) is a weighted slant Hankel operator on L%() if and only if its matrix with
respect to the orthonormal basis {e,(z) = 2" /Bulnez of Lz(‘B) is a weighted slant Hankel matrix with respect to the
sequence B = {Bnlnez.

Proof. We need to prove the sufficient part only. For, let K be an operator on L?(B) with its matrix [a;]; jez
with respect to the orthonormal basis {e,(z) = z"/Bn}nez satisfying

Bi B
ij — Qik j+2k ’

_0(1] - —_—
B-i B0

for each i, j k € Z. Now a straightforward computation, using , = f—,, shows that

<M§1K€j, €i> <K€j, Mf: ei>
ﬂdiﬁ-l j

ﬁi+1
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and
ﬁj+2
Bj
Bj+2

B gy

Piva Bi  B-i o

Bi B-i+v) Bj+2 Bia T
B-i

= B Qiy1 j =

(KMej er)

<K€]’+2, €i>

pi
-—a
ﬁz+1 i+1 j-
As a consequence of the above observations, KM/Z3 , = Mf _, K and which on applying Theorem 3.1 yields that
K is a weighted slant Hankel operator on L?*(8). [
Pan

ﬂn
3.5 to hold. As, the operator K discussed in Example 3.3 is not a weighted slant Hankel operator on L?(f),

although, its matrix with respect to the orthonormal basis {e,,(z) = z"/Bn}uez is [aijli jez, where

It can be seen through Example 3.3 that the condition of boundedness on {=*},,cz is essential for the Theorem

l X . . .« .
= ﬁjaﬂ.f%ﬁ,, ?f | ] is even
0 ifjis odd
satisfies the condition
Bj B
p-i PGk
for each i, j,k € Z. Thus, the matrix [a;j]; jez of K is a weighted slant Hankel matrix with respect to the
sequence f = {B,},cz without K being a weighted slant Hankel operator on L?(f).

Xi—k j+2k ’

If ¢(z) = Z a,z" is in L*(B) then for any integer m, by the symbol ¢(z"), we mean the formal Laurent
series given by o(z") = Y, a,z™. Although ¢(z") may or may not be in L°°(ﬁ) but we have the following.
nez

Lemma 3.6. If p(z") = ¢(z) for any integer m # 1 then ¢ is constant.
Proof. If $(z") = ¢(z) then ¢(z") € L*(B) and we have
Z anﬁnmenm(z) = Z anﬁnen(z)'
nez nez

This yields that 4y = 0 when k is not a multiple of m and a, = 4, = a2 = - - - = Ay for each non-zero
integer n and p > 0. Therefore, for any integer /(however large) and for any non-zero integer #,

!
L+ DlanP = Y il < ) laif < oo.
k=0

i€Z
This gives a,, = 0 for each non-zero integer n and hence ¢(z) = a9. O

We use the observations made in [3] and [6] that provide MZ(Z)W WM’;( 2 and ]ﬁMﬁ) = Mg Jf for each

¢ € L*(p) respectively to obtain the following for the weighted slant Hankel operators.

Proposition 3.7. For ¢,y € L=(f),
Brh — kPP BB i
1. M (PK y =K ¢M5(22)' In fact, M! (pK pisa weighted slant Hankel operator.
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2. MiKﬁ = KiM‘j5 if and only if Y(2)Pp(z) = Y(2)p(z2). In particular, if ¢ is invertible then MgKi = KZMS) if
and only if ¢ is constant.

Proof. It is easy to see that

MK, = ME(PWME)
= ML WM,
- P8
= UPWMOME =K MG

In fact, we find that MK =KPM =K.
Y P h(2) P2

Brh — xbafP oh i : B _ kB — (2
The proof of (2) follows as M <PK v = K l/;M o7 which is equivalent to K o = K?b(zz)t# or ¢ = ¢(z°)¢Y. In

particular, if ¢ is invertible then the latter means ¢(z) = 5(22) = ¢(z?), which on applying Lemma 3.6 gives
¢ a constant. Converse is obvious. [J

Proposition 3.8. For ¢,y € L*(f),
1. KgKi = 0 if and only if p(z*) = 0.
2. KEKE = KKE if and only if p(z2)y — Y(z2)¢ = 0.
3. SiKﬁ = KiSi if and only if () — i = 0.
Proof. On applying Lemma 2.2, we can verify that

KGK, = (PWM)(PWMY)

= pPwpEwMt
W )Y

= JPWKL
2y

= Kk

0@y
and
BB _Brb  _  kBras _ bbb
KLKG, — K, KC KK1 M&zw KlKlMJ(z%

= KK

PEW-Y()p)
which on using Lemma 2.3 complete the proof of (1) and (2). For the proof of (3), we use the facts

B P
S<PK¢’

(PME)PWMY)

= M-WMF = wMm’
A B2y

and
BB _ B
KIPS(I) = WM%,

— = 0if and only if

. . . BB _ wBaB : e BAAP
which on applying Theorem 2.4 yield that S ¢>K p =K ¢S A if and only if WM&F(ZZ)L/;—W

WY -Pp=0. O
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Now we discuss when the product of two weighted slant Hankel operators is a weighted slant Hankel
operator.

