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Lifted Polynomials Over F16 and Their Applications to DNA Codes

Elif Segah Oztas, Irfan Siap

Yildiz Technical University, Department of Mathematics, Istanbul, Turkey

Abstract. In this paper, we introduce a new family of polynomials which generates reversible codes over a
finite field with sixteen elements (F16 or GF(16)). We name the polynomials in this family as lifted polynomials.
Some advantages of lifted polynomials are that they are easy to construct, there are plenty of examples of
them and it is easy to determine the dimension of codes generated by them. Furthermore we introduce
4-lifted polynomials which provide a rich source for DNA codes. Also we construct codes over F4 that have
the best possible parameters from lifted polynomials. In addition we obtain some reversible codes over F4.

1. Introduction

The interest on DNA computing started by the pioneer paper written by Leonard Adleman [3]. Adleman
solved a hard (NP- complete) computational problem by DNA molecules in a test tube. DNA sequences
consist of four bases (nucleotides) that are (A) adenine, (G) guanine, (T) thymine and (C) cytosine. DNA
has two strands that are arranged in an order with a rule that is named as Watson Crick complement
(WCC). Briefly the WCC of A is T and vice versa and the WCC of G is C and vice versa. We describe this
as Ac = T,Tc = A,Gc = C and Cc = G.

In [2], constructions of DNA codes over the finite field with four elements GF(4) are presented. Examples
that have larger sizes comparing to the previous examples in the literature are constructed therein. Also,
[9, 10, 12] focused on constructing large sets of DNA codewords. In [19], DNA codes over a four element
ring F2[u]/⟨u2 − 1⟩ are considered. In [21], for the first time instead of single DNA bases, double DNA pairs
are matched to a 16 element ring and the algebraic structure of these DNA codes are studied. Hamming
distance constraint, reverse-complement constraint, reverse constraint, fixed GC-content constraint are the
most common constraints used in DNA codes [9, 12, 13, 15]. In [20], stochastic search algorithms are used
to design codewords for DNA computing by Tuplan et al. [5] and [6] present genetic and evolutionary
algorithms from sets of DNA sequences. In [18], cyclic codes over GF(4) are used to construct DNA codes.
But, they constrict their study to only linear reversible cyclic codes over GF(4). In [7] and [8] deletion
similarity distance is used that is different from Hamming distance and more suitable for DNA codes. In
[14], Mansuripur et al. show that DNA molecules can be used as a storage media. In [1], a new approach
is developed that extends the work in [10] and [12] and reverse-complement constraint is added to further
prevent unwanted hybridizations. Studies about DNA computing indicate that DNA computing will be
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of much interest in the near future. Hence, DNA Error Correcting Codes will be of great value since DNA
computing is faster and can store more memory than silicon based computing systems.

Reversible codes are useful for DNA structure. Reversible codes were introduced by Massey over GF(q)
(q is a prime power) in [16]. In [17], Muttoo and Lal have studied reversible codes over GF(q) (q is prime).
But, these codes are obtained from a specially constructed parity check matrix. In [4], Das and Tyagi give
the generalized form of parity check matrix to obtain reversible codes both odd and even length.

In this paper, we use a special family of polynomials to construct reversible codes different from [16]
and [17]. The polynomials are called ”lifted polynomials” and ”4-lifted polynomials” which are introduced
by authors and these polynomials satisfy the reversibility over F16. By Means of these new families of
polynomials and the construction presented, it is possible to construct DNA codes where some properties
can be controlled. Further, by applying this approach we not only obtain odd length DNA codes which
is the case in [21], but also we obtain even length DNA codes. Also, we provide some examples of linear
codes with best possible parameters from lifted polynomial construction which can be considered as DNA
codes.

The rest of paper is organized as follows. In Section 2, we give some basic notions. In Section 3, we
introduce reversible codes obtained by lifted polynomial. In Section 4 we introduce DNA codes that are
generated by using 4-lifted polynomial over F16. In Section 5, there are some applications about the codes
that have the best possible parameters over F4. Section 6 concludes the paper.

