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Available at: http://www.pmf.ni.ac.rs/filomat

General approach of the root of a p-adic number
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Abstract. In this work, we applied the Newton method in the p-adic case to calculate the cubic root of a
p-adic number a ∈ Q∗p where p is a prime number, and through the calculation of the approximate solution
of the equation x3 − a = 0. We also determined the rate of convergence of this method and evaluated the
number of iterations obtained in each step of the approximation.

1. Introduction

The p-adic numbers were discovered by K. Hensel around the end of the nineteenth century. In the
course of one hundred years, the theory of p-adic numbers has penetrated into several areas of mathematics,
including number theory, algebraic geometry, algebraic topology and analysis (and rather recently to
physics). In papers [6], the authors used classical rootfinding methods to calculate the reciprocal of integer
modulo pn, where p is prime number. But in [1], the author used the Newton method to find the reciprocal
of a finite segment padic number, also referred to as Hensel codes. The Hensel codes and their properties
are studied in [2–4]. In [8], the authors used fixed point method to calculate the Hensel code of square root
of a p-adic number a ∈ Qp, it means the first numbers of the p-adic development of the

√
a.

In this work, we will see how we can use classical root-finding method and explore a very interesting
application of tools from numerical analysis to number theory.

One considers the following equation

x3 − a = 0. (1)

The solution of (1) is approximated by a p-adic number sequence (xn)n ⊂ Q∗p constructed by the Newton
method.

2. Preliminaries

Definition 2.1. Let p be a prime number.
1) The field Qp of p-adic numbers is the completion of the field Q of rational numbers with respect to the p-adic norm
|·|p defined by

∀x ∈ Qp : |x|p =
{

p−vp(x), if x , 0
0, if x = 0,
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where vp is the p-adic valuation defined by

vp(x) = max
{
r ∈ Z : pr | x} .

2) The p-adic norm induces a metric dp given by

dp : Qp ×Qp −→ R+

(x, y) 7−→ dp(x, y) =
∣∣∣x − y

∣∣∣
p ,

this metric is called the p-adic metric.

Theorem 2.2. [5] Given a p-adic number a ∈ Qp, there exists a unique sequence of integers (βn)n≥N, with N = vp(a),
such that 0 ≤ βn ≤ p − 1 for all n and

a = βNpN + βN+1pN+1 + ... + βnpn + ... =
∞∑

k=N

βkpk

The short representation of a is βNβN+1...β−1 · β0β1..., where only the coefficients of the powers of p are
shown. We can use the p-adic point · as a device for displaying the sign of N as follows:

βNβN+1...β−1 · β0β1..., for N < 0
·β0β1β2..., for N = 0
·00...0β0β1..., for N > 0.

Definition 2.3. A p-adic number a ∈ Qp is said to be a p-adic integer if this canonical expansion contains only non
negative power of p.
The set of p-adic integers is denoted by Zp. We have

Zp =

 ∞∑
k=0

βkpk, 0 ≤ βk ≤ p − 1

 = {a ∈ Qp : vp(a) ≥ 0
}
=
{
a ∈ Qp : |a|p ≤ 1

}
.

Definition 2.4. A p-adic integer a ∈ Zp is said to be a p-adic unit if the first digit β0 in the p-adic expansion is
different of zero. The set of p-adic units is denoted by Z∗p. Hence we have

Z∗p =

 ∞∑
k=0

βkpk, β0 , 0

 = {a ∈ Qp : |a|p = 1
}
.

Lemma 2.5. [5] Given a ∈ Qp and k ∈ Z, then{
y ∈ Qp :

∣∣∣y − a
∣∣∣
p ≤ pk

}
= a + p−kZp

Proposition 2.6. [7] Let x be a p-adic number of norm p−n. Then x can be written as the product x = pnu, where
u ∈ Z∗.

Proposition 2.7. [7] Let (an)n be a p-adic number sequence. If lim
n→∞

an = a ∈ Q \ {0}, then lim
n→∞
|an|p = |a|p. The

sequence of norms
(
|an|p
)

n
must stabilize for sufficiently large n.

