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Abstract. We give a survey of the known results concerning the sets c0(Λ), c(Λ) and c∞(Λ) including
their basic topological properties, their first and second dual spaces, and the characterizations of matrix
transformations from them into the spaces ℓ∞, c and c0. Furthermore, we establish some new results such
as the representations of the general bounded linear operators from c(Λ) into the spaces ℓ∞, c and c0, and
estimates for their Hausdorff measures of noncompactness. Finally, we apply our results to characterize
some classes of compact operators on c0(Λ), c(Λ) and c∞(Λ). We also generalize a classical result by Cohen
and Dunford which states that a regular matrix operator cannot be compact.

1. Introduction, notations and known results

The set c(Λ) of Λ–strongly convergent sequences was first introduced and studied by Móricz [19]; this
set generalizes the concept of strong convergence of Hyslop [10], and Kuttner and Thorpe [15]. We also
consider the sets c0(Λ) and c∞(Λ) of sequences that areΛ–strongly convergent to 0 andΛ–strongly bounded.

First, we give a survey of known results in Sections 2–4. They include the most important topological
properties of the spaces c0(Λ), c(Λ) and c∞(Λ) ([16]), their first and second dual spaces ([17]), and the
complete list of characterizations of the classes of matrix transformations from them into the spaces ℓ∞, c
and c0 of bounded, convergent and null sequences ([3]).

In Section 5, we start with a short introduction to measures of noncompactness, in particular, the
Hausdorffmeasure of noncompactness of bounded sets in metric spaces and of operators between normed
spaces, and list their most important properties.

After this we establish several new results. We extend our studies from the normally considered matrix
transformations to general bounded linear operators on c(Λ). First, we establish the representations of the
general bounded linear operators from c(Λ) into ℓ∞, c and c0, and prove some estimates for their Hausdorff
measures of noncompactness. Then we use our results to characterize the classes of compact operators
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from c0(Λ) and c(Λ) into c0 and c. As an application, we also obtain the characterizations of compact matrix
operators between those spaces. Finally, we show that the matrix operator of a Λ–strongly regular matrix
cannot be compact. This generalizes a classical result of Cohen and Dunford [5] which states that a regular
matrix operator cannot be compact.

This paper is intended to serve as both a survey and research paper.

1.1. The basic notations

Here we list the basic notations and concepts that are used throughout the paper; this is done for the
convenience of readers who may not be too familiar with the topics of this paper. We also refer to [18, 20]

A sequence (bn)∞n=1 in a linear metric space X is a Schauder basis if, for every x ∈ X, there exists a unique
sequence (λn)∞n=1 of scalars such that x =

∑∞
n=1 λnbn.

Let X be a normed space. We write S = SX = {x ∈ X : ∥x∥ = 1}, B = BX = {x ∈ X : ∥x∥ < 1} and
B = BX = {x ∈ X : ∥x∥ ≤ 1} for the unit sphere and the open and closed unit balls in X. If X and Y are normed
spaces then we write B(X,Y) for the set of all bounded linear operators L : X→ Y which is a Banach space
with the operator norm ∥L∥ = sup{∥L(x)∥ : x ∈ SX} whenever Y is a Banach space. In particular, if Y = |C
then X∗ denotes the space of all continuous linear functionals on X with the norm ∥ f ∥ = sup{| f (x)| : x ∈ S};
we will refer to X∗ as the continuous dual of X, for short.

As usual, let ω denote the set of all complex sequences x = (xk)∞k=1 which is a complete linear metric
space with the algebraic operations defined termwise, and its natural metric d given by

d(x, y) =
∞∑

k=1

1
2k
· |xk − yk|

1 + |xk − yk|
for all x = (xk)∞k=1, y = (yk)∞k=1 ∈ ω.

It is known that convergence in (ω, d) and coordinatewise convergence are equivalent, that is, d(xn, x) → 0
(n→∞) if and only if x(n)

k → xk (n→∞) for each k.

Let e and e(n) for n = 1, 2, . . . denote the sequences with ek = 1 (k = 1, 2, . . . ), and e(n)
n = 1 and e(n)

k = 0 for
k , n. For any sequence x = (xk)∞k=1, let x[n] =

∑n
k=1 xke(k) be its n–section.

We write ℓ∞, c, c0 and ϕ for the sets of all bounded, convergent, null and finite sequences; also ℓ1, cs and
bs denote the sets of all absolutely convergent, convergent and bounded series.

A subspace X of ω is said to be an FK space if it is a Fréchet space, that is, a complete locally convex
linear metric space, with continuous coordinates Pn : X→ |C (n = 1, 2, . . . ) where Pn(x) = xn for all x ∈ X; an
FK space whose metric is given by a norm is said to be a BK space. An FK space X ⊃ ϕ is said have AK if
x = limn→∞ x[n] for every sequence x = (xk)∞k=1 ∈ X.

Let A = (ank)∞k=1 be an infinite matrix of complex numbers, An = (ank)∞k=1 denote the sequence in the nth

row of A, X and Y be subsets of ω, and x ∈ ω. Then we write Anx =
∑∞

k=1 ankxk for the nth A transform of x,
Ax = (Anx)∞n=1 for the A transform of x (provided all the series converge), XA = {x ∈ ω : Ax ∈ X} for the matrix
domain of A in X, and (X,Y) for the class of all infinite matrices that map X into Y, that is, A ∈ (X,Y) if and
only if X ⊂ YA.

