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Abstract. For p > 1 the Privalov space Np consists of all holomorphic functions f on the open unit diskD
for which

sup
0≤r<1

∫ 2π

0
(log+ | f (reiθ)|p dθ

2π
< ∞.

We study the interpolation problems for the spaces Np. Our results and methods are similar to those
obtained by N. Yanagihara in [24] for the Smirnov class N+.

1. Introduction and preliminaries

LetD denote the open unit disk in the complex plane C and let T denote the boundary ofD. Let Lq(T)
(0 < q ≤ ∞) be the familiar Lebesgue spaces on the unit circle T. The Privalov space Np (1 < p < ∞) consists
of all holomorphic functions f onD for which

(1.1) sup
0≤r<1

∫ 2π

0
(log+ | f (reiθ)|)p dθ

2π
< +∞.

Here, as usual, we set x+ = max(x, 0). These spaces were introduced by I. I. Privalov in the first edition of
his book [18, p. 93], where Np is denoted as Aq (with q = p > 1). Recall that the condition (1.1) with p = 1
defines the Nevanlinna class N of holomorphic functions on D. Furthermore, the Smirnov class N+ consists
of those functions f ∈ N holomorphic onD such that

lim
r→1

∫ 2π

0
log+ | f (reiθ)| dθ

2π
=

∫ 2π

0
log+ | f ∗(eiθ)| dθ

2π
< +∞,

where f ∗ is the boundary function of f on T , i.e.,

f ∗(eiθ) = lim
r→1

f (reiθ)

is the radial limit of f which exists for almost every eiθ.
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Recall that the Hardy space Hq (0 < q ≤ ∞) consists of all functions f holomorphic onD, which satisfy

(
∥ f ∥q

)max(1,q)
:= sup

0≤r<1

∫ 2π

0

∣∣∣ f (reiθ
)∣∣∣q dθ

2π
< ∞

if 0 < q < ∞, and which are bounded when q = ∞:

∥ f ∥∞ := sup
z∈D
| f (z)| < ∞.

It is known (see [15]) that

Nq ⊂ Np (q > p),
∪
q>0

Hq ⊂
∩
p>1

Np, and
∪
p>1

Np ⊂ N+,

where the above inclusion relations are proper.
Let φ : R→ [0,∞) be a convex, nondecreasing function satisfying
(i) limt→∞ φ(t)/t = ∞ and
(ii) ∆̃2 − condition : φ(t + 2) ≤Mφ(t) + K, t ≥ t0 for some constants M,K ≥ 0 and t0 ∈ R.
Such a function φ is called strongly convex, and one can associate with it the corresponding Hardy-Orlicz

spaceHφ defined as

Hφ = { f ∈ N+ :
∫ 2π

0
φ(log | f ∗(eiθ)|) dθ

2π
< ∞}.

First, it is well known that the union of all Hardy-Orlicz spaces corresponds to the Smirnov class (see e.g.,
[19, Chapter 3, Part II]). Furthermore, notice that for φ(t) = eqt with 0 < q < ∞,Hφ becomes the usual Hardy
space Hq onD, and for φ(t) = (t+)p with 1 < p < ∞,Hφ becomes the Privalov space Np defined above.

The study on the spaces Np was continued by Stoll’s work [21] in 1977. Namely, Stoll [21] was introduced
the metric topology in the space Np(1 < p < ∞) (with the notation (log+H)α in [21]) and was proved the
following result.

Theorem A. ([21, Theorem 4.2]). The space Np with the topology given by the metric dp defined by

(1.2) dp( f , 1) =
( ∫ 2π

0

(
log(1 + | f ∗(eiθ) − 1∗(eiθ)|)

)p dθ
2π

)1/p
, f , 1 ∈ Np,

becomes an F-algebra, that is an F-space in which multiplication is continuous.

Further, the linear topological structure and functional properties of the Privalov spaces on the unit disk
D and theirs Fréchet envelopes were investigated in [4], [5], [12], [13], [14] and [21].

Remark 1. Note that (1.2) with p = 1 defines the Yanagihara’s metric ρ1 = ρ on N+ that makes N+ into an
F-algebra (see [22] and [23]).

It is well known [3, p. 26] that a function f holomorphic on D belongs to the Smirnov class N+ if and
only if it can be factorized as

(1.4) f (z) = B(z)S(z)F(z), z ∈ D,

where B is the Blaschke product with respect to zeros {zn}n ⊂ D of f , S is the singular inner functions, and
F is an outer function, i.e.,

(1.5) B(z) = zm
∞∏

n=1

|zn|
zn

zn − z
1 − z̄nz

,
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S(z) = exp
(
−

∫ 2π

0

eit + z
eit − z

dµ(t)
)
,

with positive singular measure dµ, and

F(z) = ω exp
(∫ 2π

0

eit + z
eit − z

log |F∗(eit)| dt
2π

)
,

where log |F∗| ∈ L1(T), and ω is a constant of unit modulus.