2. Background

Let F be a finite field. A linear code of length n over F is an F-vector space of Fn. A cyclic code C of length
n over F is invariant with respect to the right cyclic shift operator that maps a codeword (c0, c1, ..., cn−1) ∈ C
to another codeword (cn−1, c0, ..., cn−2) in C. For each codeword (c0, c1, ..., cn−1), we associate the polynomial
1(x) = c0 + c1x + ... + cn−1xn−1 where ci ∈ F. Let

Φ :F[x]/(xn − 1)→ C

1(x) = c0 + c1x + ... + cn−1xn−1 → (c0, c1, ..., cn−1)
(1)

For each codeword c = (c0, c1, ..., cn−1), we define the reverse of c to be cr = (cn−1, cn−2, ..., c0).

Definition 2.1. A linear code C of length n over F is said to be reversible if cr ∈ C for all c ∈ C.

The Hamming distance between codewords c′ and c′′, denoted by H(c′, c′′), is simply the number of
coordinates in which these two codewords differ.

For each polynomial z(x) = z0 + z1x + ... + zrxr with zr , 0, the reciprocal of z(x) is defined to be the
polynomial z∗(x) = xrz(1/x) = zr + zr−1xr−1 + ... + z0xr. Consider that deg z∗(x) ≤ deg z(x) and if z0 , 0, then
z(x) and z∗(x) always have the same degrees. z(x) is called self-reciprocal if and only if z(x) = z∗(x).

Theorem 2.2. [16] The cyclic code generated by a monic polynomial 1(x) is reversible if and only if 1(x) is self-
reciprocal where 1(x)|(xn − 1).

3. Reversible codes over F16 obtained by lifted polynomials

Here, we define lifted polynomials which generate reversible codes under the restriction that the length
n is odd.

Definition 3.1. Let 1(x) = a0 + a1x + ... + atxt be a self reciprocal polynomial over Z2 and 1(x)|(xn − 1) (mod 2) . A
lifted polynomial of 1(x) is denoted by ℓ1(x) ∈ F16[x] and is defined as follows. If t is odd, then
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ℓ1(x) =

t−1
2∑

i=0

θi; θi =

βixi + βixt−i , ai , 0
0 , ai = 0

, (2)

if t is even, then

ℓ1(x) =

t
2∑

i=0

θi; θi =


βixi + βixt−i , ai , 0 , i , t/2
0 , ai = 0
β t

2
x

t
2 , ai , 0 , i = t/2

(3)

where βi ∈ F16 − {0}. There are many lifted polynomials of 1(x) depending on βi. The set of ℓ1(x) is denoted by
L1(x). The terms xi and xt−i are called complement pairs.

Example 3.2. Here we present some examples of lifted polynomials. Let n = 15 and

1(x) = 1 + x + x3 + x4 + x5 + x7 + x8

be a self reciprocal polynomial and where 1(x)|(x15 − 1). We can write some arbitrary lifted polynomials of 1(x) as
follows,

ℓ1(x) = α10 + αx + α2x3 + α5x4 + α2x5 + αx7 + α10x8

and
ℓ1(x) = α5 + x + α6x3 + α2x4 + α6x5 + x7 + α5x8

where αi ∈ F16, i ∈ {0, 1, ..., 14}.

Lemma 3.3. Lifted polynomials are self reciprocal polynomials over F16.

Proof. The proof follows easily by observing that the lifted polynomials are obtained by self reciprocal
polynomials over Z2 by Definition 3.1.

Lemma 3.4. Suppose that a set S consists of vectors and their reverses. Then, the code generated by S as an F-vector
subspace is reversible.

Proof. Suppose that every element in S has its reverse in S. Let S be a spanning set and

S = ⟨c1, cr
1, c2, cr

2, ..., ck, cr
k, cs1 , cs2 , ..., csm⟩

where ci is codeword and cst = cr
st

(self reversible) where 1 ≤ t ≤ m. Let C = ⟨S⟩. For every codeword
c =
∑
βici ∈ C, since (αci + βc j)r = αcr

i + βc
r
j, we have cr =

∑
βicr

i ∈ C where i, j ∈ {1, 2, ..., k, s1, ..., sm}. Hence C
is a reversible code.