Theorem 2.8. [7](Hensel’s lemma) Let F(x) = c0 + c1x + ... + cnxn be a polynomial whose coefficients are p-adic
integers i.e.

(
F ∈ Zp[x]

)
. Let

F′(x) = c1 + 2c2x + 3c3x2 + ... + ncnxn−1

be the derivative of F(x). Suppose a0 is a p-adic integer which satisfies F(a0) ≡ 0( mod p) and F′(a0) . 0( mod p).
Then there exists a unique p-adic integer a such that F(a) = 0 and a ≡ a0( mod p).
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Theorem 2.9. [7] A polynomial with integer coefficients has a root inZp if and only if it has an integer root modulo
pk for any k > 1.

Definition 2.10. A p-adic number b ∈ Qp is said to be a cubic root of a ∈ Qp of order k if b3 ≡ a
(
modpk

)
, where

k ∈N.

Proposition 2.11. [9] A rational integer a not divisible by p has a cubical root inZp (p , 3) if and only if a is a cubic
residue modulo p.

Corollary 2.12. [9] Let p be a prime number, then

1. If p , 3, then a = pvp(a).u ∈ Qp

(
u ∈ Z∗p

)
has a cubic root in Qp if and only if vp(a) = 3m, m ∈ Z and u = v3

for some unit v ∈ Z∗p.

2. If p = 3, then a = 3v3(a).u ∈ Q3

(
u ∈ Z∗3

)
has a cubic root in Q3 if and only if v3(a) = 3m, m ∈ Z and u ≡ 1(

mod 9) or u ≡ 2( mod 3).

3. Main Results

Let a ∈ Q∗p be a p-adic number such that

|a|p = p−vp(a) = p−3m, m ∈ Z. (2)

We know that if there exists a p-adic number β such that β3 = a and (xn)n is a sequence of the p-adic
numbers that converges to a p-adic number β , 0, then from a certain rank one has

|xn|p =
∣∣∣β∣∣∣p = p−m. (3)

The Newton method: An elementary method to determine zeros of a given function is the Newton
method where the iterative formula is defined by

xn+1 = xn −
f (xn)
f ′(xn)

,∀n ∈N. (4)

Obtaining the following recurrence relation

xn+1 =
1

3x2
n

(
a + 2x3

n

)
,∀n ∈N. (5)

Therefore

x3
n+1 − a =

1
27x6

n

(
a + 8x3

n

) (
a − x3

n

)2
,∀n ∈N, (6)

and

xn+1 − xn =
1

3x2
n

(
a − x3

n

)
,∀n ∈N. (7)

Determining the rate of convergence of an iterative method is to study the comportment of the sequence
(en+n0 )n defined by en+n0 = xn+n0+1 − xn+n0 obtained at each step of the iteration where n0 ∈N.

Roughly speaking, if the rate of convergence of a method is s, then after each iteration the number of
correct significant digits in the approximation increases by a factor of approximately s.
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Theorem 3.1. If xn0 is the cubic root of a of order r. Then
1) If p , 3, then xn+n0 is the cubic root of a of order 2nr − 3m(2n − 1).
2) If p = 3, then xn+n0 is the cubic root of a of order 2nr − 3(m + 1)(2n − 1).

Proof. Let (xn)n the sequence defined by (5) and xn0 is the cubic root of a of order r. Then

x3
n0
− a ≡ 0 mod pr =⇒

∣∣∣x3
n0
− a
∣∣∣
p ≤ p−r.

We put

h (x) = a + 8x3
n,

We have

|h (x)|p =
∣∣∣a + 8x3

n

∣∣∣
p ≤ max

{
|a|p ,
∣∣∣8x3

n0

∣∣∣
p

}
= p−3m.