1.2. Some basic results

Here we list some basic results which are needed in this paper.
It is known that ω is an FK space with its natural metric d, ℓ∞, c and c0 are BK spaces with their natural

norm ∥x∥∞ = supk |xk|, c0 is a closed subspace of c, c is a closed subspace of ℓ∞; ℓ1 is a BK space with its
natural norm ∥x∥1 =

∑∞
k=1 |xk|, cs and bs are BK spaces with their natural norm ∥x∥bs = supn |

∑n
k=1 xk|, and cs

is a closed subspace of bs; furthermore, ω, c0, ℓ1 and cs have AK, every sequence x = (xk)∞k=1 ∈ c has a unique
representation x = ξ · e +∑∞

k=1(xk − ξ)e(k) where ξ = limk→∞ xk; ℓ∞ and bs have no Schauder basis.
One of the most important results in the theory of sequence spaces states that matrix transformations

between FK spaces are continuous [20, Theorem 4.2.8]. In particular, the following results hold for BK
spaces.
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Theorem 1.1. Let X and Y be BK spaces.
(a) Then we have (X,Y) ⊂ B(X,Y), that is, every matrix A ∈ (X,Y) defines an operator LA ∈ B(X,Y) where
LA(x) = Ax for all x ∈ X ([18, Theorem 1.23]).
(b) If X has AK then B(X,Y) ⊂ (X,Y), that is, every operator L ∈ B(X,Y) is given by a matrix A ∈ (X,Y) such that
Ax = L(x) for all x ∈ X ([13, Theorem 1.9]).

2. The spaces of Λ–strongly convergent and bounded sequences

The spaces c0(Λ), c(Λ) and c∞(Λ) were defined and studied for exponentially bounded sequences Λ in
[16, 17].

A nondecreasing sequence Λ = (λn)∞n=1 of positive reals is said to be exponentially bounded [16] if there
exists an integer m ≥ 2 such that for each ν ∈ IN0 there is at least one λn in the interval [mν,mν+1). The
following result is a useful characterization of exponentially bounded sequences.

Lemma 2.1. ([16, Lemma 1]) A nondecreasing sequence Λ of positive reals is exponentially bounded if and only if
the following condition holds:

(I) There are real numbers s and t with 0 < s ≤ t < 1 such that for some subsequence (λn(ν))∞ν=0

s ≤
λn(ν)

λn(ν+1)
≤ t for all ν = 0, 1, . . . .

If Λ is an exponentially bounded sequence, then we can always determine a subsequence (λn(ν))∞ν=0
which satisfies the condition in (I); such a subsequence will be referred to as an associated subsequence.

Throughout, letµ be a nondecreasing sequence of real numbers tending to infinity,Λ be an exponentially
bounded sequence and (λn(ν))∞ν=0 be an associated subsequence; we always write K(s, t) = (s(1 − t))−1 with
s, t ∈ (0, 1) from condition (I). If (n(ν))∞ν=0 is a strictly increasing sequence of nonnegative integers then

∑
ν

and maxν denote the sum and maximum over all k with n(ν) ≤ k ≤ n(ν+ 1)− 1. Let ∆ be the matrix with the
rows ∆n = e(n) − e(n−1). If x, y ∈ ω then we write x · y = (xkyk)∞k=1. Now we define the sets

c̃0(µ) =

x ∈ ω : lim
n→∞

 1
µn

n∑
k=1

∣∣∣∆k(µ · x)
∣∣∣ = 0

 , c̃∞(µ) =

x ∈ ω : sup
n

 1
µn

n∑
k=1

∣∣∣∆k(µ · x)
∣∣∣ < ∞

 ,
c0(Λ) =

{
x ∈ ω : lim

ν→∞

(
1

λn(ν+1)

∑
ν |∆k(Λ · x)|

)
= 0

}
, c∞(Λ) =

{
x ∈ ω : sup

ν

(
1

λn(ν+1)

∑
ν |∆k(Λ · x)|

)
< ∞

}
,

c̃(µ) = {x ∈ ω : x − ξ · e ∈ c̃0(µ) for some ξ ∈ |C}, and c(Λ) = {x ∈ ω : x − ξ · e ∈ c0(Λ) for some ξ ∈ |C}.
If x ∈ c(Λ) then a number ξ ∈ |C with x − ξ · e ∈ c0(Λ) is called Λ–strong limit. The Λ–strong limit of a

sequence x ∈ c(Λ) is unique [16, Lemma 2]; ξwill always denote the Λ–strong limit of a sequence x ∈ c(Λ).
Our spaces have the following fundamental topological properties similar to those of c0, c and ℓ∞.

