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Abstract. Although Sumudu transform is the theoritical dual of the Laplace transform, it has many
applications in sciences and engineering for its special fundamental properties. In a previous paper [3],
we studied g-analogues of the Sumudu transform and derived some fundamental properties. This paper
follows the previous paper and aims to provide some applications of the g-Sumudu transform. The authors
give g-Sumudu transforms of some g-polynomials and g-functions. Also, we evaluated the g-Sumudu
transform of basic analogue of Fox’s H-function.

1. Introduction and Preliminaries

In the classical analysis, differential equations play a major role in mathematics, physics and engineering.
There are lots of different techniques for solving differential equations. Integral transforms were widely
used and thus a lot of work has been done on the theory and applications of integral transforms. Most
popular integral transforms are due to Laplace, Fourier, Mellin and Hankel. In 1993, the Sumudu transform
was proposed originally by Watugala [17] and he applied it to the solution of ordinary differential equations
in control engineering problems. The Sumudu transform plays a curious role in the solution of ordinary
differential equations and other branches of Mathematics and Physics. Nevertheless, this new transform
rivals the Laplace transform in problem solving. Its main advantage is the fact that it may be used to solve
problems without resorting to a new frequency domain, because it preserves scale and unit properties [4].
For further detail, one may refer to the recent papers [9]-[10] on this subject.

The theory of g-analysis, the foundation 18" century, in recent past have been applied in the many
areas of mathematics and physics like ordinary fractional calculus, optimal control problems, g-transform
analysis and in finding solutions of the g-difference and g-integral equations. In 1910, Jackson [7] presented
a precise definition of so-called the g-Jackson integral and developed g-calculus in a systematic way. It is
well known that, in the literature, there are two types of the g-Laplace transform and they are studied in
detail by many authors. For example [1, 6, 14].

Recently, authors [3] have introduced and study g-analogues of the Sumudu transform and derived their
fundamental properties. The aim of this paper is to give g-Sumudu transform of certain g-functions and
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their special cases. For the convenience of the reader, we deem it proper to give here the basic definitions

and facts from the g-calculus.

Throughout this paper, we will assume that g satisfies the condition 0 < |q( < 1. The g-derivative D, f of an

arbitrary function f is given by

fx) = f(gx)
(I-gx '

where x # 0. Clearly, if f is differentiable, then

afx)
dx

(Dgf)(x) =

hm (Dyf)(x) =

For any real number «a,

[n] = — =¢"'+. o +g+1

Following usual notation are very useful in the theory of g-calculus:

(@;9), = (1—aq) (a;q)m=fl(1—aq"),
( 0)o
@ q) = @dq) (teR).

The g-analogues of the classical exponential functions are defined by

Z (q,q)n (t; q)oo A <1,

(_1)nqn(n 1) /2tn

Em=Y — 1 _——
T (g

=(59)w (teQ).

By means of the (1.1) and (1.2), g-trigonometric functions defined as

e (zt - ( —it) = p2n+l
sing t = S Z )" - ,
n=0 (q’q)2n+1

- E, (-it) - Ey (it) zt) — E, (it) i e f2n+1
q n=0 @D
e, (1t) + e, (—it i 2n
cosy t = % _ Z (—1)" t ,
n=0 (q/ 5])2,1
E (D) +E (-it) & o
Cos t= 72 1% 7 _ (-1)" qn(Zn—l) _
q 2 Zo‘ (@ Do

1.1)

1.2)

(1.3)

(1.4)

(1.5)

(1.6)
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Furthermore, g-hypergeometric functions are defined by

a, ap, - a, .
r¢5|: bl bZ bs 1=

a dp -+ (ﬂl, az,...,0;, q)n [ " (n)]Sfr ,
ry’s ; 7 = _— —1 2 ,
¥ [ by by --- b, QZ] n;m(bl,bz,...,bs;q)n 1" | 2

:I_ - (111/112/-~-/ar}‘7)n Zn

=0 (bll b2r Ry bsr Q)n (q/ Q)n ’

and

ar day - Ak - (ar,a2, ..., 40K Q)n [ n (”)]k z"
Dy ;q,z| = -1 2 .
m-k 1[ by by -+ by q Z] e (b1, b2, ..., byu—1; 9)n (=1)"q (7:9),

where
(a1,a2,...,0,;9), = H (ai;9), -
i=1

For further detail and properties about g-hypergeometric functions see [5, 12, 13] and many others.
If a function f(x) has a series expansion as follow

o)

f=Y aax",

then the following function is well defined

(o)

flr=yl= ) a(x-v).