Since

|27|p =
{

1
27 , if p = 3
1, if p , 3. (8)

This gives∣∣∣x3
n0+1 − a

∣∣∣
p
=

∣∣∣∣∣∣ 1
27x6

n0

∣∣∣∣∣∣
p

·
∣∣∣a + 8x3

n0

∣∣∣
p ·
∣∣∣a − x3

n0

∣∣∣2
p ≤
∣∣∣∣∣∣ 1
27x6

n0

∣∣∣∣∣∣
p

· p−3m · p−2r.

And so we have
∣∣∣∣x3

n0+1 − a
∣∣∣∣
p
≤ p6m · p−3m · p−2r, if p , 3

∣∣∣∣x3
n0+1 − a

∣∣∣∣
3
≤ 33 · 36m · 3−3m · 3−2r, if p = 3.

(9)

Or, in virtue of lemma 2.5
x3

n0+1 − a ≡ 0 mod p2r−3m, if p , 3

x3
n0+1 − a ≡ 0 mod 32r−3(m+1), if p = 3.

(10)

In this manner, we find that if p , 3, then

∀n ∈N : x3
n+n0
− a ≡ 0 mod pvn , (11)

Where the sequence (vn)n is defined by

∀n ∈N :
{

v0 = r
vn+1 = 2vn − 3m ⇐⇒ ∀n ∈N : vn = 2nr − 3m(2n − 1).

If p = 3, then

∀n ∈N : x3
n+n0
− a ≡ 0 mod 3v′n , (12)

Where the sequence (v′n)n is defined by

∀n ∈N :
{

v′0 = r
v′n+1 = 2v′n − 3(m + 1) ⇐⇒ ∀n ∈N : v′n = 2nr − 3(m + 1)(2n − 1).
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Corollary 3.2. If xn0 is the cubic root of a of order r. Then the sequence (en+n0 )n is defined by

∀n ∈N :


xn+n0+1 − xn+n0 ≡ 0 mod pφn , if p , 3

xn+n0+1 − xn+n0 ≡ 0 mod 3φ
′
n , if p = 3,

(13)

Where

∀n ∈N :


φn = 2nr −m(3 · 2n − 1)

φ′n = 2nr − (m(3 · 2n − 1) + (3 · 2n − 2)) .
(14)

Proof. We have

xn+1 − xn =
1

3x2
n

(
a − x3

n

)
,∀n ∈N, (15)

Since

|3|p =
{

1
3 , if p = 3
1, if p , 3, (16)

This gives

∣∣∣xn+n0+1 − xn+n0

∣∣∣
p
=

∣∣∣∣∣∣ 1
3x2

n+n0

(
a − x3

n+n0

)∣∣∣∣∣∣
P

= p2m ·
∣∣∣∣∣13
∣∣∣∣∣
P
·
∣∣∣a − x3

n+n0

∣∣∣
p

(17)

=⇒


∣∣∣xn+n0+1 − xn+n0

∣∣∣
p ≤ p2m · p−vn , if p , 3∣∣∣xn+n0+1 − xn+n0

∣∣∣
3
≤ 32m+1 · 3−v′n , if p = 3,

(18)

Or, in virtue of lemma 2.5

∀n ∈N :


xn+n0+1 − xn+n0 ≡ 0 mod pvn−2m, if p , 3

xn+n0+1 − xn+n0 ≡ 0 mod 3v′n−(2m+1), if p = 3.
(19)

We put

∀n ∈N :


φn = vn − 2m = 2nr −m(3 · 2n − 1)

φ′n = v′n − (2m + 1) = 2nr − (m(3 · 2n − 1) + (3 · 2n − 2)) .
(20)

3.1. Conclusion

According to the results obtained in the previous section, we obtain the following conclusions:

1. If p , 3,then

(a) The rate of convergence of the sequence (xn)n is of order φn.
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(b) If r − 3m > 0, then the number of iterations to obtain M correct digits is

n =

 ln( M−m
r−3m )

ln 2

 . (21)

2. If p , 3,then
(a) The rate of convergence of the sequence (xn)n is of order φ′n.
(b) If r − 3(m + 1) > 0, then the number of iterations to obtain M correct digits is

n =

 ln( M−(m+2)
r−3(m+1) )

ln 2

 . (22)
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