Theorem 2.2. ([16, Theorem 2]) Let Λ = (λn)∞n=1 be an exponentially bounded sequence and (λn(ν))∞ν=0 be an
associated subsequence.
(a) Then c0(Λ) = c̃0(Λ), c(Λ) = c̃(Λ) and c∞(Λ) = c̃∞(Λ).
(b) The block and sectional norms ∥ · ∥b and ∥ · ∥s defined by

∥x∥b = sup
ν

1
λn(ν+1)

∑
ν |∆k(Λ · x)| and ∥x∥s = sup

n

1
λn

n∑
k=1

|∆k(Λ · x)|

are equivalent on c∞(Λ), c(Λ) and c∞(Λ), more precisely

∥x∥b ≤ ∥x∥s ≤ K(s, t) · ∥x∥b. (1)

(c) Each of the spaces c0(Λ), c(Λ) and c∞(Λ) is a BK space, c0(Λ) is a closed subspace of c(Λ), c(Λ) is a closed subspace
of c∞(Λ), c0(Λ) has AK, and every sequence x = (xk)∞k=1 ∈ c(Λ) has a unique representation x = ξ · e+∑∞

k=1(xk−ξ)e(k).
(d) The space c∞(Λ) has no Schauder basis.
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Throughout the paper, we will always assume that the spaces c0(Λ), c(Λ) and c∞(Λ) have the block norm,
unless explicitly stated otherwise.

Example 2.3. ([16, Example 1]) (a) If λn = 2n−1 (n = 1, 2, · · · ) then we may choose the sequence (λn)∞n=1 itself
as an associated subsequence, λn/λn+1 = 1/2 (n = 0, 1, · · · ) and we obtain, for instance,

c0(Λ) =
{
x ∈ ω :

1
λn+1
|λn−1xn−1 − λnxn| → 0 (n→∞)

}
.

(b) Let α > 0, λ1 = 1 and λn+1 = nα for n = 1, 2, · · · . Then we may choose (λ2ν )∞ν=0 as an associated
subsequence , λ2ν/λ2ν+1 = 2−α for ν = 0, 1, · · · and we obtain, for instance,

c0(Λ) =

x ∈ ω :
1

(2ν+1)α

2ν+1−1∑
k=2ν
|λk−1xk−1 − λkxk| → 0 (ν→∞)

 .
If α = 1 then the sets c0(Λ), c(Λ) and c∞(Λ) reduce to the sets [c0]1, [c]1 and [c∞]1 introduced and studied by
Hyslop, Kuttner and Thorpe [10, 15].
(c) Let α > 0, λ1 = 1 and λn+1 = (log2 n)α for n ≥ 1. Then we may choose (λ2(2ν ) )∞ν=0 as an associated
subsequence.

3. The dual spaces

Here we give the dual spaces of the sets c0(Λ), c(Λ) and c∞(Λ).
We need the following notations. Let X and Y be subsets of ω and z ∈ ω. Then we write z−1 ∗ X = {x ∈

ω : x · z = (xkzk)∞k=1 ∈ X}. The set M(X,Y) =
∩

x∈X x−1 ∗ Y is called the multiplier space of X and Y. The special
cases Xα = M(X, ℓ1), Xβ = M(X, cs) and Xγ = M(X, bs) are called the α–, β– and γ–duals of X. If X ⊃ ϕ then
the set X f = {( f (e(n)))∞n=1 : f ∈ X∗} is called the functional or f –dual of X.

If X is a normed sequence space and a ∈ ω then we write ∥a∥ = ∥a∥∗X = sup{ |∑∞k=1 akxk| : x ∈ SX} provided
the last term exists and is finite which is the case whenever X ⊃ ϕ is a BK space and a ∈ Xβ ([20, Theorem
7.2.9]).

The following result gives the first and second α–duals of the sets c0(Λ), c(Λ) and c∞(Λ).

Theorem 3.1. ([17, Theorem 1]) We have (c0(Λ))α = (c(Λ))α = (c∞(Λ))α = ℓ1 and (c0(Λ))αα = (c(Λ))αα =
(c∞(Λ))αα = ℓ∞.

We put

C(Λ) =

a ∈ ω :
∞∑
ν=0

λn(ν+1)maxν

∣∣∣∣∣∣∣∣
∞∑
j=k

a j

λ j

∣∣∣∣∣∣∣∣ < ∞
 and write ∥a∥C(Λ) =

∞∑
ν=0

λn(ν+1)maxν

∣∣∣∣∣∣∣∣
∞∑
j=k

a j

λ j

∣∣∣∣∣∣∣∣ .
Finally, we give the first and second β–, γ– and f –duals of the sets c0(Λ), c(Λ), c∞(Λ), and the continuous

duals of c0(Λ) and c(Λ).

Theorem 3.2. ([17, Theorem 2]) (a) We have X† = C(Λ) for X = c0(Λ), c(Λ), c∞(Λ) and † = β, γ, f .
(b) The continuous dual (c0(Λ))∗ is norm isomorphic to C(Λ); also ∥ · ∥∗c∞(Λ) = ∥ · ∥C(Λ) on (c(Λ))β and (c∞(Λ))β.
(c) We have f ∈ (c(Λ))β if and only if

f (x) = ξ · χ f +

∞∑
n=1

anxn for all x ∈ c(Λ) where a = ( f (e(n)))∞n=1 ∈ C(Λ), and χ f = f (e) −
∞∑

n=1

an; (2)

furthermore, we have

|χ f | + ∥a∥C(Λ) ≤ ∥ f ∥ ≤ K(s, t) ·
(
|χ f | + ∥a∥C(Λ)

)
for all f ∈ (c(Λ))∗. (3)
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Theorem 3.3. ([17, Theorem 3]) We have
(a) (C(Λ), ∥ · ∥C(Λ)) is a BK space with AK;
(b) c∞(Λ) is β–perfect, that is, (c∞(Λ))ββ = c∞(Λ); also ∥ · ∥∗C(Λ) = ∥ · ∥b on (C(Λ))β;
(c) (C(Λ))β = (C(Λ))γ = (C(Λ)) f ;
(d) (C(λ))∗ is norm isomorphic to c∞(Λ).