Theorem 3.9. A necessary and sufficient condition for the product of two weighted slant Hankel operators Ks) and
Ki on L(B) to be a weighted slant Hankel operator on L*(B) is that ¢(z*)i) = 0.

Proof. Let Kg and KZ be two weighted slant Hankel operators on L?(8). Then result follows on applying

BB _ Bk
Theorem 2.6, as quKw =] WK(F(ZZ)I,U' |

4. Compact Operators

This section is devoted to study the compactness of the weighted slant Hankel operators on L?(g),
whereas we continue with the assumptions that the sequence f = {f,}.ez is semi-dual and {%}nel is

bounded. We need some constructions to proceed. We recall, because of the above assumptions on the
sequence 8 = {Bu}nez that f(z%) € L?*(B) whenever f € L?*(8). Consider a linear transformation V : L%(8) —
L*(B), defined as

(VH@) = £ = ) aupanesn

nez
for each f(z) = Y, a,z" in L?(B). Then Ve, = %62,1 for each integer n. We highlight some properties of this

nez
mapping and find that this mapping plays an important role to discuss the compactness of weighted slant

Hankel operators.

Property 1. V is a bounded opertor on Lz(ﬁ) with ||V|| = sup %
nez.
Proof. For f(z) = Y, a,z" € L*(B),
nez

Y a8,

nez

2
: Z 0,262 |52 ]
- n

n 2
nez |‘8”|

< G) g = GIfIE,

nez.

VA1l

where G = sup % Hence, V is a bounded operator on Lz(ﬁ) with ||V]| < G. Also,

nez

VIl = IVeullg

ﬁﬂ

Bn

for each n € Z. This yields that [|V||=G. O

Property 2. WV=I, the identity operator on L*(B) and VW is given by

e, 1If niseven

VWe, = . .
¢ {0 if nis odd .

Proof. Proof is apparent by the definition of Vand W. O
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Property 3. Let ¢ € L*(B). Then VM‘B =M

(= 2)
Proof. For eachm € Z,
8 1
VM(Pem = 5 Z anﬁ2n+2m62n+2m
‘Bm nez
B2
= (Z anzz”)—mem = M<P( 2)Vem
nez. ﬁ m

Hence the result follows. O

Property 4. K’ ,V = Sﬁ a weighted Hankel operator on L*(B).

¢>( 2)
Proof. It follows immediately as

P = B
KV = WM v

JP WVM§5

BafP — of
]M(p S¢).

O

240

If B = {Bu}nez is a semi-dual sequence then a necessary and sufficient condition for an operator A on L2(g)

to be a weighted Hankel operator is that MA = AMf _, [6], we use this to prove the following.

Property 5. KZV is a weighted Hankel operator on L2(B).

Proof. For eachm € Z,

1
MZl (Kiv)e] = Z a—Zn—Z—Zjﬁnen
‘Bj nez

(KiV)Mfej.

Hence, Mf . (Kg)V) = (K?) V)Mf so that K’;V = Si for some ¢ € L*(5). O

Property 6. Let ¢ € L*(B). Then

1. WM/;V is a weighted Laurent operator on L*(B). In fact, if ¢ = Y, a,z" then WM‘ZV = be, where
nez

Y=Y, axz".
nez.
2. WMﬁ Mﬁ V is a weighted Laurent operator on L*(B). Further, if ¢ = Y, a,z" then wm? Mf V= M‘g, where
nez
&= Z Azn-12".
nezZ

Proof. We prove(1) only. We find that

WM, Mﬁ 1%

Mf(WMf; 1%)
(WM V)Mﬁ
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Hence, by [14, Theorem 3(a)], WM[;V is a weighted Laurent operator on L?(8). In fact, if ¢ € L¥() is given
by ¢ = ). a,z", thenforn € Z,

nez
WM ve, = w2
® n = ¢(ﬁ—n€2n)
1
= W<_ Z amﬁm+2nem+2n)
ﬁ” meZ
1
= Z a2m,82m+2n‘8miem+n
,Bn meZ. ﬁ2m+2n
1
= - Z a2m,8m+nem+n
ﬁn mezZ
1
= =) @ =Me,
ﬁ " mez

where = ), a5,2" is in L*(B).
mezZ
Similarly we can prove (2). O

Property 7. Let ¢,y € L*(B). Then

1. KZKi V2 is a weighted Laurent operator on L*(B).

2. Wsz;Mf V2 is a weighted Laurent operator on L2(B) for each i € Z.

Proof. Let ¢, € L®(B). Then, as f = {Bu}nez is semi-dual and {%}nez isbounded, we have 1 € L*(f), where
— (2 Byl — (18 By(18 By — (18\2 102 M1P — W2MP Bl y2 — WeaPy2
n(z) = $(z°)P(z). Also, K(PKIP (J WM¢)(] WMrP) (JP)=Wr M&(zzw W-M;. Hence, K(PKwV WM, V=

Moreover, if we take n(z) = ), a,z", then along the lines of the computations made in Property 6, we get
nez

WML V2e, W(WMV)(Ve,)

W( Y a2nz")(Ves)

mezZ

= ( Z a4mzm)en.

meZ

This completes the proof of (1).

