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Quasi Griiss’ type inequalities for continuous functions of selfadjoint
operators in Hilbert spaces
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Abstract. Some inequalities of Griiss’ type for vectors and continuous functions of selfadjoint operators in
Hilbert spaces, under suitable assumptions for the involved operators, are given. Applications for power
and logarithmic functions are provided as well.

1. Introduction

In 1935, G. Griiss [21] proved the following integral inequality which gives an approximation of the
integral mean of the product in terms of the product of the integrals means as follows:
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where f, g : [a,b] — R are integrable on [a, b] and satisfy the condition

P<f(x)<D,y<gx)<T

for each x € [a,b], where ¢, D, y, T are given real constants.
Moreover, the constant 1/4 is sharp in the sense that it cannot be replaced by a smaller one.
In 1950, M. Biernacki etal. [25, Chapter X] established the following discrete version of Griiss’ inequality:
Leta = (a1,...,a4), b = (b1,...,b,) be two n—tuples of real numbers such that r <g; < Rands <b; < S

fori=1,...,n. Then one has
1y Iv 1y 1[n 1[n
_ T - < Z = R — —
nzldazbl n;a' n;‘bl_n[Z](l n[Z])(R N =),
where [x] denotes the integer part of x, x € R.

For a simple proof of (1) as well as for some other integral inequalities of Griiss type, see Chapter X of
the recent book [25].

For other related results see the papers [1]-[3], [4]-[6], [7]-[9], [10]-[17], [20], [28], [30] and the references
therein.

In [11], in order to generalize the above result in abstract structures the author has proved the following
Griiss’ type inequality in real or complex inner product spaces.
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Theorem 1.1. ([11]) Let (H, (., .)) be an inner product space over K (K = R,C) and e € H,|le|]| = 1. If ¢, y, D, T are
real or complex numbers and x, y are vectors in H such that the conditions

Re(®e —x,x —q@e) >0 and Re(Te—y,y—ye) >0

hold, then we have the inequality

1
[ vy = e e ] < gl - o] [T -].
The constant 1/4 is best possible in the sense that it can not be replaced by a smaller constant.

For other results of this type, see the recent monograph [14] and the references therein.

2. Griiss’ type operator inequalities

Let A be a selfadjoint linear operator on a complex Hilbert space (H; (., .)) . The Gelfand map establishes a
+-isometrically isomorphism ® between the set C (Sp (A)) of all continuous functions defined on the spectrum
of A, denoted Sp (A), and the C*-algebra C* (A) generated by A and the identity operator 1y on H as follows
(see for instance [22, p. 3]):

For any f,g € C(Sp(A)) and any «, 8 € C we have

) @ (af +pg) = a®(f) +pP(g);

(i) ©(fg) =@ ()@ (g)and (f) = @(f)';

(i) @ (A = [If]] := supsesyim) I )

(iv) ©(fo) =1gand P(f1) = A, where fy(t) =1and f1 (t) =¢, fort € Sp(A).

With this notation we define

f(A) =D (f) forall f e C(Sp(A))

and we call it the continuous functional calculus for a selfadjoint operator A.

If A is a selfadjoint operator and f is a real valued continuous function on Sp (A), then f () > 0 for any
t € Sp(A) implies that f(A) > 0, i.e. f(A) is a positive operator on H. Moreover, if both f and g are real
valued functions on Sp (A) then the following important property holds:

7

f(f) = g(t) forany t € Sp(A) implies that f (A) > g (A) (P)

in the operator order of B (H).

For a recent monograph devoted to various inequalities for functions of selfadjoint operators, see [22]
and the references therein. For other results, see [27], [24] and [29].

The following operator version of the Griiss inequality was obtained by Mond and Pe¢ari¢ in [26]:

Theorem 2.1. ([26]) Let Cj, j € {1,...,n} be selfadjoint operators on the Hilbert space (H,<.,.)) and such that
mj-1g < Cj < M;- 1y for j € {1,...,n}, where 1y is the identity operator on H. Further, let g;, h; : [m]-,Mj] - R,
jell,...,n} be functions such that

¢ 1n<g;(C)) <@ 1y and y -1y <hj(C)) <T 1

foreach je{l,...,n}.
Ifxje H,jel,...,n}are such that Z’]Ll ||xj||2 =1, then

n n n

Z (9:(C)mi (Cy)xj %) - Z (9;(Ci)xix;) Z (i (Cy)xjx;)| < 31 @-p)T-).