4. Matrix transformations

Here we give the complete list of characterizations of the classes (X,Y) for X = c0(Λ), c(Λ), c∞(Λ) and
Y = c0, c, ℓ∞

Theorem 4.1. ([3, Theorem 2.4])
The necessary and sufficient conditions for A ∈ (X,Y) when X ∈ {c0(Λ), c(Λ), c∞(Λ)} and Y ∈ {ℓ∞, c, c0} can be read
from the following table

From
To

c∞(Λ) c0(Λ) c(Λ)

ℓ∞ 1. 1. 1.
c0 2. 3. 4.
c 5. 6. 7.

where
1. (1.1)∗ supn ∥An∥C(Λ) < ∞;
2. (2.1)∗ limn→∞ ∥An∥C(Λ) = 0;
3. (1.1)∗ and (3.1)∗ limn→∞ ank = 0 for all k;
4. (1.1)∗, (3.1)∗ and (4.1)∗ limn→∞

∑∞
k=1ank = 0;

5. (5.1)∗ αk = limn→∞ ank exists for all k,
(5.2)∗ (αk)∞k=1,An ∈ C(Λ) for all n,
(5.3)∗ limn→∞; ∥An − (αk)∞k=1∥C(Λ) = 0;

6. (1.1)∗ and (5.1)∗;
7. (1.1)∗, (5.1)∗ and (7.1)∗ α = limn→∞

∑∞
k=1ank exists.

Remark 4.2. The conditions for A ∈ (c∞(Λ), c0) and A ∈ (c∞(Λ), c) can be replaced by
2’. (3.1)∗ and (2.1′)∗ ∥An∥C(Λ) converges uniformly in n,
5’. (2.1′)∗ and (5.1)∗.

5. Compact operators

Here we characterize some classes of compact operators on the spaces c0(Λ), c(Λ) and c∞(Λ). This is most
effectively achieved by applying the Hausdorff measure of noncompactness. The results concerning general
bounded linear operators and their compactness are new.

5.1. Compact operators and measures of noncompactness
We recall a few necessary notions and results, and refer the reader to [1, 4, 18] for further studies.
If X and Y are infinite–dimensional complex Banach spaces, then a linear operator L : X → Y is said to

be compact if the domain of L is all of X and, for every bounded sequence (xn) in X, the sequence (L(xn)) has
a convergent subsequence. We write C(X,Y) for the class of all compact operators from X into Y. We recall
that a set in a topological space is said to be precompact or relatively compact if its closure is compact.

The first measure of noncompactness, the function α, was defined and studied by Kuratowski [14] in
1930. In 1955, Darbo [6] was the first who continued to use the function α. He proved that if T is a
continuous self–mapping of a nonempty, bounded, closed and convex subset C of a Banach space X such
that there exists a constant K ∈ (0, 1) such that α(T(Q)) ≤ Kα(Q) for all subsets Q of C, then T has at least one
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fixed point in the set C. Darbo’s fixed point theorem is a very important generalization of Schauder’s fixed
point theorem, and includes the existence part of Banach’s fixed point theorem.

Other measures of noncompactness were introduced and studied by Gohberg, Goldenštein and Markus
in 1957 [9], the ball or Hausdorff measure of noncompactness, and by Istrǎţesku in 1972 [11, 12].

Now we recall the definition of a measure of noncompactness on bounded sets in a complete metric
space.

Definition 5.1. Let (X, d) be a complete metric space andMX be the class of all bounded subsets of X. A
map ϕ :MX → [0,∞) is called a measure of noncompactness on X if it satisfies the following properties for all
Q,Q1,Q2 ∈ MX

(i) ϕ(Q) = 0 if and only if Q is precompact (regularity);
(ii) ϕ(Q) = ϕ(Q) (invariance under closure);
(iii) ϕ(Q1 ∪Q2) = max{ϕ(Q1), ϕ(Q2)} (semi–additivity).

It is easy to see that any measure of noncompactness satisfies the following properties for all Q,Q1,Q2 ∈
MX

(iv) Q1 ⊂ Q2 implies ϕ(Q1) ≤ ϕ(Q2) (monotonicity);
(v) ϕ(Q1 ∩Q2) ≤ min{ϕ(Q1), ϕ(Q2)};
(vi) if Q is a finite set then ϕ(Q) = 0 (non–singularity).

(vii) If (Qn) is a decreasing sequence of nonempty, closed and bounded subsets of X, and limn→∞ ϕ(Qn) = 0
then

∩
n Qn is nonempty and compact (generalized Cantor intersection property).

We also need the definition of a measure of noncompactness of operators between Banach spaces.