Theorem B. ([18, pp. 98-100], also see [5]). A function f ∈ N+ factorized by (1.4) belongs to Np if and only if
log+ |F∗| ∈ Lp(T).

Motivated by the investigations of N. Yanagihara given in [24] for the interpolation problems for the
Smirnov class N+, and related investigations for the Hardy spaces Hq(0 < q < ∞) (see e.g., [1], [3], [11], [16]
and [20]), here we consider the corresponding problems for the Privalov spaces Np(1 < p < ∞).

It is interesting to notice that many recent works on interpolation in different Hardy-Orlicz spaces on
the unit disk D investigated a so-called free interpolation in these spaces. A Free interpolation problem
in Hardy-Orlicz spaces was investigated by A. Hartman in [6], [7] and [8], and in particular, related
problems in Nevanlinna and Smirnov classes were studided by A. Hartman et alteri in [10]. Similar
interpolation problems for Fréchet envelope of certain Hardy-Orlicz spaces were studied by A. Hartman
and X. Massaneda in [9]. For more information on the Fréchet and Banach envelope of Hardy-Orlicz spaces
see [4], [5], [13] and [17].

This paper is organized as follows. In Section 2 we define the interpolation problem and present the
main interpolation theorem for the Hardy spaces Hq(0 < q ≤ ∞). This result (Theorem C) is basic for our
study of related interpolation problems for Privalov spaces given in the next section. In this section, we
present and prove three interpolation theorems (Theorems 1-3) for mentioned spaces. Our results and
methods are similar to those on N+ obtained by Yanagihara in [24].

2. The Interpolation problems

Let lq(T) (0 < q < ∞) denote, as usual the set of all complex sequences {an}∞n=1 such that

∞∑
n=1

|an|q < ∞,

and let l∞ be the set of all bounded sequences. Here, as always in the sequel, for a sequence Z = {zn}∞n=1 in
D, we suppose that zn , 0, zn , zm if n , m and that the Blaschke condition is satisfied:

(2.1)
∞∑

n=1

(1 − |zn|) < ∞.

For such a sequence {zn}∞n=1 and n ∈N denote by Bn(z) the infinite product defined as

(2.2) Bn(z) =
∏
m,n

|zm|
zm

zm − z
1 − z̄mz

.

A sequence {zn}∞n=1 is said to be uniformly separated if there is a number δ > 0 such that

(2.3) |Bn(zn)| =
∏
m,n

∣∣∣∣∣ zm − zn

1 − z̄mzn

∣∣∣∣∣ ≥ δ > 0 for all n ∈N.
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For a fixed 0 < q < ∞ and a sequence {zn}∞n=1 in D, we denote by lqz the set of all complex sequences {cn}∞n=1
for which

(2.4)
∞∑

n=1

(1 − |zn|2)|cn|q < ∞.

For given a sequence {zn}∞n=1, let Tq be the linear operator on the Hardy space Hq(0 < q ≤ ∞) defined by

Tq( f ) =
{
(1 − |zn|2)1/q f (zn)

}∞
n=1

for 0 < q < ∞,

and
T∞( f ) =

{
f (zn)

}∞
n=1 for q = ∞.

The following statement is in fact the main interpolation theorem for the class Hq.

Theorem C ([3, p. 149, Theorem 9.1]). Let 0 < q ≤ ∞ be any fixed. Then Tq(Hq) = lq if and only if {zn}∞n=1 is
uniformly separated.

Recall that the above result is proved by Carleson [1] for q = ∞, by Shapiro and Shields [20] for 1 ≤ q < ∞,
and by Kabaila [11] for 0 < q < 1.

3. The main results

By analogy with the sequences l̃qz defined by (2.4), and the sequence l+z given by (2.7) in [24], for a given
complex sequences Z = {zn}∞n=1 satisfying the condition (2.1) and for p > 1, we define the set lpz as the set of
all complex sequences {cn}∞n=1 such that

(3.1)
∞∑

n=1

(1 − |zn|2)
(
log+ |cn|

)p
< ∞.

We say that Z is a universal interpolation sequence for the pair (Np, lpz) if for every sequence {cn}∞n=1 in lpz there
exists a function f ∈ Np such that f (zn) = cn for all n ∈ N. We write it simply as u.i.s. for (Np, lpz). The
following two theorems are the Np-analogue of Theorems 1 and 2 in [24] obtained for the Smirnov class.