Remark 3.5. In this paper, the notation ⟨S⟩ will denote the F-vector space generated by the set S. The notation (S)
will stand for the ideal generated by S.

Theorem 3.6. Let ℓ1(x) be a lifted polynomial over F16 of a self reciprocal polynomial 1(x) and 1(x)|(xn − 1)(mod2)
with deg(1(x)) = t where n is odd. Let

S = {ℓ1(x), xℓ1(x), ..., xn−t−1ℓ1(x)} (4)

and Cl = ⟨S⟩. If Cl is a code which is generated by the spanning set S, then Cl is a reversible F16-linear code and it is
shortly denoted by Cl = ⟨ℓ1(x)⟩.
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Proof. By Lemma 3.4 the reverse of each codeword can be found as follows:Φ
 n−t∑

j=1

βi j x
i jℓ1(x)




r

= Φ

 n−t∑
j=1

βi j x
n−t−1−i jℓ1(x)

 (5)

since 0 ≤ i j ≤ n − t − 1 we have n − t − 1 ≥ n − t − 1 − i j ≥ 0, where βi j ∈ F16, i j ∈ {0, 1, ..., n − t − 1} and Φ is
given in ( 1). The claim follows.

Note that ⟨ℓ1(x)⟩ is not an ideal but an F16-linear code spanned by S.
We now present an example of a reversible code, by making use of lifted polynomials.

Example 3.7. Let n = 15 and 1(x) = 1+ x+ x3 + x4 + x5 + x7 + x8 be a self reciprocal polynomial and 1(x)|(x15 − 1)
and d = 3 for C = (1(x)). We can choose a lifted polynomial ℓ1(x) = α10 + αx + α2x3 + α5x4 + α2x5 + αx7 + α10x8.

We know k = 7 (dimension of code C) then we choose this value k for Cl = ⟨ℓ1(x)⟩. Then, Cl gives a [15, 7, 7]16
reversible code obtained over F16.

In this section, all the statements are suitable for reversible codes over F4. Further we present some
example of a reversible code over F4 = GF(4) = F2[x]/(x2 + x + 1) which is obtained by a lifted polynomial.
This linear code has the best possible parameters.

Example 3.8. Let n = 9 and 1(x) = 1 + x + x2 be a self reciprocal polynomial and 1(x)|(x9 − 1) and d = 2 for
C = (1(x)) over Z2. We can choose an arbitrary ℓ1(x) = ω+ x+ωx2 over F4 = {0, 1, ω, ω2 = 1+ω}. We know k = 7
(dimension of code C) then we choose this value k for Cl = ⟨ℓ1(x)⟩. Then, Cl gives a [9, 7, 2]4 reversible code obtained
over F4. This code attains the best possible parameters ([11]).

Example 3.9. Let 1(x) = 1 + x + x3 + x4 + x5 + x7 + x8 and 1|(x15 − 1)(mod 2). Let ℓ1(x) = 1 + ωx + ωx3 + ωx4 +
ωx5 + ωx7 + x8 over F4. We can represent the spanning set as a matrix. Hence, the generator matrix is

1 w 0 w w w 0 w 1 0 0 0 0 0 0
0 1 w 0 w w w 0 w 1 0 0 0 0 0
0 0 1 w 0 w w w 0 w 1 0 0 0 0
0 0 0 1 w 0 w w w 0 w 1 0 0 0
0 0 0 0 1 w 0 w w w 0 w 1 0 0
0 0 0 0 0 1 w 0 w w w 0 w 1 0
0 0 0 0 0 0 1 w 0 w w w 0 w 1


and Cl = ⟨ℓ1(x)⟩ gives a [15, 7, 7]4-reversible code. This code has the best possible parameters [11].

