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Abstract. The filiform and the quasi-filiform Lie algebras form a special class of nilpotent Lie algebras.
The aim of this paper is to compute the index and provide regular vectors of this two classes of nilpotent
Lie algebras. We consider graded filiform Lie algebras L,, Q,, then n-dimensional filiform Lie algebras for
n < 8, also graded quasi-filiform Lie algebras and finally Lie algebras whose nilradical is Qs,.

1. Introduction

The index of a Lie algebra has applications to invariant theory and is of interest in deformation and
quantum group theory. A Lie algebra is said to be Frobenius if the index is 0 which is equivalent to
say that there is a functional in the dual such that the bilinear form Br, defined by Br(x,y) = F([x, y]),
is nondegenerate. Frobenius algebras were first studied by Ooms in [20]. He proved that the universal
enveloping algebra of the Lie algebra is primitive, that is it admits a faithful simple module, provided that
the Lie algebra is Frobenius and that the converse holds when the Lie algebra is algebraic. Most of the
studies of index concerned simple Lie algebras or their subalgebras. They have been considered by many
authors [5, 7-10, 21, 24, 25]. Notice that simple Lie algebra can never be Frobenius but many subalgebras
are. In this paper we focus on the computation of the index for nilpotent Lie algebras, mainly the class of
filiform and quasi-filiform Lie algebras.

The filiform Lie algebras were introduced by M. Vergne (see [26]), she classified them up to dimension 6
and also characterized the graded filiform Lie algebras. In the last decades several papers were dedicated
to classification of filiform Lie algebras of larger dimensions. In particular, L, plays an important role in
the study of filiform and nilpotent Lie algebras. It is known that any n-dimensional filiform Lie algebra
may be obtained by deformation of the one of the filiform Lie algebras L,. The classification of naturally
graded quasi-filiform Lie algebras is known. They have the characteristic sequence (n —2,1,1) where n is
the dimension of the Lie algebra. The aim of this paper is to give an extended version of our paper [1]
and to focus on filiform Lie algebras and quasi-filiform Lie algebras. We compute the index and provide
the regular vectors of n-dimensional filiform Lie algebras for n < 8 and quasi-filiform Lie algebras. In the
first Section, we summarize the index theory of Lie algebras. Then, in Section 2, we review the nilpotent
and filiform Lie algebras theories. Section 3, is dedicated to the two graded filiform Lie algebras L, and
Qy. In Section 4, we consider the classification up to dimension 8 and compute for each filiform Lie algebra
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its index and the set of all regular vectors. In Section 5 we compute the index of graded quasi-filiform
Lie algebras, and provide corresponding regular vectors. In the last section we compute the index of Lie
algebras whose nilradical is Qy;.

2. Lie algebras Index

Throughout this paper K is an algebraically closed field of characteristic 0. In this Section, we summarize
the index theory of Lie algebras. Let G be an n-dimensional Lie algebra. Let x € G, we denote by adx the
endomorphism of G defined by adx (y) = [x,y] forally € G.

Definition 2.1. A Lie algebras G over K is a pair consisting of a vector space V = G and a skew-symmetric bilinear
map[,]: G xXG — G (x,y) = [x,y] satisfying the Jacobi identity

[ [v.z]] + [y, [z x]] + [z [x,y]] =0  Vx,y,zegG.

Let V be a finite-dimensional vector space over K provided with the Zariski topology, G be a Lie algebra
and G" its dual. Then G actes on G* as follows:

GxG -G
(v flmx-f

whereVy € G:(x- f) (y)=f ([, y])-
Let f € G" and @ be a skew-symmetric bilinear form defined by

Or:GxG—-K
(% y) = ©r (v, y) = f([x y])-
We denote the kernel of the map @ by G/,
G =xeG: flxy) =0 VyegG). (1)
Definition 2.2. The index of a Lie algebra G is the integer
xg = inf{dim G'; f € G'}.

A linear functional f € G is called reqular if dim G/ = xg. The set of all regular linear functionals is denoted by
G;.

Remark 2.3. The set G; of all regular linear functionals is a nonempty Zariski open set.

Let {x1,---, x,} be a basis of G. We can express the index using the matrix ([x;, x;])1<i<j<: as a matrix over
the ring 5(G), (see [6]). We have the following proposition.