n=—oo

The improper integral is defined by [7, 11]

[ roe=xa-p Y ¢,
k=0

00 /A k k

fedr=a-9Y, Lok

kez

g-analogues of gamma and beta functions defined as follow [11]
1/(1-9)
I;(a) = f x“’lEq (g -q)x)dx (a>0),
0

00 /A(1-q)
I;(a) =K(4; a)fo e (-(1-g)x)dgx (@>0),

where

A1 (=9/4;9).,  (=4;9)
(—4'1A;9)o (=A9'59)

The function K (4; t) provides the following equation for the variable ¢ (see [11]):

K(A;t) =

(t€R).

K(x;t+1) = g'K(x; 1)

413

1.7)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)
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g-gamma function has the following property

(4 D)oo (1-g) = (4 9)xa

I, (x) = = ,
109 (4% 9 1-g)"

(1.14)

and we have

,715111— I;(@=T(a).

g-Bessel functions were introduced by Jackson [8] in 1905 and are therefore referred to as Jackson'’s g-Bessel
functions. Some g-analogues of the Bessel functions are given by

<qv+1;q)oo z v 0 0 ZZ
]](/1) (z9) = W(E) 2 1[ qv+1 ;q,—z}, |z| <2
-z /4

and

v+1. )
@ (9%59),, (g) - g7z
=) = @G \2) | gm0y

0o n(n+v (—ZZ/4>
( ) Z @ Dyin @), (119

g-Bessel functions are related by the following equality

P =(-5) W0, w<e

g-Bessel functions are g-extensions of the Bessel function of the first kind since

lim -9z =J, k=12

=1
The third kind g-analogue of the Bessel function is given by following formula
<qv+1 q)oo - [
VN < 1%

(@ 9 q

w0 (=1)" gnDI2 (qzz)”

Y

= @Dy (@0,

0
D (zq) = i1 qzz]

(1.17)

This third kind g-Bessel function is also known as the Hahn-Exton g-Bessel function. This is also g-extension
of the Bessel function of the first kind since

lim [ (1= ) zg) = ], 22).

Albayrak, Purohit and Ugar [3] defined the g-analogues of the Sumudu transform by means of the following
g-integrals

Sq{f(t);s}zﬁj;Eq(gt)f(t)dqt, se(-t,1), (1.18)
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over the set of functions
= {fOIAM, 11,72 > 0, If(B)] < ME, (It /7), t € (~1) x [0, 00)]

and

S,Lf(1);) f e, (—%t) FOdt,  se(-t,1), (1.19)

1
CENE

over the set of functions
= {f013M, 11,72 > 0, IF(O)] < Meg (11 /1), £ € (<1) % [0, )}
By virtue of (1.8) and (1.9), g-Sumudu transforms can be expressed as

Self (1);s} = (@ Do Z (@ q)k (1.20)

and

S, { () i (-5oa), (1.21)

o keZ

2. Main Theorems

In this section, we shall investigate certain theorems, which gives a number of image formulas involving
g-hypergeometric functions, under the g-Sumudu transforms.

Theorem 2.1. In correspondence to the bounded sequence Ay, let f(x) is given by

F =) A", @.1)
n=0
then for o > O the following results hold:
Sy {x“‘lf (%) ;s} =541 (1-g)*" Z AL (a+n)[(1-q)s]", (22)
n=0
= T
S, {x“‘lf (x) ;s} =51 (1-g)*" n% [(1-9)s]". (2.3)
Proof. In view of (1.20) and (2.1), we have
a 1
S {7 f ()55} = @ e Z ( ,q) £ (s4)
00 qk (S
o A
= @) kZ:; @9 Z‘g o)
o (qa+n)
=5 @ Z Aus" Z o (24)
n=0 e
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Substituting (1.1) into (2.4) and from (1.14) we deduce that

Sy {x“‘lf (x) ;s} =g 9)w Z Aps'eg (g*)
n=0

=51 (1-g)"" Z Al (a+n)[(1-¢q)s]".
n=0
The proof for Sq—transform is similar. Using the definition (1.21) of §;-transform, we have