Definition 5.2. Let X and Y be Banach spaces, and ϕ1 and ϕ2 be measures of noncompactness on X and Y.
The operator L : X→ Y is called (ϕ1, ϕ2)–bounded if
(i) L(Q) ∈ MY for every Q ∈ MX,
(ii) there exists a constant C > 0 such that ϕ2(L(Q)) ≤ Cϕ1(Q) for every Q ∈ MX.
If an operator L is (ϕ1, ϕ2)– bounded, then the number ∥L∥(ϕ1,ϕ2) = inf

{
C ≥ 0 : ϕ2(L(Q)) ≤ Cϕ1(Q) for all Q ∈ MX

}
is called the (ϕ1, ϕ2)– measure of noncompactness of L. In particular, if ϕ1 = ϕ2 = ϕ, then we write ∥L∥ϕ instead
of ∥L∥(ϕ,ϕ).

We recall the definitions of the Hausdorffmeasure of noncompactness of bounded sets in a metric space,
and of linear operators between normed spaces. We write B(x, r) = {y ∈ X : d(y, x) < r} for the open ball of
radius r > 0 and centre in x in a metric space (X, d).

Definition 5.3. (a) Let (X, d) be a metric space and Q ∈ MX. The Hausdorff measure of noncompactness χ(Q)
of the set Q is defined by

χ(Q) = inf

ϵ ≥ 0 : Q ⊂
n∪

k=1

B(xk, rk); xk ∈ X, rk < ϵ (k = 1, . . . ,n), n ∈ IN

 .
(b) Let X and Y be Banach spaces, χ1 and χ2 be Hausdorff measures of noncompactness on X and Y, and
L : X→ Y be an operator. We write ∥L∥(χ1,χ2) for the (χ1, χ2)–measure of noncompactness of L. In particular,
if χ1 = χ2 = χ, then we write ∥L∥χ instead of ∥L∥(χ,χ).

It is easy to see that χ is a measure of noncompactness, that is, regular, invariant under closure, and
semi–additive. Consequently, χ also satisfies conditions (iv)–(vii) ([18, Lemma 2.11]). Also if X is a Banach
space then we have for all Q,Q1,Q2 ∈ MX [18, Theorem 2.12]

χ(Q1 +Q2) ≤ χ(Q1) + χ(Q2),
χ(x +Q) = χ(Q) for all x ∈ X,
χ(λQ) = |λ|χ(Q) for each scalar λ,
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χ(conv(Q)) = χ(Q) where conv(Q) denotes the convex hull of Q.

The following result due to Gohberg, Goldenštein and Markus gives an explicit estimate for the Haus-
dorffmeasure of noncompactness of any bounded set in a Banach space with a Schauder basis.

Theorem 5.4. (Gohberg, Goldenštein, Markus) ([9] or [18, Theorem 2.23]) Let X be a Banach space with a
Schauder basis (bn)∞n=1, Pn : X → X be the projector onto the linear span span({b1, b2, ·, bn}) of b1, b2, · · · , bn,
Rn = I − Pn, where I is the identity on X, and Q ∈ MX. Then we have, writing µn(Q) = supx∈Q ∥Rn(x)∥ for
n = 1, 2, . . . ,

1
a
· lim sup

n→∞
µn(Q) ≤ χ(Q) ≤ lim sup

n→∞
µn(Q), where a = lim sup

n→∞
∥Rn∥. (4)

We obtain an explicit formula for the Hausdorff measure of noncompactness of bounded subsets of
special BK spaces, and of c. We say that a norm ∥ · ∥ on a sequence space X is monotonous, if x, x′ ∈ X with
|xk| ≤ |x′k| for all k implies ∥x∥ ≤ ∥x′∥, and call such a space X monotonous.

Theorem 5.5. ([8, Lemma 3.4]) (a) Let X be a monotonous BK space with AK and Pn : X → X be the projectors
onto span({e(1), e(2), . . . , e(n)}) for n ∈ IN. Then we have

χ(Q) = lim
n→∞
µn(Q) for all Q ∈ MX. (5)

(b) LetPn : c→ c be the projectors onto the linear span of {e, e(1), · · · , e(n)}. Then the limit in (5) exists for all Q ∈ Mc,
and

a = lim
n→∞
∥Rn∥ = 2. (6)

Next we state some important properties of ∥ · ∥χ.

Theorem 5.6. ([18, Theorem 2.25, Corollary 2.26]) Let X and Y be Banach spaces and L ∈ B(X,Y).
(a) Then ∥L∥χ = χ(L(SX)) = χ(L(BX)).
(b) Then ∥ · ∥χ is a seminorm on B(X,Y), and

∥L∥χ = 0 if and only if L ∈ C(X,Y). (7)

Now we give an estimate for ∥L∥χ. If X is a BK space with AK and L ∈ B(X,Y), let A ∈ (X,Y) denote the
matrix with Ax = L(x) for all x ∈ X (Theorem 1.1 (b)).

Theorem 5.7. Let X be a BK space with AK.
(a) Let L ∈ B(X, c) and Ã be the matrix with the rows Ãn = An − (αk)∞k=1 (n = 1, 2, . . . ), where

αk = lim
n→∞

ank for every k ∈ IN and (αk)∞k=1 ∈ Xβ. (8)

Then we have

1
2
· lim

r→∞

(
sup
n≥r
∥Ãn∥∗X

)
≤ ∥L∥χ ≤ lim

r→∞

(
sup
n≥r
∥Ãn∥∗X

)
([7, Theorem 3.4]).