Proposition 2.4. The index of an n-dimensional Lie algebra G is the integer

X (G) = n — Rankgg) ([xi/ Xj])

1<i<j<n
where R(G) is the quotient field of the symmetric algebra S(G).
Remark 2.5. The index of an n-dimensional abelian Lie algebra is n.

Proposition 2.6. Let G be a Lie algebra, and G be a central extension of Go by a 1-dimensional Lie algebra L =cC,
then x (G) = x (Go) + 1. Moreover if f is a reqular vector of G, then f = g + pc*, where g is a reqular vector of Gy
and p € C.
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Proof. Indeed, we have

[x,c] =0 Vxe€ G,
[c,c] = 0.

Mg, 0

Then the matrix associated to G is of the form M = ( 0 0

). It follows that Rank (G) = Rank (Gy).
Therefore

x(@) = x(Go) + 1.

Let g be a regular vector of Gy. Then dim Qg = x(Go) and f = g + pc* is a regular vector of G.
We know that Gf = {xe€ G, f([x,y]) =0,YyeG}.
We set

X =9+ Acand y = yo. pc.
Then

f(lxyD) =g{xyD) + pc'([x, y]) = g ([x0, yol) -
We have

g([XQ, yo]) =0if Xo € go, Vy (S go.
Therefore, G/ = Qg +cC. O

Remark 2.7. In the sequel, we use the following procedure to compute reqular vectors. We recall that if dim G/ =
X (G) then f is a reqular vector of G, where x (G) = min {dim G/, fe g*} and G ={xeG: f([x,y]) =0 Vy € G}

The equation f([x,y]) = 0 implies Y}, Z';:l Yo aibjpsx; ([xi, xj]) =0.
It is equivalent to
Y ):;’:1 Yo a,-bjpSC; = 0, where Cf.j are the structure constants with respect to the basis {x;};. Then for all j,

we have Y0y Y.i_y aipsC; = 0. It leads to

ai 0

s=1 if . .
ay 0
We denote the element (z;;l pSCij)ij by M and assume Cf.]. = —C?:i.

We search the minors of order n — x (G) of non-zero determinant of the matrix M.
The matrix M = (ZZzl pSij)ij is the same matrix as the multiplication table in which we replace xs by ps.

Definition 2.8. A Lie algebra G over an algebraically closed field of characteristic 0 is said to be Frobenius if there
exists a linear form f € G* such that the bilinear form @ on G is nondegenerate.

In [9], the author described all the Frobenius algebraic Lie algebras G = R + N whose nilpotent radical
N is abelian in the following two cases: the reductive Levi subalgebra R acts on N irreducibly and R is
simple. He classified all the algebraic Frobenius algebras up to dimension 6. See also [20] and [21] for
further computations.

We discuss now the evolution by deformation of the index of a Lie algebra. About deformation theory
we refer to [12, 18, 19]. Let V be a K-vector space and Gy = (V,[, ]o) be a Lie algebra. Let K][[t]] be
the power series ring in one variable ¢ and coefficients in IK and V[[{]] be the set of formal power series
whose coefficients are elements of V. A formal Lie deformation of G is given by the K[[t]]-bilinear map
[, 1 : VI[t]] X V[[t]] = V[[H] of the form [, ] = Y50l , li#, where each [, ]; is a K-bilinear map
[, ]i: VXV -V, satisfying the skew-symmetry and the Jacobi identity.
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Proposition 2.9. The index of a Lie algebra decreases by one parameter formal deformation.

Proof. The rank of the matrix ([xi, xj])ij increases by deformation, consequently the index decreases. [

3. Nilpotent and Filiform Lie algebras

In this Section, we review the theory of nilpotent and filiform Lie algebras. Let G be a Lie algebra. We
set C'G = G and C*G = [C*'G, G], for k > 0. A Lie algebra G is said to be nilpotent if there exists an integer
p such that C’G = 0. The smallest p such that C*G = 0 is called the nilindex of G. Then, a nilpotent Lie
algebra has a natural filtration given by the central descending sequence:

G=CG2C'G2---C'G2CrG=0.
We have the following characterization of nilpotent Lie algebras (Engel’s Theorem).
Theorem 3.1. A Lie algebra G is nilpotent if and only if the operator adx is nilpotent for all x in G.