The following result of N. Mochizuki will be useful for our purposes.

Lemma 1. ([15, the inequality (2)]). For any function f ∈ Np there holds

log(1 + | f (z)|) ≤ 21/pdp( f , 0)(1 − |z|)−1/p, z ∈ D.

For the proof of the second part of the Theorem 1, we will need the following lemma.

Lemma 2. The class lpz is an F-space with respect to the metric σp given by

σp(u, v) =

 ∞∑
n=1

(1 − |zn|2) logp(1 + |cn(u) − cn(v)|)


1/p

,

for u = {cn(u)} and v = {cn(v)}.

Proof. We first observe that the triangle inequality follows from Minkowski’s inequality. The proof of
Lemma 2 is quite similar to the corresponding result for the class N+ given in [23, Theorem 1] (cf. [24,
Lemma 2]), and therefore may be omitted.
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Theorem 1. In order that a sequence Z = {zn}∞n=1 inD be a u.i.s. for (Np, lpz) it is sufficient that {zn}∞n=1 is uniformly
separated, and is necessary that

(3.2) (1 − |zn|2) logp
(

1
|Bn(zn)|

)
→ 0 as n→∞.

Proof. Sufficieny. Suppose {zn}∞n=1 is uniformly separated. For given sequence {cn}∞n=1 in lpz , put

(3.3) bn = log |cn| if |cn| ≥ 1; bn = 0 if |cn| < 1.

Then the sequence {(1− |zn|2)1/pbn} is in lp, or equivalently, a sequence {bn}∞n=1 is in l̃pz . Hence, by Theorem A,
there exists a function 1 ∈ Hp such that 1(zn) = bn for all n ∈N. Define the function f1 as

f1(z) = exp
(
1(z)

)
, z ∈ D.

Then f1 ∈ Np with

(3.4) f1(zn) = |cn| if |cn| ≥ 1; f1(zn) = 1 if |cn| < 1.

Put

(3.5) c′n =
cn

|cn|
if |cn| ≥ 1; c′n = cn if |cn| < 1.

Then {c′n} ∈ l∞, and by Theorem C, there is a bounded holomorphic function f2 with

(3.6) f2(zn) = c′n for all n ∈N.

Thus, if we define the function f by f (z) = f1(z) f2(z), z ∈ D, then f ∈ Np and from (3.3)-(3.6) we see that
f (zn) = cn for all n ∈N, as desired.

Necessity. We follow the proof of the same part of Theorem 1 in [24]. Let K be the set of functions f ∈ Np

such that f (zn) = 0 for all n ∈ N. From the inequality of Lemma 1 it is easy to deduce that K is a closed
subspace of Np. Consider the quotient space

Ñp = Np/K, f̄ = f + K ∈ Ñp for f ∈ Np.

Define the metric d̄p on Ñp in the usual manner as

d̄p( f̄ , 0̄) = inf
f∈ f̄

dp( f , 0), d̄p( f̄ , 1̄) = d̄p( f − 1, 0̄).

Then Ñp is an F-space u with respect to the metric d̄p.
For each sequence u = {cn}∞n=1 in lpz there corresponds a unique f̄ ∈ Ñp such that

(3.7) f (zn) = cn for all n ∈N and for each f ∈ f̄ .

Therefore, the mapping T(u) = f̄ , u ∈ lpz is well defined from lpz onto Ñp. Obviously, T is linear. In the same
manner as in the proof of Theorem 1 in [24, p. 433], we can prove that the operator T is closed. By the
closed graph theorem [2, p. 57], we see that T is continuous.

Let un = {ck(un)}∞k=1 be a sequence such that

ck(un) = 0 if k , n; cn(un) = 1.
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Since σp(un, 0) → 0 as n → ∞, it follows that d̄p(h̄n, 0̄) → 0, where h̄n = T(un). Hence, there exist hn ∈ h̄n
such that dp(hn, 0) → 0 as n → ∞. Since hn ∈ Np and by (3.7) hn(zk) = 0 for all k , n, from the canonical
factorization theorem for the class Np (Theorem B), hn can be factorized as

hn(z) = Bn(z)Fn(z), z ∈ D,

where Bn is the Blaschke product defined by (2.3) and Fn ∈ Np. Thus, |F∗n(eiθ)| = |h∗n(eiθ)| almost every on T,
whence it follows that dp(Fn, 0) = dp(hn, 0). Since by (3.7) we have hn(zn) = 1 for all n ∈N, using the estimate
from Lemma 1, we have

(1 − |zn|)1/p log
(

1
|Bn(zn)|

)
≤ (1 − |zn|)1/p log

(
1 +
|hn(zn)|
|Bn(zn)|

)
= (1 − |zn|)1/p log(1 + |Fn(zn)|)
≤ 21/pdp(Fn, 0)

= 21/pdp(hn, 0).