=1 j=1 =1
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If Cj, j € {1, ..., n} are selfadjoint operators such that Sp (C]-) C [m,M] for j € {1, ..., n} and for some scalars
m < M and if g,h : [m,M] — R are continuous then by the Mond-Pecari¢ inequality we deduce the
following version of the Griiss inequality for operators

n n n

Y (9(C)n(C)xim) = Y (a(C) i) Y (1(C) i) < g @ =) (T =), @)

=1 =1 j=1

where x; € H, j € {1,..,n} are such that 27:1 ”xj”2 =1and ¢ = mingepan g #), © = maxeemm g (f),
Y = minepma b (£) and IT' = maxgepman 1 (F) -

In particular, if the selfadjoint operator C satisfy the condition Sp (C) C [m, M] for some scalars m < M,
then

(9 (©1(Oxx) ~ (g (Qx2)- Qx| < 3 @) (T ),

for any x € H with [|x|| = 1.
We say that the functions f, g : [a,0] — R are synchronous (asynchronous) on the interval [a, b] if they
satisfy the following condition:

(fF®-f6)@E —g(s) = ()0 foreacht,s € [a,b].

It is obvious that, if f, g are monotonic and have the same monotonicity on the interval [, b], then they
are synchronous on [a, b] while if they have opposite monotonicity, they are asynchronous.
In the recent paper [18] the following Cebysev type inequality for operators has been obtained:

Theorem 2.2. ([18]) Let A; be selfadjoint operators with Sp (A]') C [m,M] for j € {1,...,n} and for some scalars
m <M. If f, g : [m, M] — R are continuous and synchronous (asynchronous) on [m, M], then

n n

Y (Fla)a(a)xx) = JZ_; (F (A7) xixi) - ) (o A7) i),

j=1 =t
foreachx; € H,j€{l,...,n} with ):;’:1 ||xj||2 =1.
In the recent paper [19] we obtained amongst other the following refinement of the Griiss inequality (2):

Theorem 2.3. ([19]) Let A be a selfadjoint operator on the Hilbert space (H; (., .)) and assume that Sp (A) C [m, M]
for some scalars m < M. If f and g are continuous on [m, M] and y = minyepman f () and T := maxepmn f (t) then

[Kf (A) g (A)x,x)y = (f (A) x,x) - (g (A) x, )|

1 2 2 1/2 1
<5 =l - x| (< 7 0-n@-0)
for each x € H with ||x|| = 1, where 6 := minepman g (t) and A := maxeepmm g (£) .
This inequality has the multivariate version as follows

Theorem 2.4. ([19]) Let A; be selfadjoint operators with Sp (Aj) C [m,M] for j € {1,...,n} and for some scalars
m<M.If f,g: [m,M] — R are continuous and y := minepp f (£) and I' := maXyem ) f () then

;UWW@wagg@WﬂﬁwaM%>
= % (=) ; H~‘7<A1)x1H2 - []Z:‘ (g (A])x,,x]>]

(s7r-n@-9)
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foreach xj € H,j € {1,...,n} with Z]’Ll ij”Z =1 where 6 := minepma g (£) and A := maXiepman g (£) -

In order to provide some new vector Griiss’ type inequalities for continuous functions of selfadjoint
operators in Hilbert spaces, we need the following facts concerning the spectral representation of such
functions.

Let U be a selfadjoint operator on the complex Hilbert space (H, (., .)) with the spectrum Sp (U) included
in the interval [m, M] for some real numbers m < M and let {E;}; be its spectral family. Then for any
continuous function f : [m,M] — C, it is well known that we have the following spectral representation in
terms of the Riemann-Stieltjes integral:

M
F) = f Fye,

which in terms of vectors can be written as

M
(f(u)x/]/> = f(A)d<E/\x/]/>/ (3)
m—0
for any x, y € H. The function g,,, (A) := (Eax, y) is of bounded variation on the interval [m, M] and
Gy (m—0) = 0and gy, (M) = (x,y)

for any x, y € H. It is also well known that g, (1) := (E,x, x) is monotonic nondecreasing and right continuous
on [m, M].
3. Quasi Griiss’ type inequalities

In this section we provide various bounds for the magnitude of the difference

fA)xy) = x ) f(A)x, x)

under different assumptions on the continuous function, the selfadjoint operator A : H — H and the vectors
x,y € Hwith ||x]| = 1.