4. DNA codes over F16 from 4-lifted polynomial

In this section, we mainly mention about DNA codes over F16. But, there is a reversibility problem
for DNA codes over F16. Reversibility problem: Let (α, α2, 1) be a codeword and corresponds to ATGCTT
in DNA where α → AT, α2 → GC, 1 → TT and α, α2, 1 ∈ F16. Reverse of (α, α2, 1) is (1, α2, α). (1, α2, α)
corresponds to TTGCAT. But, TTGCAT is not reverse of ATGCTT. Because, reverse of ATGCTT is TTCGTA.
We have solved this problem with 4-lifted polynomial that is introduced by authors.

DNA occur in sequences, represented by sequences of letters from the alphabet SD4 = {A,T,G,C}. We
define a DNA code of length 2n to be a set of codewords (α0, ..., αn−1) where n is odd.

We consider GF(16) = F16 = F2 [x] /
(
x4 + x + 1

)
for DNA and DNA double bases (pairs).

αi ∈ {AA,AT,AG,AC,TT,TA,TG,TC,GG,GA,GC,GT,CC,CA,CG,CT} = SD16 . (6)

The most difficult and interesting problem is to provide a matching between the field elements and DNA
alphabets. This matching should obey the rules and properties of DNA. Here, we accomplish this task by
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Table 1: 4-power table
double DNA pair F16(multiplicative) additive
AA 0
TT α0 1
AT α1 α
GC α2 α2

AG α3 α3

TA α4 1 + α
CC α5 α + α2

AC α6 α2 + α3

GT α7 1 + α + α3

CG α8 1 + α2

CA α9 α + α3

GG α10 1 + α + α2

CT α11 α + α2 + α3

GA α12 1 + α + α2 + α3

TG α13 1 + α2 + α3

TC α14 1 + α3

presenting Table 1 which is called the 4-power table that gives a correspondence between DNA and F16. In
this table, there is a property that the related DNA double pair of an element of F16 is reverse of the related
DNA double pair of fourth power of the element of F16. For instance, α2 → GC and (α2)4 = α8 → CG.

The Watson-Crick complement is given by Ac = T,Tc = A,Cc = G,Gc = C. Hence we use Watson-Crick
complement such that (AA)c = TT, ..., (TC)c = AG. If α is a codeword, we show α = (α0, ..., αn−1). We define
the complement of α to be αc = (αc

0, ..., α
c
n−1), the reverse-complement of α to be αrc = (αc

n−1, ..., α
c
0).

The following definition describes how to match the codewords over the field with DNA codewords.

Definition 4.1. Let C be a code over F16 of length n and c ∈ C be a codeword where c = (c0, c1, ..., cn−1), and ci ∈ F16.
We define

Θ(c) : C→ S2n
D4

where (c0, c1, ..., cn−1)→ (b0, b1, ..., b2n−1) (7)

where each of ci is mapped to coordinate pairs (b2i, b2i+1) for i = {0, 1, ..., n − 1} defined in Table 1. Hence, Θ(c) =
(b0, b1, ..., b2n−1) is a DNA codeword of Θ(C) where b j ∈ SD4 , for j ∈ {0, 1, ..., 2n − 1}.
For instance, (c0, c1, c2, c3) = (α, α5, α6, α11)→ (ATCCACCT) = (b0, b1, b2, b3, b4, b5, b6, b7).

In order to obtain DNA codes, we define and use a new family of the lifted polynomials over F16.

Definition 4.2. Let 1(x) be a self reciprocal polynomial over Z2 and 1(x)|(xn − 1) with deg(1(x)) = t. A 4-lifted
polynomial of 1(x) is denoted by l(4)

1 (x) ∈ F16[x]
if t is odd, then

ℓ(4)
1 (x) =

t−1
2∑

i=0

τi; τi =

βv
i xi + β4v

i xt−i , ai , 0
0 , ai = 0

, (8)

if t is even, then

ℓ(4)
1 (x) =

t
2∑

i=0

τi; τi =


βv

i xi + β4v
i xt−i , ai , 0, i , t/2

0 , ai = 0
β t

2
x

t
2 , ai , 0, β t

2
∈ {0, 1, α5, α10}, i = t/2

(9)

where βi ∈ F16 − {0}, ℓ(4)
1 (x) is shortly denoted by ℓ(4) polynomial of 1(x).
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In the previous section, complement pairs had the same coefficients, however in this definition one is
the fourth power the other.