Since dp(hn, 0)→ 0, the above inequality completes the proof of the theorem.

Remark 2. Obviously, the fact that {zn}∞n=1 is uniformly separated implies the condition (3.2), but the example
{zn} = {1 − n−2} shows that the converse is false.

Remark 3. Notice also that the “sufficiency part” of Theorem 1 related to a larger family of Hardy-Orlicz
spaces is quite recently proved by M. H. M. Marzuq in [12, Theorem 3.1].

We denote by l̄pz (1 < p < ∞) the set of all strictly positive sequences {cn}∞n=1 such that

(3.8)
∞∑

n=1

(1 − |zn|2)| log cn|p < ∞,

and denote by N̄p the set of all zero-free holomorphic on D functions f f (0) > 0 and ϕ(z) = log f (z) ∈ Hp,
where we take as ϕ(0) is a real number. Clearly, l̄pz ⊂ lpz and N̄p ⊂ Np.

The following assertion is the N̄p-analogue of Theorem 2 in [24].

Theorem 2. A sequence {zn}∞n=1 inD is a u.i.s. for (N̄p, l̄pz), in the sense that for any sequence {cn}∞n=1 in l̄pz there exists
f ∈ N̄p with log f (zn) = log cn for all n ∈N, if and only if {zn}∞n=1 is uniformly separated.

Proof. Sufficiency. Take an arbitrary sequence {cn}∞n=1 in l̄pz . If we put bn = log cn (arg(cn) = 0), then by the
theorem of Shapiro and Shields [20], there is a function 1 ∈ Hp with 1(0) = 0 and 1(zn) = bn for all n ∈ N. If
we put f (z) = exp

(
1(z)

)
, z ∈ D, then we have f ∈ N̄p and f (zn) = cn for all n ∈N.

Necessity. The space l̄pz can be considered as a real Banach space with respect to the addition and scalar
multiplication defined as follows:

(i) {{cn} + {bn}}∞n=1 is defined to be the sequence {cnbn}∞n=1.
(ii) For a real number λ, λ{cn} is a sequence defined as {(cn)λ}∞n=1.
(iii) The norm of ∥ · ∥ of {cn}∞n=1 is defined as

(3.9) ∥{cn}∥ =
 ∞∑

n=1

(1 − |zn|2)| log cn|p


1/p

.

Analogously, N̄p can also be viewed as a real Banach space with respect to the addition and scalar multipli-
cation defined as follows:

(i)’ f + 1 is defined to be the function whose the value at z ∈ D equals f (z)1(z), i.e., ( f + 1)(z) = f (z)1(z).
(ii)’ For a real number λ, λ f is defined to be the function whose the value at z ∈ D equals ( f (z))λ, i.e.,
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(λ f )(z) = ( f (z))λ, (λ f )(0) > 0.
(iii)’ The norm of f is defined as

(3.10) ∥ f ∥ = sup
0≤r<1

(∫ 2π

0
| log f (reiθ)|p dθ

2π

)1/p

=

(∫ 2π

0
| log f ∗(eiθ)| dθ

2π

)1/p

,

where we take arg( f (0)) = 0.
For a given sequence {zn}∞n=1 in D, let P be the set of all functions f ∈ N̄p such that log f (zn) = 0 for all

n ∈N. P is obviously a closed subspace of N̄p. Put

Np
∗ = N̄p/P and f̄ = f + P for f ∈ N̄p.

Then Np
∗ is a real Banach space with the norm ∥ f̄ ∥ = inf f∈ f̄ ∥ f ∥. For each u = {cn(u)}∞n=1 = {cn}∞n=1 in l̄pz there

corresponds a unique f̄ ∈ Np
∗ such that

log f (zn) = log cn for all n ∈N and for all f ∈ f̄ .

Write this correspondence as S̄, i.e., f̄ = S̄(u). Obviously, S̄ is a linear operator. In the same manner as in
the proof of (ii), Theorem 1 in [24], we can show that S̄ is a closed operator. Hence, by the closed graph
theorem [2, p. 57], S̄ is continuous. Thus, we have

(3.11) ∥ f ∥ ≤M′∥u∥

with a positive constant M′, for an f ∈ f̄ = S̄(u).
Since log f ∈ Hp, by the subharmonicity of the function v(z) = | log f (z)|p onDwe get

v(reiθ) ≤
∫ 2π

0
P(r, θ − t)v∗(eiθ)

dθ
2π
≤ 2

1 − r

∫ 2π

0
|v∗(eiθ)| dθ

2π
, 0 ≤ r < 1,

whence because of (3.10) it follows immediately that

(3.12) (1 − |z|2)1/p| log f (z)| ≤M”∥ f ∥

with a constant M” = 41/p. Let un = {ck(un)}∞k=1 be a positive sequence such that

ck(un) = 1 if k , n; cn(un) = e.