In the study of nilpotent Lie algebras, filiform Lie algebras, which were introduced by M. Vergne, play
an important role. An n-dimensional nilpotent Lie algebra is called filiform if its nilindex p equals n — 1. The
filiform Lie algebras are the nilpotent algebras with the largest nilindex. If G is an n-dimensional filiform
Lie algebra, then we have dimC'G=n—-i for 2<i<n.

Another characterization of filiform Lie algebras uses characteristic sequences c(G) = sup{c(x) : x €
G\ [G, G}, where c(x) is the sequence, in decreasing order, of dimensions of characteristic subspaces of the
nilpotent operator adx.

Definition 3.2. An n-dimensional nilpotent Lie algebra is filiform if its characteristic sequence is of the form c (G) =
n-1,1).

4. Index of Graded filiform Lie algebras

The classification of filiform Lie algebras was given by Vergne ([26]) up to dimension 6 and then extended
to dimension 11 by several authors (see [2, 3, 14, 17, 23]).

In the general case there is two classes L, and Q, of filiform Lie algebras which plays an important role
in the study of the algebraic varieties of filiform and more generally nilpotent Lie algebras.

Let {x1,---,x,} be a basis of the K-vector space L,, the Lie algebra structure of L, is defined by the
following non-trivial brackets : [x1,x;]] =xi4y1 i=2,..,n-1.

Let {x1,- -+, x,=¢} be a basis of the K-vector space Q,, the Lie algebra structure of Q, is defined by the
following non-trivial brackets.

Qn : [xlrxi] = Xi+1 i= 2/ (e 1/
[xi, Xnois1] = (1) x, i=2,..,k wheren =2k
The classification of n-dimensional graded filiform Lie algebras yields two isomorphic classes L, and
Q, when n is odd, and only the Lie algebra L, when # is even.
It turns out that any filiform Lie algebra is isomorphic to a Lie algebra obtained as a deformation of a
Lie algebra L,,.

4.1. Index of Filiform Lie algebras

We aim to compute the index of L, and Q, and regular vectors.
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Index of L, :.
Set f = }.is1 pix; € V.

Proposition 4.1. For n > 3, the index of the n-dimensional filiform Lie algebra L, is x (L,) = n — 2. The regular
vectors of Ly, are of the form f = p1 x]+ p2 x5 + ps x; where s € {3, ..., n} and ps # 0.

Proof. Since the corresponding matrix to the Lie algebra L, is of the form

0 x3 -+ x, O
-x3 0 -+ 0 0
-x, 0 -~ 0 0
0 o --- 0 0

and its rank is 2, then x(L,) = n — 2. The second assertion is obtained by a direct calculation:
Wesetx =Y 1, aixi, y= Z?:l bjxj, f = Yi—q psX; and G =xeG: f(lx,y) =0 Yy e G}.
Then f([x, y]) = 0 implies Y.\ Y.7q Yoy aibjpsx; ([xi, x]-]) = 0. It is equivalent to

—_

n n-1 n—

Z Z a1bjpsx; ([xl,x]-]) — Y aibipsx; ([xl,xj]) =0.

s=1 j=2 i

I
N

Then we obtain Y./, ¥/ (a1b; — a;b1) psx; (xi41) = 0. The equation Y./ (a1b; — a;b1) pis1 = 0 should hold for
all b;. It leads to the following system

mpis1 =0, 2<i<n-1,
Y aipis = 0.

Therefore, one of the p; satisfies p; # 0 wherei € {3,...,n}. O

Index of Q, :.

Proposition 4.2. For n = 2k and k > 2, the index of the n-dimensional filiform Lie algebra Q, is x (Q,) = 2. The
regular vectors of Q,, are of the form f = Y.iL; pix; with p, # 0.