Example 4.3. Let n = 15 and

1(x) = 1 + x + x3 + x4 + x6 + x7

be a self reciprocal polynomial where 1(x)|(x15 − 1). Some examples of 4-lifted polynomials of 1(x) are as follows

ℓ(4)
1 (x) = α + α4x + α7x3 + α7∗4x4 + α4∗4x6 + α4x7

and

ℓ(4)
1 (x) = α4 + α2x + α6x3 + α9x4 + α8x6 + x7.

Theorem 4.4. Let ℓ(4)
1 (x) be a 4-lifted polynomial of a self reciprocal polynomial 1(x) over F16 and 1(x)|(xn−1)(mod2)

with deg(1(x)) = t where n is odd. Let

S = {ℓ(4)
1 (x), xℓ(4)

1 (x), ..., xn−t−1ℓ(4)
1 (x)} (10)

and Cℓ(4) = ⟨S⟩. Then Θ(Cℓ(4) ) is a reversible DNA code of length 2n which is denoted by Cℓ(4) = ⟨ℓ(4)
1 (x)⟩.

Proof. Θ(
∑

i xil(4)
1 ) determines DNA codewords of Θ(Cℓ(4) ). Reverses of DNA codewords are denoted as

follows

Θ(
∑

i

xil(4)
1 (x))r = Θ(

∑
i

xn−t−1−il(4)
1 (x))

where i ∈ {0, 1, ..., n− t− 1}. By Lemma 3.4, Θ(Cℓ(4) ) is a reversible DNA code because of the structure of the
spanning set S for Cℓ(4) .

Note that ⟨ℓ(4)
1 (x)⟩ is not an ideal but an F16- linear code spanned by S.

Theorem 4.5. Let ℓ(4)
1 (x) be a 4-lifted polynomial over F16 of a self reciprocal polynomial 1(x) and 1(x)|(xn−1)(mod2)

with deg(1(x)) = t where n is odd. Let r(x) = 1 + x + ... + xn−1 and

S = {ℓ(4)
1 (x), xℓ(4)

1 (x), ..., xn−t−1ℓ(4)
1 (x), r(x)} (11)

and Cℓ(4) = ⟨S⟩. If Cℓ(4) is a code which generated by the spanning set S, thenΘ(Cℓ(4) ) is a reversible complement DNA
code of length 2n and Cℓ(4) is denoted by Cℓ(4) = ⟨ℓ(4)

1 (x), r(x)⟩.

Proof. In addition to proof of Theorem 4.4, we need to consider their complements too. First we observe
that for each α ∈ F16 we have α + 1 = αc. In order to include the complements of the codewords, it suffices
to have r(x) included in the code.

Example 4.6. Let C = (1(x)) be a reversible linear code length of 9 over Z2 where 1(x) = 1 + x + x3 + x4 + x6 + x7 is
a self reciprocal polynomial. Let ℓ(4)

1 (x) = α + α4x + α7x3 + α7∗4x4 + α4∗4x6 + α4x7 be a ℓ(4) polynomial over F16. We
find (18, 256, 6)SD4

reversible DNA code that is generated by Cℓ(4) = ⟨ℓ(4)
1 (x)⟩.