Then by (iii) we have ∥un∥ = (1 − |zn|2)1/p.
Let fn be a function in S̄(un) satisfying the condition (3.11). Put arg(Bn(0)) = αn and

Fn(z) = exp
(

log fn(z)
e−iαn Bn(z)

)
, z ∈ D.

Then Fn ∈ N̄p and | log F∗n(eiθ)| = | log f ∗n(eiθ)| almost every on T. Therefore, from (3.11) and (3.12) we obtain

(1 − |zn|2)1/p| log Fn(zn)| ≤ M”∥Fn∥
= M”∥ fn∥
≤ M′M”(1 − |zn|2)1/p.

Since
| log Fn(zn)| = | log fn(zn)|/|Bn(zn)| = 1/|Bn(zn)|,

from the above inequality we infer that
|Bn(zn)| ≥ 1/M′M”.

Hence, {zn} is uniformly separated. This completes the proof of the theorem.
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The following result is the Np-analogue of Theorem 3 in [24] concerning the Nevanlinna class N.

Theorem 3. Suppose that a sequence {zn}∞n=1 in D is uniformly separated, and let f ∈ Np be a function for which
log | f ∗| ∈ Lp(T). Then

∞∑
n=1

(1 − |zn|2)
(
log+ | f (zn)|)p

< +∞.

On the other hand, we can find a uniformly separated sequence {zn}∞n=1 in D and a complex sequence {cn}∞n=1 which
satisfy

(3.13)
∞∑

n=1

(1 − |zn|2)
(
log+ |cn|

)p−δ
< +∞ for any 0 < δ ≤ 1,

while there is no function f ∈ Np with f (zn) = cn for all n ∈N.

Proof. Let f ∈ Np with log | f ∗| ∈ Lp(T). Then by Theorem B, f can be factorized as

f (z) = B(z)S(z)F(z), z ∈ D,

where B(z) is the Blaschke product with respect to zero points of f , S is a singular inner function, and F
is an outer function. If we write 1(z) = S(z)F(z), it is easily see that a function log |1(z)| can be represented
by a Poisson-Stieltjes integral. Hence, by ([3, p. 35, Corollary]) it follows that log 1(z) belongs to Hq for any
0 < q < 1. From this and the fact that |1∗(eiθ)| = | f ∗(eiθ)| almost every we conclude that log 1(z) belongs to
Hp. Hence, by ([3, p. 149, Theorem 9.1]) we obtain

∞∑
n=1

(1 − |zn|2)| log 1(zn)|p < +∞,

whence it follows that

∞∑
n=1

(1 − |zn|2)
(
log+ | f (zn)|)p ≤

∞∑
n=1

(1 − |zn|2)| log 1(zn)|p < +∞.

This proves the first part of the theorem.
For the proof of the second part let b be a real number such that 0 < b < 1, and put zn = 1 − bn,

cn = exp(n/(bn/p)), n ∈ N. Then {zn}∞n=1 satisfies the condition (2.1) as well as (2.3), i.e., the sequence {zn}∞n=1
is uniformly separated. A sequence {cn}∞n=1 satisfies the condition (3.13) for any δ, 0 < δ ≤ 1, and

(3.14) (1 − |zn|)
(
log+ |cn|

)p →∞ as n→∞.

From the inequality log+ |x| ≤ log(1 + |x|) and Lemma 1 it follows immediately that

(3.15) (1 − |z|) (log+ | f (z)|)p
= O(1).

Finally, from (3.14) and (3.15) we conclude that there is no function f ∈ Np with f (zn) = cn for all n ∈ N.
This completes the proof of the theorem.

References

[1] L. Carleson, An interpolation problem for bounded analytic functions, Amer. J. Math. 80 (1958), 921–930.
[2] N. Dunford and J. T. Schwartz, Linear operators, Part I: General theory, Pure and Appl. Math. 7, Interscience, New York, 1958.
[3] P. L. Duren, Theory of Hp spaces, Academic Press, New York, 1970.
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[16] A. G. Naftalevič, On interpolation by functions of bounded characteristic (Russian), Učeniye Zapiski, Vilinius, Gos. Univ. 5 (1956),
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