Proof. Since the corresponding matrix to the Lie algebra Q,, is of the form

0 X3 X4 0 Xp1 o Xp O
—X3 0 o - 0 —x, O
-xg 0 0 - x4 0 0

X1 0 —x, .- 0 0 0
X, X, 0 - 0 0 0
0 0 0 0 0 0 0

and its rank is n — 2, then x(Q,) = 2. The second assertion is obtained by the following calculation.
Let {x1,x2, ....., X} be a fixed basis of Q,, x = Y.i_; aix;, y = Z;lzl bixj, f = Yy psx; and G =xeg:
flx,y) =0 Yy e Gl
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The equation f([x,y]) = 0 may be written as Y./; Y7 Xy aibjpsx; ([xi, x]-]) = 0. It is equivalent to
L5 @bi=aiby) pin+ L5 (<) @1bnis1 = ay-isab) pu = 0. Then
Y5 (@pia)bi =0,
~by Y15 aipi = 0,
L5 (<1 (a1pn) bu-in =0,
- X5 (D)™ @ueiapu) bi = 0.

Canceling the first and the last columns and the corresponding lines, leads to the following minor

o 0 - 0 -x
o 0 - x, 0
0O -x, --- 0 0
X3 0 - 0 0

Hence, we obtain f = Y'I; pix;, withp, #0. O
Using Proposition 2.9, we obtain the following result.
Corollary 4.3. The index of a filiform Lie algebra is less or equal to n — 2.

Proof. Any filiform Lie algebra N is obtained as a deformation of the Lie algebra L,, since x (L,) = n —2
and using Proposition 2.9, one has xy (N) <n—-2. O

5. Index of Filiform Lie algebras of dimension < 8

In this section, we compute the indexes of n-dimensional Filiform Lie algebras with n < 8. Let G be an
n-dimensional Lie algebra. We set {x1,x2, ......, x,} be a fixed basis of V = G, {x;,x;, ...,x;} is the dual basis
and f = Loy pix)-

5.1. Filiform Lie algebras of dimension less than 6
Any n-dimensional Lie algebras with n < 5 is isomorphic to one of the following Lie algebras.
Dimension 1 and 2 We have only the abelian Lie algebras.
Dimension 3
7:31 : [xl,xz] = X3.
Dimension 4
Flilx,x0] =x3, [, %3] = x4
Dimension 5
Fa [, xi] = xipg, fori = 2,3,4.
7:52 : [Xl,x,‘] = Xi+1, fori= 2, 3,4 and [xz,X3] = X5.

The computations of the index using Proposition 2.4 lead to the following result.
Proposition 5.1. The indexes of n-dimensional filiform Lie algebras with n <5 are
©(7) =1 x(7)=2 x(73)=3 x(7)=1

The regular vectors of T} for n = 3,4,5 are of the form f = Y2, pix; with one of p; # 0, i€ {3, 4, 5}.
The regular vectors of F2 are of the form f = Y2, pix; with p; # 0,1 € {3,4,5}.

Proof. The filiform Lie algebras 7, 7 and 7 are of type L,. For 2, the corresponding matrix is of rank
4, then the index is one. The regular vector are obtained by direct calculation. [
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5.2. Filiform Lie algebras of dimension 6

Any n-dimensional Lie algebras with n = 6 is isomorphic to one of the following Lie algebras.

7:61
7:62
7:63
(fr-64
¢~65

: [xl,xi] = Xi+1, fori= 2,3,4,5.

2 [x1, xi] = xi3q, fori =2,3,4,5, [x2, x3] = x6.

2[xq, xi] = xi41, fori = 2,3,4,5, [x2, x5] = x6, and [x3, x4] = —x6.

: [xl,xi] = Xi+1, fori= 2, 3, 4, 5, [Xz, X3] = X5, and [XZ,X4] = Xg.

s [x1, %] = x4, fori = 2,3,4,5, [x2, x3] = x5 — X6, [x2, X4] = X6, [X2, X5] = X6, [X3, X4] = —x.

Proposition 5.2. The indexes of 6-dimensional filiform Lie algebras are

x(F)=2fori=2,4,3,5.

X

() -+

The regular vectors of F' are of the form f = Yo, pix;with one of p; # 0, i = {3, ..., 6} (class of L,,).
The regular vectors of F2 are of the form f = p1x} + paxy + p(xy + X + X5)+ psxs.

The regular vectors of F, are of the form f = Y, pix; with pe = 0.

The regular vectors of F, for i = 3,5 are of the form f = Yo, pix; with one of p; # 0,1 € {3, ...6}.