S0 (e @i} = e ) Y ¢ Usiay @) fad

® keZ
1 alk . An
(1/5‘1)méq( /Sq)k nzza
(=1/s; ‘7)1( atmnk
(1/sq>m§ Lo, @

An easy computation shows that

ZAn 11 (=1/s;0;9,4%™)

S, {(x* 1 f ()5} = =T 1/ q)
© pn=0

Z , _qa+n /s, qlf(aw)s; q)oo
T (s 1/s q)m (0, —4s,9*", 0;q),

n=0
) _qa+n 1-(a+n)q.
1Y 4, (o /s a™sq),
@9 (=1/5,-45;9).,

n=0

Using (1.12) and (1.14) , we conclude that

a

Sq {xa_lf (JC) =5 Z A (1 q)a+n ! F (0( + l’l) m

I (a+n)

(- m[(l—q)sln-

n=|

We obtain the following useful identities for g-Sumudu transforms:

Corollary 2.1. The following identities are valid:

Sy {x“_l;s} =51 (1—g)"" T, (a), (2.5)

rq (a)

Sp{r s =51 - ) K(s;a)

(2.6)

Proof. IfwesetAg=1,A,=0(n>1)in (2.1), then we have f (x) = 1 and making use of the above theorem
one can easily obtain the desired results.
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Corollary 2.2. The g-Sumudu transform of first kind Bessel function is given by

q

5, {x { a1 (1) (2\/11_36 ‘7) } z st (@ Dassr zCDl[ q::; 0 4 _“5]'

I,2v+1) (1- q)2v

Proof. If weseta = a+v > 0and

B (_1)n gt
@), (4:9), (1 - 9*T, (20 +1)
in (2.1), we have

f@) =21 (2 Vaxiq).

The assertion of the corollary follows easily from the theorem.

Ap

417

2.7)

(2.8)

Further, on setting a = v/2 + 1 and v = v/2 in the assertion (2.7) respectively, we obtain that

S {xv/‘z]i,l) (2 Vax; q);s} = av/zsveq (—as).
Next, we put v = 0in (2.9), we get
{ () (2\/& q) } = ¢, (—as).
If we put first v = 0 in (2.7) and next choose a = 0, we get

Sq{x“ 1, s}—s“ T1-9"'T, ()

Ay

which is given in (2.5).
Theorem 2.2. g-Sumudu transforms of the function f (x) =m—r Pm-1 [ Zl ZZ
1 b2
a-1 N (2 ap az v Om—k th .

Sq {x f (x) /S} =S5 (q/ q)a—l m7k+1q)m [ bl b2 . bm—l 0 /q/ QS] 7
and

) {x"“lf (x) -s} = NG D) ana o amoay e A 40,48

q ’ K(s;a) m—k+1*'m-1 by by -+ byq - 79, o .

Proof. To prove the above results, we set

_ @;9), (@29, @i @) [, @)
- (b1;9), (b2;9),, - - - (bu-1;9), [( DA ]

in (2.1), then we have

(7:9),

_ ap az - Ak
f &) =nr %-1[ by by - by ,q,ax].
Thus we find that
Sofx* 1 f ()58} = 5" (g59)0y Z An(q%:9), 8"
n=0

ap N Ak qa

_ a1
=35 1 (q/ q)a_l m—k+1CDm [ bl bz .. bm—l 0 ;4,a8].

(2.9)

b k 4, ax] are given by
m—1

(2.10)

2.11)



Durmus Albayrak et al. / Filomat 27:2 (2013), 411-427 418

Similarly, we obtain

q(a n)
(s a+n)

=g2~1 (79) 4 Z A, [(—1)“ q(z)]_l M (;—j)n s"
n=0

Sy {x 7 f ()i} = s (1= q)‘“Z g [ -g)s]"

K(s;a)
R (1) a ay v Ak q° as
= —K(S,(X) m k+lq)m 1 [ bl b2 bm—l _ ,q,_q_a:|.

Now, if we choose a = m = k = 1 in the previous theorem, we obtain the following result:

Corollary 2.3. The g-Sumudu transforms of q-exponential functions are

S {Eq (ax);s} = 1D (q;0;9,as), (2.12)
A
S, {Eq (ax),s} = Tra las| < 'q| (2.13)
Theorem 2.3. g-Sumudu transforms of the function f (x) = ¢, [ Zi Zi Z’ ;q, ax] are given by
P
a-1 T N
Sq {x f @) /5} =5 (q, Q)a_l r+1¢p by by - bp _ 4 IZS] (2.14)
Sy {x*f (x);s) = L) Y B AP e (2.15)
q 7 K (S,‘ a) r+1¥r-1 bl bz . bp 0..0 s q, q .
——
(r—p—l) times

Proof. Setting

_ (@19, @29), - (@q), a"
(b1;9), (b2;9), -~ (bp; q)n @9,

in (2.1), we have

a3

fx)= r(Pp[ by by Z; ;q,ax}.