To prove (2), leti be any integer. Now, if (z) = Y, a,z" then z'n(z) = Y, a,-iz". Hence, on replacing n by
nez. ne”z.
z'n, we find that

W2Mf LnV2en = (Z a4m_l-z’“)en.

meZ.

for each n € Z. Hence the result. [

In [6], it is proved that the weighted Laurent operator Mi on L%(B) is compact if and only if ¢ = 0. Using
this result and the properties of V, we prove the following.

Theorem 4.1. The weighted slant Hankel operator Ki on L2(B) is compact if and only if ¢ = 0.
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Proof. Suppose that the weighted slant Hankel operator Ki on L?(B) is compact. Using Property 6(1), we get

that ]ﬁKiV = JB(JP WMZ)V = WMZV = Mi is a compact weighted Laurent operator, where ) = Y, ay,z™.
meZ.
Hence 1) = 0 or ap, = 0 for each n € Z.

Again, ]ﬁKiMfV is compact and this time applying the Property 6(2), we conclude that a5,-1 = 0 for

each n € Z. Hence, ¢ = 0.
The converse is obvious. [

This theorem immediately provides the following for ¢, € L*(f).

Corollary 4.2. SfbKi is compact if and only if q~b(zz)¢ =0.

Proof. As JF is an invertible operator, SiKi is compact if and only if ]5S§)Kﬁ = Kg(zz is compact. The latter

W
holds if and only if p(z*)y = 0. O

Corollary 4.3. KiSi is compact if and only if &p =0.
Proof. This follows, as the compactness of be S’i is the same as that of ]ﬁbe S’i = ng. O

In the next result we discuss the compactness of the product of the weighted slant Hankel operators on

LA(p).
Theorem 4.4. Let ¢,y € L*(B). Then the following are equivalent.

1. KZKi is a compact operator on L(B).

2. $()y = 0.
B b

3. S¢K¢ is compact.
B _

4. K K, =0.

Proof. As KiKi = WZM,ﬁ], where n = 5(22)#), we get (4) from (2). Further (4) always implies (1) and also (2)
is equivalent to (3) by Corollary 4.2.

Hence we only need to prove that (1) implies (2). For this suppose KiKi is a compact operator on L*(B).
Then, WZMg V2 and WZMf]Mf V2,i=1,2,3 are compact operators.
Now, if n(z) = Y, a,z", then on applying Property 7 (1), W2M§ V2 is a compact weighted Laurent operator
given by "<
WZM’,SI Ve, = ( Z a4mz’”)en

meZ.

for each n € Z and hence ay,, = 0 for each n € Z. o
. . . . 2 2 .
Again, using Property 7(2) and applying the same arguments as earlier for each W"M, M’ V*,i=1,2,3,

we get Ayy—1 = Aam—p = dam-3 = 0 for each n € Z. Thus n = 0 equivalently 5(22)110 =0. O
Some immediate results that follow from this theorem are the following.
Corollary 4.5. For any i € L*®(B), K‘fKZ is compact if and only if i = 0.

Proof. It is a particular case of the theorem when ¢ = 1. [
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Corollary 4.6. Forany ¢,y € L*(f), KiKﬁ - KiKi is compact if and only if p(z2) — P(z*)¢p = 0.

Proof. Resultfollowsimmediately, as we have seen in Proposition 3.8(2) that KZKﬁ, —Ki Kﬁ) = K°KF

U o@y-iE)g’
We have proved that the only compact weighted slant Hankel operator on L?(8), when the sequence
Ban

/gn
compact weighted slant Hankel operators on L?(8) once we drop the restriction of boundedness on {% tnez.

B = {Bulnez is semi-dual and {Z*},cz is bounded, is the zero operator. However, there may exist a plenty of

For, consider the space Lz(ﬁ) with the sequence = {,}.ez taken as in Example 3.3, i.e. §, = 2" for each

ﬁ}nez is not bounded. Let ¢ = ¢ (constant). Then,

2y En

n € Z, which is semi-dual but {

Y kEe 2

j€Z meZ "2m
1
= ) 5w
mezZ
o 1 w1
= C2< Z ﬁ‘l‘Zﬁ) < 00
m=—0c0 m=0

so that K’ is a non-zero Hilbert Schmidt and hence a non-zero compact operator on L?(8). One can also
check by similar calculations that Kf . is also a non-zero compact operator on L%(B) for each integer i.
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