5.3. Filiform Lie algebras of dimension 7

Any n-dimensional Lie algebras with n = 7 is isomorphic to one of the following Lie algebras.

s[xq, xi] = xj4q, fori=2,3,4,5, [x1,x6] = axy, [x0,x3] = (1 +a)xs, [x2,x4] = (1 + ) xe, [x3,x4] = x7.
s[xq, xi] = xi31, fori=2,3,4,5,6, [x2,x3] = x5, [x2,x4] = X6, [%2,%5] = x7.
t[xq, xi] = xi1, fori=2,3,4,5,6, [x2,x3] = x5 + x6, [X0,X4] = x6, [%0,%5] = x7.
[x1,xi] = xiy1, fori = 2,3,4,5,6, [x2,x3] = x5, [x2,x4] = x7, [x2,%5] = x7, [x3,x4] = —x7.
sx1, xi] = xi41, fori =2,3,4,5,6, [x2,x3] = X6 + x7, [X2,x4] = X7.
2[xq, xi] = xi4q, fori=2,3,4,5,6, [x2,x3] = x6, [X2,%4] = x7.
[xq, xi] = xi41, fori =2,3,4,5,6, [x,x3] = x7.
:[x1, xi] = xi41, fori =2,3,4,5,6 (class of Ly,).

Proposition 5.3. The indexes of 7-dimensional filiform Lie algebras are

x(F)=3fori=2,3,56,7, x(F)=1,

X

X

3ifa=0,
(7)-5

(72) - {1 ifa #{0,~1)

The regular vectors of ! are given by the following table

item regular vectors
i=1 f=2?:1p,vx:+p(xg+x;), ifa=0
f=x pix; withp; #0, ifa # 0
f = p1x] + paxs + p(x + x5+ xp) withp # 0
f= Z?:l pix;
f =YL pix; withpy =0,p3 =0
f =p1x] + pax; + pax; + pax;+p(x; + x7)
f =p1x] + pax; + pax; + p(x; +x7)
f = Prxq + paxy + pax; + pax+p(xg +x7)
f=y7, pix;with one of pi # 0 i € {3,..7}

Il
Q[N W[ N
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6. Index of Graded quasi-filiform Lie algebras

The classification of naturally graded quasi-filiform Lie algebras is known and given in [15]. They have
the characteristic sequence (n — 2,1, 1) where n is the dimension of the Lie algebra.

Definition 6.1. [15] An n-dimensional nilpotent Lie algebra G is said to be quasi-filiform if C"3G # 0 and
C"2G =0, where C°G = G, C'G = [G,C'G].

In the following, we describe the classification of naturally quasi-graded filiform Lie algebras.
Let B = {xpx», ..., x,_1} be a basis of G :

6.1. Naturally graded Quasi-filiform Lie algebras

We consider the following classes of n-dimensional Lie algebras which are naturally graded quasi-
filiform Lie algebras.

We set
Split: L1 ®C(n>4):

[x0, xi] = xis1. 1<i<n-3.

Qu1®C(n>7, nodd),

[x0,xi] =%x41.  1<i<n-3,

[, Xn_o—i] = (1) 20 1<i<ns,
Principal : L, (n >5,rodd, 3<r< 2[%] - 1) :

[x0, xi] = xis1, ) 1<i<n-3,

[xl/xr l] - ( 1)1_1 Xn-1, 1 < i < %1

Q( )(n>7 nodd, rodd,3<r<n-4):

[xo,x] =xis1,  1<i<n-3,

[xir x?‘fi] = (_1)1_1 Xn-1, 1<i< %/

[xi, Xn2-i] = (1) 2, 1<i<t3
Terminal : 7,3y (n even,n > 6) :

[x0, xi] = Xi41, 1<i<n-3,

[xu-1,x1] = %xn—zl

[x1, Xn3-i] = (=1)7" (s + Xp-1), 1<i<i?,

[, Xpa—i] = (=1)7" =22y, 1<i<iH,

T nn-4 (nodd,n >7),

[x0, xi] = x1+1/ 1<i<n-3,

[xn 1,3(1] - an 4+ 1< i < 2/

[x xn4l]_(1)11(xn4+xn1) 1SiSnT_5/

[ xpanil = (<17 252, 1<i< B,

[, %ia-] = (D7 (= 1) 25,5, 1<i< R
Moreover, we have the following 7-d1men51onal and 9-dimensional Lie algebra [11].