Therefore

Se{e T @)sh = (@) ) An (g% ), 8"
n=0

az cee ay

e a
=" (@ 9) g r+1¢p[b1 by - b, q_ ;4,as

1
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Similarly, we have
e T, (a+n)
a-1 ol - el _ el 9
Sq{x f(x),S}—s (1-9) L, "KEatn

(7% 9), ( 1 ) o

[ -g)s]"

= a-1 . . _1\? (”)]
0 Dy nZZO‘A" [( A K(s;a) \ g¢
ga-1 (q} Q)a_l a, a - a4 qa —as
= 1D, by by - bp 0..0 ;q,q—a .

K(s;a)
——
(V—p—l) times

Again, if we choose a@ = r = 1 and p = 0 in the previous theorem, we obtain the following corollary:
Corollary 2.4. The g-Sumudu transform of g-exponential functions are given by
201 (9,0; =4, as)

= 1
Z (as)" = ——, |as| < 1.
e 1—as

Now, on using the definitions (1.3)-(1.6) of g-trigonometric functions, results (2.12) and (2.13), and by the
linearity of g-Sumudu transforms (see [3]), we get the following result:

S {eq (ax); s}

Corollary 2.5. g-Sumudu transforms of q-trigonometric functions given as

S; {Sinq (ax);s} =as 1Py (q4; 0; q4,a252q3) ,
S {Cosq (ax);s} = 10 (q4; 0; q4,azszq),
S, {Sin,7 (ax);s} = qzli%'
7
S, {Cosq (ax),s} = PR
Sq {sin,7 (ax),s} 7 sz . las| <1,
las| < 1.

1
Sq {COSq (QX),'S} = m,

Here, for the sake of brevity we omit the detailed proof of the above results.

Corollary 2.6. We show that

T (0( + V) av (1 _ q)aflfv .Sa—1+v 0 a+v —as
a=178) (frve i) el = _1 q .
Sq {X 2 ( ax; Q) ’ S} - rq (21/ T 1) K (S,‘ a+ V) 20y q2v+1 74 qa+v—1 . (216)

Proof. Using the definition of Hahn-Exton g-Bessel function, we obtain

f@ = x5 (Vax;q)

a’ a=1+v
= ——X 191 [
(@:9),

(2.17)

0
q2v+1 749, an} .
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Substituting (2.17) into the definition (1.21) of §;-transform, we have

a— av a— 14 O

5, {x ! ;?,) ( Vax; ’7)}5} = qu {x D [ g+l 79, qax] ?S} ’
7M72v

which in view of result (2.11) of Theorem 2.2, we obtain

a—1+v (4.
w113 (. — N.|_. a4 § (4 Q)a—1+v 0 e —as
S (Vi) = G0n KGa+y 20 g S

Making use of the formula (1.14), we can easily arrive at (2.16).
Now, if we write @ = v/2 + 1 and v = v/2 in the assertion (2.16), we get

s, {xv/z]g)(@; q);s} _ ﬂeq (_Z_i)_

K(s;v+1)

Setting v = 0, we find

Sq{ 83)(\/ﬂ;q);s} = e, (—as).
If we write v = 0 and then choose a4 = 0 in the assertion (2.16), we find

rq ()
K(s; )

Sq {xa—l;s} — g1 (1- q)a—l
which is the previously obtained (2.6) in Corollary 2.1.

3. g-Sumudu Transforms of Certain g-Polynomials

In this section, we derive a theorem, which give rise to g-Sumudu transforms of a general class of
g-polynomials.