Theorem 3.1. Let A be a selfadjoint operator in the Hilbert space H with the spectrum Sp (A) € [m, M] for some real
numbers m < M and let {E)}, be its spectral family. Assume that x,y € H, ||x|| = 1 are such that there exists y, I € C
with either

Re{Tx—vy,y—yx) >0
ot, equivalently

y+T
Jo-

1
7 X §§|F—y).

1. If f : [m,M] — C is a continuous function of bounded variation on [m, M], then we have the inequality

[Kf (A)x, ) = (x, ) (f (A) x,x)| (4)

M
< e e - G Gl VO

E 1 E 12 P P 1/2 M
< max (Eax, ) (L = E2) x,%)) (||y|| —|<y,X>|) \m/(f)

A€[m,

< 3 (7 - koF) "V 0 = Fe-nV 0.
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2. If f : [m,M] — C is a Lipschitzian function with the constant L > 0 on [m, M], then we have the inequality

[(f () x, vy = (6 y) (f (A x, x)| )
M
<L f—o )(EAx, Yy — (Exx, x){x, y>| da

12 M
<L (vl - ko 0 ) f (Ea, ) (1 = Ex) x, )2 dA
m—0
2 22 12 12
<L (Ilyll — [y, x)| ) (M1 — A)x, )2 (A = ml) x, %)
1 1/2 1
<5 =mL (I - Ky o) = ZI0 -l -m)L.
3. If f : [m,M] — R is a continuous monotonic nondecreasing function on [m, M], then we have the inequality
M
[Kf (@)x,y) = y) (fF A x,x)| < f . [Eax, y) = (Eax, x) (x, y)| df (A)
12 M
<(IF o) [ B0 Eax o ar )
m—0
1/2
< (Il = [ ) 40 0 1k = £ D2 ((F (A) = f ) 1) 0
1 2 A2 1
<210 - fe(Jolf - [ wF) " < 10 =210 - Fom].

Proof. First of all, we notice that by the Schwarz inequality in H we have for any u,v,e € H with |le|]| = 1 that

1/2

(11,09 = (u,0) e, o) < (Il = K, ) (ol = I¢o,e)P) (6)
Now on utilizing (6), we can state that
1/2
(Ea, y) - (Eax, ) (x, )] < (IEAxIP - KEax, )P) (Hy“2 ~ Ky, x)(z) @)

for any A € [m, M].
Since E, are projections and E, > 0 then

IEAx|® = KEax, ) = (Ejx, x) — (Epx, x)*

=(Exx,x){(lg — Ex) x,x) <

I

for any A € [m, M] and x € H with ||x]| = 1.
Also, by making use of the Griiss’ type inequality in inner product spaces obtained by the author in [11]
we have

2 2\12 1
(P = lw )~ < 510-71- ®)
Combining the relations (7)-(8) we deduce the following inequality that is of interest in itself
[KEax, y) = (Eax, x) (x, )| ©)

1/2
< (B~ E) o) (o] - g0 )

< 3 (I ko) < Fir -1
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for any A € [m, M].
It is well known that if p : [a,b] — C is a continuous function, v : [4,b] — C is of bounded variation then
the Riemann-Stieltjes integral fu ’ p (t) dv (t) exists and the following inequality holds

b
‘fpmwm

b
where \/ (v) denotes the total variation of v on [a, b] .
a

Utilising this property of the Riemann-Stieltjes integral and the inequality (9) we have

b
< max|p (¢) v ©),

M
f [(Eax, y) = (Eax, x){x, y)] df (A)’ (10)

m-0

M
< rnax]KEAx,y>-<EAx,x><x,y>)§/<f)

= AelmM

12 M
< max, (B ) (b= Eg ) (W - k)Y 0
5 a2 M M
< 3 (I -k of) "N = TV 0

for x and y as in the assumptions of the theorem.