[x0,xi] = xi41, 1<i<4,

[x6,xi] = x34, 1<i<2,

[x1, x2] = x3 + xs,

[x1, %] = xip1, 3<i<4.

[x0, xi] = xix1, 1<i<6,

[xs, xi] = 2x544, 1<i<2,

€los) 3 X1, x4l = x5+ x5, [x1,%5] = 2%,
[x1,%6] = 3x7, [x2,x3] = —x5 — x3,
[x2, x4] = =x6, [x2,x5] = —x7.

8(7/3) :
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[x0,x;] = xis1, 1<i<6,
[xg, xi] = 2x54, 1<i<2,
5(29,5) 24 [x1, 4] = x5+ x5, [x1,x5] = 2x6,
[x1,x6] = x7, [x2,x3] = —x5 — x3,
[x2, x4] = —x4, [x2, x5] = x7, [x3, x4] = —2x7.
[x0,xi] = xi41, 1<i<6,
[xo,x8] =x6, 1<i<2,
8?9,5) 1qlx1, xa] = xs, [x3,x4] = —3x7,
[x2, x4] = —x6, [x1,X5] = 2x,
[x2,x3] = —x8, [x2,x5] = 2x7.

are graded quasi-filiform Lie algebras.

Theorem 6.2. [15] Every n-dimensional naturally graded quasi-filiform Lie algebra is isomorphic to one of the
following Lie algebras :

o IfniseventoL,_1 ®C, T(yu-3), or Ly withroddand3 <r <n-3.

o IfnisoddtoL, 1 ®C, Qua ®C, Lyn-2), Tun-1, Loy, Or Q(n ) with r odd, and 3 <r < n —4. In the case of

_ _ 1 2 3
n=7andn =9, weadd ¢y3), €95 €95 €05)

6.1.1. Index of graded quasi-filiform Lie algebras
In the following, we compute the indexes of graded quasi-filiform Lie algebras. Let G be an n-
dimensional graded quasi-filiform Lie algebra.

Theorem 6.3. Indexes of graded quasi-filiform Lie algebras are
case where n is even
1. x(Ly-1®@C) =n-2.
2. x(Tn-3) = 2.
3. x(Lup)=n-r—1, 3<r<n-3.
case where n is odd
XLy ®C)=n-2.
X(Qna@C) =3
X(L(n,n—Z)) =3.

X(7'(n,n—4)) =3.
X(-E(n,r)) =n—-r—-1, 3<r<n-3.

X(Q(n,r)) =3.
)((S(7,3)) = 3.
X (€<195>) =3
x(elgs) =2 i=23.

Proof. Case where 1 is even
The corresponding matrix to the graded quasi-filiform Lie algebra L,_; @ C is of the form

O ® NN

0 X2 Xn-1 0 0
—X 0 0 0 O
—Xn-1 0 0 0 0
0 0 0 0 0
0 0 0 0 0



H. Adimi, A. Makhlouf/ Filomat 27:3 (2013), 467483 476

Its rank is 2, then x(L,-1 @ C) = n — 2.
The corresponding matrix to the graded quasi-filiform Lie algebra 7, ,-3) is of the form

0 X2 X3 tee Xn-3 Xpn-2 0 0
—X2 0 0 cee Xp—3 + X1 (%1) Xy 0 (%) Xn-2
—x; 0 0 e = (58) a0 0 0
—Xn-3 Xn-3 = Xn-1 (nT_6) Xn—2 0 0 0 0
X2 —(5)x2 O 0 0 00
0 0 0 0 0 0 0
0 —(5)xu2 0 0 0 0 0

Its rank is n — 2, then (7 (,n-3)) = 2.
The corresponding matrix to the graded quasi-filiform Lie algebra Ly, ;) is of the form

0 Xy X3 v Xy Xyp_3 Xpp 0 O
—Xo 0 0 - =x,0 - 0 0 0 0
—X3 0 o .- 0 0 0 0 0
—Xr Xn-1 0 0 0 0 00
—Xp3 0 0 0 0 0 0 0
X, 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