Theorem 3.1. Let {S j’”’}ZO be a bounded complex sequence and define a family of g-polynomials {f, N (x; q)}5 by

[n/N]
n .
fun (%:9) = ; [N],Lsmx], (n=0,1,2,..) 3.1)
where N is a positive integer. Then we have
[n/N]
Sy v o)) = (1= Ty 1) )| L 309 (550),
j=0 q
at+l.
L T+ &4 (f/ ' ’q)j
“fun () ;s = s (1 - ———
S‘i {x f,N (.X' LI) S} S ( K(S a+ 1 ]Z [ } (qa)] q](]+1)/2

Proof. By the definition (1.18) of S;-transform, we have

[n/N]

S {x® fun (x;9) 8} = Z [Nn]] Siq Sq {x“+j;s}.
q

=0
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Making use of (2.5), we get

[n/N]

n a
Sx® fun (x:9) ;s Z [ ] ]qsaﬂ (1-9) Y Lpla+j+1)
j=0
[n/N] n
=s"(1-q) " T (a+1) Z [N]] S]qs] (q“”,q)},.
j=0 q
Similarly, by the definition (1.19) of §,-transform, we have
[n/N] n
@ ca) Q) — ) a+j.
Sq {x" fun (x;9) ;) = ;‘ [N]’LSMSQ {x*7;s}.
Making use of (2.6), we get the desired result.
[n/N] .
, T (a+j+1)
o Ca) el — n a1 _ et 4 J
Sq {x fl’l,N (X, q)ls} ; |:N]':|qs]rqs (1 ‘7) K(S,’(X + ] + 1)

i T, (a+1) W , (qa”rq)
=s*(1—-¢q)" Ka+1) Z [N]] (q“)] i(i+1)/2

Now, we consider some consequences and applications of the above results. On suitably specializing
bounded sequence A, or the coefficient S;, in f(x), given by (2.1), or the g-polynomials family f,x (x;7)
yields a number of known g-polynomials as its special cases. These include, among others, the g-Stieltjes-
Wigert polynomials, the g-Laguerre polynomials, the g-Jacobi polynomials, the g-Charlier polynomials,
the g-Konhauser polynomials and several others. Therefore, by assigning suitable special values to the
arbitrary sequence our main results of Theorems 2.1 and 3.1 can be applied to derive g-Sumudu transforms
of g-hypergeometric polynomials. To illustrate that we consider the following examples.

Example 1. We show that

Sqfr 7Sk ()} = 57 (@) 2P2(07,4%50,0;9,~47s), (32)
o S (@ Das e
S {x 'Sy (X;Q)} = Ta)l 2Dy (‘7 ,4%0;q,41 ) (3.3)
If we set

(q_k; q)l’l n(2k+n+1)/2
@9,

in (2.1), then we have
F) =Sc(xq) = 101 (7509, -4"x),

where S (x; ) is the Stieltjes-Wigert polynomial [12, p. 61]. Thus, assertions of the example follows from
Theorem 2.1.

Example 2. We show that

n= 7

B.

S {X“’lL;Eﬁ) (x; q)} =@ gy ((q : q))k (77, 4% 477, 0,9, -44*s), (34)
i), (@%50),

Sq {x""lL}((ﬁ) (x; q)} g@1 (Iq< (Z)aa)l ((q/ q)k D, (q ,q q5+1,q qk+ﬁ a+l ) (3.5)
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If we set

(’7 q) (q q)n qn[(n+1)/2+(k+ﬁ)]
@) (@P*50),

in (2.1), then we have

(¢:4),
[
where L](f) (x;q) denotes the g-Laguerre polynomials [12, p.108]. Thus, from Theorem 2.1 we get the desired

result.
Example 3. We show that

£ =19 (9) = K 10y (57555, —41s),

S {x* K (s )} = 57 (4:9),; 3P2 (97", ~aq",4%;0,0;4,95), (3.6)
(79) .-
a—1 L. I | a-=1 —a+1
Sq{x Km(x,a,q)}—s mg,cbl(q ,—aq",q%0;q,—q~“* ) (3.7)

Similarly, if we set
@9, (-aq";q), ,
(7:9),

in (2.1), we have

fx)=Ky,(xa9)),

where K, (x;a; q) are g-Charlier polynomials [12, p.110]. Hence, making use of Theorem 2.1, we obtain the
assertions of example.

Now, we explore the similar type of applications for the results of Theorem 3.1.