Now, integrating by parts in the Riemann-Stieltjes integral and making use of the spectral representation
(3) we have

M
th@mw—@mm@wwﬂm a1
m— y M
=KBLW—@MJN%WUMmﬂ—jleWKBLW—@MJN%W]
M M "
= (x,) fwd@mw—f £ (Exx, y)
m—0 m—0

=y (fA)xx) = {f(A)xy)
which together with (10) produces the desired result (4).
Now, recall that if p : [2,b] — C is a Riemann integrable function and v : [4,b] — C is Lipschitzian with

the constant L > 0, i.e.,

|f(s)—f(t)| < L|s—t foranyts € [a,b],

then the Riemann-Stieltjes integral fu ’ p (t) dv (t) exists and the following inequality holds

b b
fp(t)dv(t) st lp ) at.




S.S. Dragomir / Filomat 27:2 (2013), 277-289 283

Now, on applying this property of the Riemann-Stieltjes integral we have from (9) that

M
j‘Kanw—wwanwwﬂm‘ 12)

m—0

M
< Lf )(EAx, Yy — (Exx, x){x, y>| dr
0

2 2 1/2 M 1/2
<L(Ilf ~ kv »P) j?«mnwmﬂ—anm» da.

If we use the Cauchy-Bunyakovsky-Schwarz integral inequality and the spectral representation (3) we
have successively

M
(Eax, x){(1g — Ex) x,x))"/*dA (13)

m-0

M 1/2 M
< [f (EAx,x)d/\] [f 1y —E,\)x,x)d/\]
m-0 m-0
M

M 1/2
= [(EAX/ xyAM — f Ad(E)x, x)] [((1H —E)xx) AN, - f Ad{(1g — Ex) x,x)
-0

m-0 m

1/2

=((M1y — A) x, Y2 (A — mly) x, x)'/2.

On utilizing (13), (12) and (11) we deduce the first three inequalities in (5).
The fourth inequality follows from the fact that

(M1y — A) x,x) (A — mly)x, x) < 411 M1y — A)x,x) + (A — mly) x, x)]* = 31 (M — m)>.

The last part follows from (8).

Further, from the theory of Riemann-Stieltjes integral it is also well known that if p : [a,b] — C is of
bounded variation and v : [4,b] — R is continuous and monotonic nondecreasing, then the Riemann-

Stieltjes integrals fu ’ p () do(t) and fa ’ |p (t)) do () exist and

b
‘fpmwm

Utilising this property and the inequality (9) we have successively

b
< f lp )] do(t).

M
sj‘kmnw—@wmwmwwﬂm
m—0

f KEa, 1) — (Exx, ) (x, )] df ()

m-0

M
(=1 oP)” [ By = Bz 2 ).
-0

Applying the Cauchy-Bunyakovsky-Schwarz integral inequality for the Riemann-Stieltjes integral with
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monotonic integrators and the spectral representation (3) we have
M
[ (e - g ar @)
m=0

M 1/2 M
<| [ @] | [ u-eomairw]

M

1/2 M
- [(Eﬁx, DW= [ e, x>] |<(1H ~E)x ) fWh= [ FOd-EDx
= ((f M) 1 = £ (A) %, x) 2 ((F (A) = £ (m) 1) x, )
< 2L ()~ £ (m)

1/2

1/2

and the proof is complete. [

Remark 3.2. If we drop the conditions on x, y, we can obtain from the inequalities (4)-(5) the following
results that can be easily applied for particular functions:
1. If f : [m, M] — Cis a continuous function of bounded variation on [, M], then we have the inequality

2 iz M
[CF (A)x, ) Il = G, ) ( (A)x, )] < %nxuz(llyll I = w0 )\ ()

forany x,y € Hx # 0.
2. If f: [m,M] — C is a Lipschitzian function with the constant L > 0 on [m, M], then we have the
inequality

1/2
|CF (A) %, y) P = (e, y) (F (A, x)| < L (||y||2 Il = [y, x>12) (M1 — A) x,x) (A — mlg) x, )]

1 1/2
< 5 = m) LP (o] 1P = [ 23

forany x,y € H,x # 0.
3. If £ : [m,M] — R is a continuous monotonic nondecreasing function on [m, M], then we have the
inequality