(b) If L ∈ B(X, c0), then we have

∥L∥χ = lim
r→∞

(
sup
n≥r
∥An∥∗X

)
([2, Corollary 3.4]).
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Remark 5.8. It was shown in the proof of Theorem 5.7 that if L ∈ B(X, c), then

lim
n→∞

Anx =
∞∑

k=1

αkxk for all x ∈ X. (9)

Now we establish the representations of the general operators L ∈ B(c(Λ),Y) when Y = ℓ∞, c, c0, estimates
for their norms, and a formula for the limit of (L(x))n (n→∞) for x ∈ c(Λ) when L ∈ B(c(Λ), c). These results
are new.

Theorem 5.9. We have
(a) L ∈ B(c(Λ), ℓ∞) if and only if there exists a matrix A ∈ (c0(Λ), ℓ∞) and a sequence b ∈ ℓ∞ such that

L(x) = b · ξ + Ax for all x ∈ c(Λ); (10)

(b) L ∈ B(c(Λ), c) if and only if there exists a matrix A ∈ (c0(Λ), c) and a sequence b ∈ ℓ∞ for which the limit

β = lim
n→∞

bn +

∞∑
k=1

ank

 exists (11)

such that (10) holds;
(c) L ∈ B(c(Λ), c0) if and only if there exists a matrix A ∈ (c0(Λ), c0) and a sequence b ∈ ℓ∞ with β = 0 in (11) such
that (10) holds.
(d) If L ∈ B(c(Λ),Y) for Y = ℓ∞, c, c0 then we have

sup
n

(
|bn| + ∥An∥C(Λ)

)
≤ ∥L∥ ≤ K(s, t) · sup

n

(
|bn| + ∥An∥C(Λ)

)
. (12)

(e) Let L ∈ B(c(Λ), c), x ∈ c(Λ) and ξ be the Λ–strong limit of the sequence x. Then we have

η = lim
n→∞

(L(x)) = β · ξ +
∞∑

k=1

αk(xk − ξ) =
β − ∞∑

k=1

αk

 ξ + ∞∑
k=1

αkxk. (13)

Proof. (a)–(c) First we assume L ∈ B(c(Λ),Y) for Y = ℓ∞, c, c0. We write Ln = Pn ◦ L for n = 1, 2, . . . , where Pn
is the nth coordinate. Since c(Λ) is a BK space, we have Ln ∈ (c(Λ))∗ for each n, and it follows from (2) that

Ln(x) = bnξ + Anx for each x ∈ c(Λ), where ξ is the Λ–strong limit of x, (14)

An = (ank)∞k=1 =
(
Ln

(
e(k)

))∞
k=1
∈ C(Λ) and bn = Ln(e) −

∞∑
k=1

Ln

(
e(k)

)
for all n. (15)

This yields (10) in Parts (a)–(c).
Also since L(x(0)) = Ax(0) for all x(0) ∈ c0(Λ), we have A ∈ (c0(Λ),Y).
If Y = ℓ∞, then (c0(Λ), ℓ∞) = (c(Λ), ℓ∞) by Theorem 4.1 1., and it follows from e ∈ c(Λ) that b = L(e)−Ae ∈ ℓ∞.
If Y = c, then L ∈ B(c(Λ), c) ⊂ B(c(Λ), ℓ∞), and b ∈ ℓ∞ and A ∈ (c0(Λ), ℓ∞), as before. Since e(k) ∈ c(Λ) for each
k, we obtain L(e(k)) = (ank)∞n=1 ∈ c for each k, that is, the limits αk in (8) exist for all k. This and A ∈ (c0(Λ), ℓ∞)
imply A ∈ (c0(Λ), c) by Theorem 4.1 6.. Also L(e) = b + Ae ∈ c implies (11).
If Y = c0, then we analogously obtain b ∈ ℓ∞, limn→∞ ank = 0, for each k, A ∈ (c0(Λ), c0) and β = 0.
Conversely, we assume that A ∈ (c0(Λ),Y) for Y = c0, c, ℓ∞ and b ∈ ℓ∞ such that (10) holds. Since A ∈ (c0(Λ),Y)
implies An ∈ (c0(Λ))β for each n, and (c0(Λ))β = (c(Λ))β by Theorem 3.2 (a), it follows by Theorem 3.2 (c) that
Ln = Pn ◦L ∈ (c(Λ))∗ for each n. Since c(Λ) and Y are BK spaces, L : c(Λ)→ Y is clearly linear, and Ln ∈ (c(Λ))∗

for each n, it follows by [20, Corollary 4.2.3] that L is continuous, so L ∈ B(c(Λ),Y).
(d) We assume L ∈ B(c(Λ),Y) and write Ln = Pn ◦ L for all n = 1, 2, . . . . Then we have for all x ∈ Sc(Λ),

by the second inequality in (3), ∥L(x)∥∞ = supn |Ln(x)| ≤ K(s, t) · supn(|bn| + ∥An∥C(Λ)). This yields the second



E. Malkowsky / Filomat 27:3 (2013), 447–457 455

inequality in (12). Also L ∈ B(c(Λ), c) implies |Ln(x)| ≤ ∥L(x)∥∞ ≤ ∥L∥ for all n ∈ IN and all x ∈ Sc(Λ), and since
Ln ∈ (c(Λ))∗ for all n, we have ∥Ln∥ ≤ ∥L∥ for all n, and so, by the first inequality in (3), (|bn| + ∥An∥C(Λ)) ≤ ∥L∥
for all n, which yields the first inequality in (12).