Example 4. f weset N=1,p>1and

Ay =

4

L, (pn+a+1) (-1y qj(j_l)
@9, T (pj+a+1)
and replace x by x” in equation (3.1) to obtain
T, (on+a+1) & [n] (-1)/ g/
(0, <171, T (pj+a+1)

ja =

Zy (x;4,p) = (38)

j=

where Z§ (x;4, p) denotes the g-Konhouser biorthogonal polynomials due to Yadav and Singh [19, p,185,
eqn.(2.1)]. Thus for p = 1, the above polynomial in view of Theorem 3.1 (with « replace u +1 therein), yields
the following formulas:

Lu+DI(n+a+1)
@ D), (@),
X 2@ (77, 4"9%7, 0,9, - (1 - 9)q"s),

S 12 (9, 1)) = s (1 — )"

Lu+)I,(n+a+1)
K(s;u+1) (g9, (@9,
X 2@ (774" 4% q, (1 - g) g *s).

Sq (X Zy (x;9,1);8) = s (1 —g)*™"
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Example 5. Finally, on setting N = 1 and

s - T (@+1+n)(1—q)" Ty (a+p+n+1+j)(=1) g2
" @D, Ty @+p+n+ DT, (a+1+))

in equation (3.1) to obtain

<qa+1,. q)

Pl(qa,ﬁ) (x;q) = ) LY (q—nl qa+ﬁ+n+1l,qa+1;q’ xq) ,

where P,(qa'ﬁ) (x;q) denotes the g-Jacobi polynomials (cf. [19, p, 185, eqn. (2.1)]). Thus, by Theorem 3.1 we
find that

Lu+DI(n+a+1)
@9, @9),
X 3@, (q—n,qa+ﬁ+n+1,qy+1;qa+1’ 0; q qs) ,

S, {x“Pf,a’ﬁ ) (v q);S} =st (1 - )™

Li(u+1) Ij(n+a+1)
K@su+1) (g9), @9,
X 3@1 (q—n,qa+ﬁ+n+l/qy+1l,qoﬁ—l;q/ _qn—ys) .

s, (w2l (59) 55} =st (1 - g

Though several similar results can be obtained from our theorems, we omit further details. Now we give

some results on g-Sumudu transform of basic analogue of Fox’s H-function.

4. Some Results on g-Sumudu Transform of Basic Analogue of Fox’s H-Function

The basic analogue of the Fox’s H-function of one variable due to Saxena, Modi and Kalla [16] is given

(a1, 1), (a2, 2), -+, (aa,an)

(b1, 1), (b2, B2), -+, (bs,BB)
ﬁG(qbf—ﬁfs)ﬁG(ql_af+afs)nxs
j=

_ 1 j=1
" omi ;L: B — A , ‘ dys, @4.1)
[T G u*P#) TT G(g *)G(g'~5)sin ms
j=mi+1 j=ny+1
where
s _ 1
G =TI (1 -g*™) " = , 42)
! MK 7)) (1% 9

and 0 < my < B;0 <ny < A; ajand g are all positive integers. The contour C is a parallel to Re (ws) = 0, with
indentations, if necessary, in such a manner that all the poles of G(4"/ ) (1 < j < m;) areitsright, and those of
G(g'™*%%) (1 < j < ny) are to the left of C. The basic integral converges if Re [s log(x) — log sin 7ts] < 0, for large
values of |s| on the contour C, that is if |{arg(x) - wga)l‘l log |x|}‘ < 1, where |q| <1l logg=-w=—(w1 +iw),
w1 and w, being real.
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Further, if we set a; = f; = 1,for all i and j in definition (4.1), we obtain the following basic analogue of
Meijer’s G-function:

ai,, a2, =+, 4a
G| %4
blr bZ/ Tty bB
[1G@" ) [1Gg" - ymxe
1 j=1 j=1
T omi dgs, 4.3)
¢ H G(g'=bi+) H G(g%)G(q"~%) sin 7ts
j=m+1 j=m+1

where 0 < m; < B;0 <n; <A and Re [slog(x) — logsin nts] < 0.
Further, if we set n; = 0 and m; = B in the equation (4.3), we get the basic analogue of MacRobert’s
E-function due to Agarwal [2], namely

]E E,; [B;bj:A;aj:x]

HG(qb )

= — f dys, (4.4)

HG(q“FS)G 1=s) sin 7ts

ay,, Az, ~++, A

GBO

ap| X4

bl/ bZ/ Tty bB

where Re [slog(x) — log sin 7ts] < 0.
Saxena and Kumar [15], introduced the basic analogues of J,(x), Y,(x), K,(x), H,(x) in terms of H,(-)
function as under:

2 1-— 2
Mg = Corayg| T, (45)
1, (71, 1,1
where [, (x; q) denotes the g-analogue of Bessel function of first kind J, (x).