2 2\1/2
|CF Q) x, yy lIxl = ¢, y) (F (A) x, x)] < (Ilyll lxli® = <y, x)| )
X [((F (M) 15 = £ (A)) %, x) ((f (A) = f (m) 1) x, )] /2
2 2\172
< %[f(M)—f(m)]uxnz(HyH Ixll” = [y, x)| )/

forany x,y € Hx # 0.
The following lemma may be stated.
Lemma 3.3. Let u :[a,b] = Rand ¢, ® € R with ® > ¢. The following statements are equivalent:

(i) The function u — %D e, wheree(t) =t, t €[a,b],is % (D — @) —Lipschitzian;
(ii) We have the inequality:

Su(t)—u(s)

Py <® foreach t,selab] witht+#s;
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(iii) We have the inequality:
p(t—s)<u@)—u(s)<d(t—s) foreach t,selab] witht>s.

Following [23], we can introduce the concept:

Definition 3.4. The function u : [4,b] — R which satisfies one of the equivalent conditions (i) — (iii) is said
to be (¢, @) —Lipschitzian on [a, b] .

Notice that in [23], the definition was introduced on utilizing the statement (iii) and only the equivalence
(i) © (iii) was considered.

Utilising Lagrange’s mean value theorem, we can state the following result that provides practical examples
of (¢, ®) —Lipschitzian functions.

Proposition 3.5. Let u : [a,b] — R be continuous on [a, b] and differentiable on (a,b) . If

—00 <y = mfu(t) sup ' () =T <o
a,b) te(ab)

then u is (y,T') —Lipschitzian on [a, b] .
We are able now to provide the following corollary:

Corollary 3.6. With the assumptions of Theorem 3.1 and if f : [m, M] — R is a (¢, ®)-Lipschitzian function then
we have

[(f ) x, vy = (x y) (f (A x,x)| < %(CD - ¢) f . [KEax, y) — (Eax, x) (x, y)| dA

1/2 M
<5 @=o) (I -lnf) " [ qBnn-Enm R
1 2 2\1/2 1/2 1/2
< 2 @=@)(Jolf - ko) (@11 - )%, 0" (4 - i) )
1 12
< 7 M=) @) (|l - [
<Hr -yl Mm@ ).

The proof follows from the second part of Theorem 3.1 applied for the 1 (® — ¢)-Lipschitzian function

f- q>+<p -e by performing the required calculations in the first term of the inequality. The details are omitted.

4. Applications for Griiss’ type inequalities
The following result provides some Griiss’ type inequalities for two function of two selfadjoint operators.

Proposition 4.1. Let A, B be two selfadjoint operators in the Hilbert space H with the spectra Sp (A), Sp (B) € [m, M]
for some real numbers m < M and let {E,}, be the spectral family of A. Assume that g : [m, M] — R is a continuous
function and denote n := minepuan g (f) and N := maXsepm g g () -
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1. If f : [m,M] — C is a continuous function of bounded variation on [m, M], then we have the inequality

[(f (A)x, 9 (B)x) = (f (4)x,x) (g (B) x, )|

M
< max, [(Eax, 7 (B) x) = (Eax, x){x, g (B) x)| \/ (f)

A€[m,M

12 M
< max (B0 (b= E) 50) " (lo @)+ - ke ® % 9f) V()

12 M M
<3 (ls®f ~Ko@xaf) "V 0 < gov-m\ )

forany x € H, ||x|| = 1.
2. If f : [m,M] — C is a Lipschitzian function with the constant L > 0 on [m, M], then we have the inequality

[Kf (A)x, 9 (B)x) — (f (A) x,x){g (B) x,x))| (14)

M
<L f KEax, 7 (B)x) — (Eax, x){x, g (B) x)|dA
m-0
2 2 1/2 M 1/2
<t(ly@ ~Ke@x0f) [ B0 - Eox i

2 2\l/2 1/2 1/2
< L(IIg B)x" - (g (B)x, x)| ) (M1 = A)x, "% (A = m1p) x, %)

1/2
=mL(lg @ - g ®) 5

SZ(N—n)(M—m)L

<

_ N =

forany x € H, ||x|| = 1.