(e) Let L ∈ B(c(Λ), c). Then it follows from Part (b) that A ∈ (c0(Λ), c) and so the limits αk in (8) exist
for all k, and (αk)∞k=1 ∈ (c0(Λ))β, but (c0(Λ))β = (c(Λ))β = C(Λ) by Theorem 3.2 (a). Hence e ∈ c(Λ) implies
(αk)∞k=1 ∈ cs, and so we have βξ+

∑∞
k=1 αk(xk−ξ) = (β−∑∞

k=1 αk)ξ+
∑∞

k=1 αkxk and (9) implies limn→∞ Ln(x(0)) =
limn→∞ Anx(0) =

∑∞
k=1 αkx(0)

k for all x(0) ∈ c0(Λ). Now let x ∈ c(Λ). Then we have x(0) = x − ξ · e ∈ c0(Λ), and

η = lim
n→∞

Ln(x) = ξ · lim
n→∞

Ln(e) + lim
n→∞

Ln(x(0)) = β · ξ +
∞∑

k=1

αk(xk − ξ) =
β − ∞∑

k=1

αk

 ξ + ∞∑
k=1

αkxk.

Now we give an estimate for ∥L∥χ when L ∈ B(c(Λ), c). We use the notations of Theorem 5.9.

Theorem 5.10. If L ∈ B(c(Λ), c), then we have

1
2
· lim

n→∞


∣∣∣∣∣∣∣bn − β +

∞∑
k=1

αk

∣∣∣∣∣∣∣ + ∥∥∥Ãn

∥∥∥C(Λ)

 ≤ ∥L∥χ ≤ K(s, t) · lim
n→∞


∣∣∣∣∣∣∣bn − β +

∞∑
k=1

αk

∣∣∣∣∣∣∣ + ∥∥∥Ãn

∥∥∥C(Λ)

 , (16)

where Ã = (ãnk)∞n,k=1 is the matrix with the rows Ãn = An − (αk)∞k=1 for n = 1, 2, . . . and αk (k = 1, 2, . . . ) from (8).

Proof. Let L ∈ B(c(Λ), c). Then, by Theorem 5.9 (b), L can be represented by (10) where the sequence b ∈ ℓ∞
and the matrix A ∈ (c0(Λ), c) are given by (15), and the limits β in (11) and αk (k = 1, 2, . . . ) in (8) exist; we also
saw in the proof of Theorem 5.9 (e) that (αk)∞k=1 ∈ cs. So γn = bn−β+

∑∞
k=1 αk exists for each n = 1, 2, . . . . Since

every sequence y = (yn)∞n=1 ∈ c has a unique representation y = η · e +∑∞
n=1(yn − η)e(n) with η = limn→∞ yn,

we obtain Rm(y) =
∑∞

n=m+1(yn − η)e(n) for m = 1, 2, . . . , and so ∥Rm(y)∥∞ = supn≥m+1 |yn − η|. Writing y = L(x),
we obtain from (10) and (13)

yn − η = bn · ξ + Anx −

β − ∞∑

k=1

αk

 ξ + ∞∑
k=1

αkxk

 = γn · ξ + Ãnx for n = 1, 2, . . . ,

and so by (12)

sup
n≥m+1

∣∣∣∣γn +
∥∥∥Ãn

∥∥∥C(Λ)

∣∣∣∣ ≤ sup
x∈Sc(Λ)

∥Rm(L(x))∥∞ ≤ K(s, t) · sup
n≥m+1

∣∣∣∣γn +
∥∥∥Ãn

∥∥∥C(Λ)

∣∣∣∣ . (17)

Finally, since limm→∞ ∥Rm∥ = 2 by (6), the inequalities in (16) now follow from (4) in Theorem 5.4, and from
Theorems 5.5 (b) and 5.6 (a).

We obtain the following corollaries from Theorem 5.10.

Corollary 5.11. Let A ∈ (c(Λ), c). Then we have

1
2

lim
n→∞

(∣∣∣∑∞k=1αk − α
∣∣∣ + ∥Ãn∥C(Λ)

)
≤ ∥A∥χ ≤ lim

n→∞

(∣∣∣∑∞k=1αk − α
∣∣∣ + ∥Ãn∥C(Λ)

)
,

where αk = limn→∞ ank for each k ∈ IN, α = limn→∞
∑∞

k=1 ank, and Ãn = An − (αk)∞k=1 for all n ∈ IN.

Proof. This is an immediate consequence of Theorem 5.10 with bn = 0 for n = 1, 2, . . . and the fact that for
A ∈ (c(Λ), c) ⊂ (c0(Λ), c), we have ∥(LA)n∥ = ∥An∥C(Λ) for all n by Theorem 3.2 (b), so we get K(s, t) = 1 and
equality in (17).
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Corollary 5.12. Let L ∈ B(c(Λ), c0). Then we have

lim
n→∞

(
|bn| + ∥An∥C(Λ)

)
≤ ∥L∥χ ≤ K(s, t) · lim

n→∞

(
|bn| + ∥An∥C(Λ)

)
.