(%_1,1)
Yo (x;q) = (G@VHg | ¥ - q)zl_q (4.6)
&0, (351, (35D, (1L,1)

where Y, (x; ) denotes the g-analogue of the Bessel function Y, (x).

Ky(x;q) = (1-qH3 -9 ;q 4.7)
! L), (30, (D
where K, (x; q) denotes the basic analogue of the Bessel function of the third kind K, (x).
1+a
-9 o 31| 42 2 (Trl)
H,(x;q) = (T) Hy,| ¥*A-q) - (4.8)
! 3,1, (F 1), (351, 1,1
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where H, (x; g) is the basic analogue of Struve’s function H, (x).
Following Yadav, Purohit and Kalla [18], we have the following g-extensions of some elementary
functions in terms of a basic analogue of the Fox’s H-function as:

eg(—x) = G(9)Hy5 | *(1 = q);q (4.9)
(0,1),(1,1)

sing(x) = V(1 - ) "*{G(@)PHys M; q (4.10)
(3.1), 0,1), (1,1)

cos,(x) = V(1 — ) *G(q)VHys M;q (4.11)
0,1, (31, (1,1)

sinh, (x) = ﬁ(l — )V (Glg)PHY _M; (4.12)

(31, 0,1), 1,1)
coshy(x) = V(1 - )" *{G(q)Hy’s _M; q (4.13)

0,1 (31, 1,1

Theorem 4.1. Let k € I and A be any complex number, then the q-Sumudu transform of Hy(.) function is given by

(ull (11),"’ /(aA/ CYA) .g
(bl/ﬁl)/”' /(bB/ﬁB) !

5t [k | CAR), (@ an), (s, aa)
- G(q)HA+1'B |:AS ,q (blrﬁl)l' o /(bB/ﬁB)

A
_ S mi+1,m k. (all al)r Tty (aAI O(A) k 0 4.15
= _G(q)HAfB+1 |:AS q (1 + A, _k)/ (bllﬁl)l . (bB/,BB) ’ <y, ( . )

where 0 < my < B, 0 <ny < Aand A is arbitrary quantity.

Sy {xAHI’Z‘%"l [/\xk ;q

], k>0, (4.14)

Proof. To prove the result (4.14), we consider the left hand side of the Theorem 4.1 (say L) and make use of
the definition (4.1) to obtain

H G(qb;—ﬁjZ) I‘[l G(qlfaﬁafz)n(/\xk)z
]:

x! j=1
R o R —
H G(ql_hf+ﬁfz) H G(q”f‘“/z)G(qlfz)sznnz

j=m1 +1 j=n1 +1

dgz;sp.

On interchanging the order of summation and g-transform, which is valid under the conditions given with
the equation (4.1), the above expression reduces to

T1 G(g"#7) T1 G(g'=#)m(AY:
B 1 j=1 j=1 Atkz,
= 5= E - Sq{x+z,s}dqz.
[T G2 [1 G(g")G(g'2)sinmz

j=mi+1 j=n1+1
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Now, on using the formula [3, Theorem 8, (39)]

Sy {x“‘l;s} =s"1(1-¢)" "I, (@),

we get
A l—i G(qbf_ﬁfz) 1—1[ G(ql_u7+afz)7'[(/\sk)z
k= 25_7'(1 i = 1= )" Ty (A +kz + 1) dyz.
© I G711 G@")Glg'=)sinmz
j=m1+1 j=‘fl1+1

Following the definition (4.2) and g-gamma function, we have

G(q/\+kz)

(1 —q)/H—kZ Fq (/\ +kz + 1) = Tq),

therefore, we obtain

ﬁ G(qu—ﬁjZ) 1—1[ G(ql_”7+afz)G(q/HkZ)ﬂ(/\Sk)z
st j=1 j=1

=26 Je

d,z

B A q

1 G T1 G(g")G(q'=)sinnz
= +1

j=mi+1 j=n1+

which on interpretation in view of the definition (4.1), leads us to the right hand side of the result (4.14).
The second part of theorem, i.e. result (4.15) follows similarly.

Now, as an application of results (4.14) or (4.15), we can derive a number of results, by taking equations
(4.3) to (4.13) into account. For example,

(_A/ 1)
S, {erq(—x);s} =s'"Hyh | s(L—q);q . (4.16)
’ (0,1),(1,1)
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