3. If f : [m,M] — R is a continuous monotonic nondecreasing function on [m, M], then we have the inequality

[Kf (A)x, 9 (B)x) — (f (A) x,x){g (B) x,x))| (15)

M
< f " [KEax, g (B) x) — (Eax, x) (x, g (B) x)| df (A)

IA

12 rM
(lo @l - kg ®)x.0) f | €E0) (U = B ) 2af ()
1/2

< (ly B+l = kg ®x ) 4 0 11 = f () %0 ((F (A) = £ ) 1),

1 5 2\1/2
<5 U= Fom) (lo @) - (g B2

1
< =

3 N =mIF ) f (m)]

forany x € H, ||x|| = 1.

Proof. We notice that, since n := minep,m g (f) and N := maxiepmm g (t), then n < (g (B)x,x) < N which

implies that (g (B) x — nx, Mx — g (B) x) > O for any x € H, ||x|| = 1. On applying Theorem 3.1 for y = Bx,T = N
and y = n we deduce the desired result. [J
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Remark 4.2. We observe that if the function f takes real values and is a (¢, ®)-Lipschitzian function on
[m, M], then the inequality (14) can be improved as follows

|(F (A)x, 9. (B)x) = (f (A)x, ) (g (B) x, x))| (16)
M
< % (P -9) f )(E,\x,g (B)x) — (Eax, x){x,9(B) x>| A
m—0
12 M
<3 @=0)(ls® = - ko®x0F) [ (@ (- By
m—0
1 2 2\1/2 1/2 1/2
<5 @-p)(ls® - |g@x0f) M- A% 02 (A = m1n) )
1/2
<3 M=m@-)(lg @] - g 3% )
< SN =) (M=) (@~ ¢)

forany x € H, ||x]| = 1.

5. Applications
By choosing different examples of elementary functions into the above inequalities, one can obtain
various Griiss’ type inequalities of interest.

For instance, if we choose f,g : (0,00) — (0, 00) with f(f) = t*,g(t) = 7 and p,q > 0, then for any
selfadjoint operators A, B with Sp (A), Sp (B) € [m, M] C (0, o) we get from (15) the inequalities

2 w2 M 1/2
KAPx, BTx) — (APx,x) (B'x, )| < p (B ~ |(B"x, x)F) f (Eax,2) (L — Ex) x, 2) 2 172
m—0
< (IB7xIP - (BT, 0F) " (M7 L — A7) %, )72 (AP = i 17) 3, )2
< 5 O — ) (IBE ~ (B, ) < 7 (M7 ) (P — )

for any x € H with ||x|| = 1, where {E,}, is the spectral family of A.
The same choice of functions considered in the inequality (16) produce the result

M
(APx, Bx) — (APx, x) (Blx, x)| < %Ap (1B — (B, x)P) f ((Eax, x) (1 — EA) x, )2 dA
m-0

1 1/2
< 54 (IB9IP = (B, 0)P) (P11 = A7), )2 (AP = T3 3,02
1 1/2
< 3 M= m) &y (B - KB'x, )F)
1
< 5 (M7 =) (M= m) A,
where
MP - lifp > 1
Ap:=pX
Miow? if0<p<1.

for any x € H with [|x|| = 1.
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Now, if we choose f (t) = Int,t > 0 and keep the same g then we have the inequalities
|(In Ax, Bx) — (In Ax, x) (B7x, x)| 17)
2 2\1/2 M 1/2 5-1
< (IB7xII* - KB, x)F) ((Eax, x) (1 — Ex) x, )" * A71dA
m—0

< (1B = KB, x)P) " ((n My = In A) x, )2 (In A = In L) x, )2

1/2
< (IB%x1P = KB%x, 2)I°) P1n M4
m

1 M

<5 M7 -mh)n \/;

and

KIn Ax, Blx) — (In Ax, x) (B, x)| i
1 B M

< 2 (B2) (1B - 3, o) fmo ((Exx, x) (1 = E) x, )2 dA

= % (M_m;\/l_m)(“qullz — (BT, 1F) " (M1 - A)x, 1) (A = g 2,012

2

< T (g — g, )
1 (M —m)®

SgMI=m) TN

for any x € H with [|x|| = 1.
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