Proof. This is an immediate consequence of Theorem 5.10 with β = 0 and αk = 0 for all k

Corollary 5.13. Let A ∈ (c(Λ), c0). Then we have

lim
n→∞
∥An∥C(Λ) ≤ ∥LA∥χ ≤ K(s, t) · lim

n→∞
∥An∥C(Λ) .

Proof. This is an immediate consequence of Corollary 5.11 with αk = 0 for all k and α = 0 and of the fact that
limm→∞ ∥Rm∥ = 1.

We also obtain from Theorem 5.7 an estimate for ∥L∥χ when L ∈ B(c0(Λ), c), and an identity when
L ∈ B(c0(Λ), c0).

Corollary 5.14. (a) Let L ∈ B(c0(Λ), c). Then we have

1
2
· lim

r→∞

(
sup
n≥r
∥Ãn∥C(Λ)

)
≤ ∥L∥χ ≤ lim

r→∞

(
sup
n≥r
∥Ãn∥C(Λ)

)
.

(b) Let L ∈ B(c0(Λ), c0). Then we have

∥L∥χ = lim
r→∞

(
sup
n≥r
∥An∥C(Λ)

)
.

Proof. Corollary 5.14 is an immediate consequence of Theorem 5.7 and the fact that (c0(Λ))∗ is norm isomor-
phic to C(Λ) by Theorem 3.2 (b).

Now we apply our results on the Hausdorffmeasure of noncompactness of operators and (7) to charac-
terize the classes C(X,Y) for X = c0(Λ), c(Λ) and Y = c0, c.

Corollary 5.15. Let L ∈ B(X,Y) where X = c0(Λ), c(Λ) and Y = c0, c. Then the necessary and sufficient conditions
for L ∈ C(X,Y) can be read from the table

From
To

c0(Λ) c(Λ)

c0 1. 2.
c 3. 4.

where

1. lim
r→∞

(supn≥r∥An∥C(Λ)) = 0; 2. lim
n→∞

(|bn + ∥An∥C(Λ)) = 0;

3. lim
r→∞

(supn≥r∥Ãn∥C(Λ)) = 0; 4. lim
n→∞

(|bn − β +
∑∞

k=1αk| + ∥Ãn∥C(Λ)) = 0.

Proof. Using (7), we obtain the conditions in 1.–4. from Corollaries 5.14 (b), 5.12 and 5.14 (a), and Theorem
5.10, respectively.

Putting bn = 0 for all n in Corollary 5.15 2. and 4., we obtain the following characterizations of compact
matrix operators in the classes (c(Λ), c0) and (c(Λ), c).

Corollary 5.16. (a) Let A ∈ (c(Λ), c0). Then we have LA ∈ C(c(Λ), c0) if and only if limn→∞ ∥An∥C(Λ) = 0.
(b) Let A ∈ (c(Λ), c). Then we have LA ∈ C(c(Λ), c) if and only if limn→∞(|∑∞k=1 αk − α| + ∥Ãn∥C(Λ)) = 0.

Using the fact that ∥ · ∥∗c∞(Λ) = ∥ · ∥C(Λ) on (c∞(Λ))β by Theorem 3.2 (b), we obtain similarly as above
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Corollary 5.17. (a) Let A ∈ (c∞(Λ), c0). Then we have LA ∈ C(c∞(Λ), c0) if and only if 1. in Corollary 5.15 holds.
(b) Let A ∈ (c∞(Λ), c). Then we have LA ∈ C(c∞(Λ), c0) if and only if 3. in Corollary 5.15 holds.

We close with an application toΛ–strong regularity. We call an operator L ∈ B(c(Λ), c)Λ–strongly regular,
if limn→∞(L(x))n = ξ for all x ∈ c(Λ), where ξ is the Λ–strong limit of x. A matrix A ∈ (c(Λ), c) is said to be
Λ–strongly regular, if the operator LA is Λ–strongly regular.

We apply our results to the characterization of compact Λ–strongly regular operators.

Corollary 5.18. Let L ∈ B(c(Λ), c) be Λ–strongly regular. Then we have L ∈ C(c(Λ), c) if and only if

lim
n→∞

(
|bn − 1| + ∥An∥C(Λ)

)
= 0 (18)

Proof. By Theorem 5.9 (e), L ∈ B(c(Λ), c) is strongly regular if and only if β = limn→∞(bn +
∑∞

k=1 ank) = 1 and
αk = 0 for k = 1, 2, . . . .. So it follows from Corollary 5.15 4. that L is compact if and only if the condition in
(18) holds.

It turns out that a Λ–strongly regular matrix cannot be compact; this is analogous to the classical result
by Cohen and Dunford [5] which states that a regular matrix cannot be compact.

Remark 5.19. If A is a Λ–strongly regular matrix then LA cannot be compact, since we have with bn = 0 for
all n ∈ IN0 and 1 + ∥An∥C(Λ) ≥ 1 , 0 for all n, and so (18) in Corollary 5.18 cannot hold.
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