For Cℓ(4) = ⟨ℓ(4)
1 (x), r(x)⟩, Θ(Cℓ(4) ) gives (18, 4096, 5)SD4

reversible complement DNA code.
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Table 2: [9, 3, 5] reversible complement DNA code
AAAAAAAAA TTTTTTTTT CCCCCCCCC GGGGGGGGG
ATCAGGACT TAGTCCTGA CGACTTCAG GCTGAAGTC
ACGATTAGC TGCTAATCG CATCGGCTA GTAGCCGAT
AGTACCATG TCATGGTAC CTGCAACGT GACGTTGCA
TCAGGACTA AGTCCTGAT GACTTCAGC CTGAAGTCG
TGCGAGCGT ACGCTCGCA GTATCTATG CATAGATAC
TAGGCTCCC ATCCGAGGG GCTTAGAAA CGAATCTTT
TTTGTCCAG AAACAGGTC GGGTGAACT CCCACTTGA
CGATTAGCA GCTAATCGT ATCGGCTAC TAGCCGATG
CCCTCGGAT GGGAGCCTA AAAGATTCG TTTCTAAGC
CTGTATGTC GACATACAG AGTGCGTGA TCACGCACT
CATTGCGGG GTAACGCCC ACGGTATTT TGCCATAAA
GTACCATGA CATGGTACT TGCAACGTC ACGTTGCAG
GACCTGTTT CTGGACAAA TCAAGTGGG AGTTCACCC
GGGCGTTAC CCCGCAATG TTTATGGCA AAATACCGT
GCTCACTCG CGAGTGAGC TAGACAGAT ATCTGTCTA

Table 3: some examples for the codes that have the best possible parameters, obtained by lifted polynomials over F4

n Lifted polynomial Code parameters
9 1 + ωx + x2 [9,7,2]
9 1 + ω2x + x2 [9,7,2]
15 1 + ωx + x2 [15,13,2]
15 1 + ω2x + x2 [15,13,2]
15 1 + x + ωx2 + x3 + x4 [15,11,4]
15 1 + x + ω2x2 + x3 + x4 [15,11,4]
15 1 + ωx + x2 + ωx3 + x4 [15,11,4]
15 1 + ωx + ω2x2 + ωx3 + x4 [15,11,4]
15 1 + ωx + ωx3 + ωx4 + ωx5 + ωx7 + x8 [15,7,7]
15 1 + ω2x + ω2x3 + ω2x4 + ω2x5 + ω2x7 + x8 [15,7,7]

5. Some applications of DNA codes

We can apply lifted polynomials to generate reversible codes and reversible DNA codes over F4 where
F4 = {0, 1, ω, ω2} and A→ 0,T → 1,C→ ω,G→ ω2. All of the statements and results of Section 3 over F16
also hold true for F4 .

Example 5.1. Let C = (1(x)) be a reversible linear code length of 9 over Z2 where 1(x) = 1 + x + x3 + x4 + x6 + x7.
Let ℓ1(x) = 1+ωx+ω2x3 +ω2x4 +ωx6 + x7 be a lifted polynomial over F4 = {0, 1, ω, ω2}. Cℓ is a [9, 2, 6]4 reversible
DNA code. If Cℓ = ⟨ℓ1(x), r(x)⟩ , then Cℓ gives [9, 3, 5]4 reversible complement DNA codes (See Table 2). In this
example, we use lifted polynomial for DNA code over F4. In this Table 2 the [9, 3, 5]4 reversible complement DNA
code for illustration purposes is presented explicitly.

In Table 3, some codes that are generated by lifted polynomials are given. These codes have the best
possible parameters over F4. These constructions are direct constructions comparing to [11] where the
codes with such parameters are obtained via indirect methods such as ”shortening a code” or other. Table
3 shows that a code can be generated by different lifted polynomials. In other words, lifted polynomials
provide rich families of codes. Also, these codes give reversible DNA codes over F4.
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6. Conclusion

In this paper we studied reversible codes of odd length over F16 and DNA codes of even length which
are obtained from F16. We introduce lifted and 4-lifted polynomials to construct the reversible codes and
the reversible DNA codes. We found some reversible codes of odd length obtained by lifted polynomial
over F4. These codes have the best possible parameters and also they are reversible codes. We introduce a
correspondence between DNA double (bases) pairs and the elements of a finite field of size 16. Hence, we
introduce a new method for obtaining DNA codes of even length over F16. This new method introduced
here is an ongoing research of the authors. An open and interesting problem is to establish a bound for
the minimum distance of this family of codes. Open problems include the study of DNA codes that are
generated by lifted polynomials over Fq and their properties. Also, it will be interesting to construct dual
of the codes that are generated by lifted polynomials.

Acknowledgement: We would like to express our sincere thanks to the referee for his/her valuable
remarks and careful reading that helped us to improve the presentation of our work tremendously.
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