For3 <r<n-3,itsrankisr + 1. Then x(Ly, ) =n—-r—-1.
Case where 1 is odd :
The corresponding matrix to the graded quasi-filiform Lie algebra L,—; & C is of the form

0 X2 Xn—-1 0 0
—X2 0 0 0 O
—xp—1 O 0 0 O
0 0 0 0 O
0 0 0 0 0

Its rank is 2, then x(L,-1 ®C) = n — 2.
The corresponding matrix to the graded quasi-filiform Lie algebra Q,_; @ C is of the form
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0 X2 X3 tee Xn-3 Xn-2 0 0
—X2 0 0 s 0 —Xp-2 0 0
—X3 0 0 cee —Xp-2 0 0 0
—Xn-3 0 _Xp-2 0 0 0 0
—Xn-2  Xp-2 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

Its rank is n — 3, then x(Q,-1 ® C) = 3.

The corresponding matrix to the graded quasi-filiform Lie algebra L, ,—») is of the form

0 X2 X3 X4 Xn—-3 Xn-2 0 0
—X 0 0 0 0 —x,-1 0 0
—X3 0 0 0 Xp-1 O 0 O
—X4 0 0 0 0 0 0 0

: : 0 0 0 0
—Xp—3 0 —xyp-1 O 0 0 0 0
—Xp—2 Xp-1 O 0 0 0 0 O
0 0 0 0 0 0 0 O
0 0 0 0 0 0 0 O

Its rank is n — 3, then x(L,n-2) = 3.
The corresponding matrix to the graded quasi-filiform Lie algebra Ly, ;) is of the form

0 Xy X3 ce- X, Xyp3 Xpp 0 O
—X> 0 0 - —=x41 - 0 0 00
—X3 0 o - 0 0 0 0O
—Xr Xn-1 0 0 0 0 00
—x,3 0 0 0 0 0 00
X, 0 0 0 0 0 00
0 0 0 0 0 0 00

0 0 0 0 0 0 00

Its rank is ¥ + 1, then (L) =n—-r—-1,3<r<n-4.

The corresponding matrix to the graded quasi-filiform Lie algebra 7, ,—4) is of the form

477
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0 X2 X3 Xy T Xng Xn-3 Xp2 0 0
—X2 0 0 0 Xn—4 + Xn-1 %xn—iﬁ 0 0 _(n_;5 Xn-3
—x; 0 0 0 (s Baa 000 0 —(5)xn
—x 0 0 0 D 2(5) e 0 0 00
—Xpea  —Xpa — Xp_1 ’%)xn_3 '2(”—;6)xn_2 0 0 0 O 0
s —(5)xs —(5)x2 0 0 0 0 00
Xy 0 0 0 0 0 0 00
0 0 0 0 0 0 0 00
0 ()rs  (5)x2 0 0 0 0 00

Its rank is n — 3, then x (7’(,1,,7,4)) =3.
The corresponding matrix to the graded quasi-filiform Lie algebra Q(” ) is of the form

0 X X3 0 X cer Xpl3 Xpoo 0 0
-Xo 0 o - =x,1 -+ 0 —x,» 0 O
—X3 0 o -+ 0 o 0 0 0 O
—X; Xp-1 0 -+ 0 .- 0 0 0 O
—x,-3 0 o --- 0 0 0 0 O
—Xn-2 Xn-2 0 s 0 0 0 0 0
0 0 o -+ 0 0 0 0 O
0 0 o --- 0 0 0 0 O

For3 <r<n-4,itsrankisn — 3. Then x(Q») =3. O
Remark 6.4. There are no Frobenius quasi-filiform Lie algebra.
6.1.2. Regular vectors

Proposition 6.5. The regular vectors of the families T, -3y, T (nn-a), Ln,r) and Q(m) are given by the following
functionals f where x; are the elements of the dual basis and p; are parameters.

1. 7?mn—3):

—_

n—

f=) pixiwithp,, #0.

i
o

2. 77nm—4):

n—-1

f= Zpix;f with py,— # 0.
i=0

3. Ly :noddorevenandr <n—2:

n-1
f= Zpix;f with pp—1 # 0 and one of p; # 0 wherei € {r+1,...,n —2}.
i=0
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49,
n—1
f= pi x; with p,_» # 0.
i=0
5. -L(n,n—z) .
n-1
f=) pix;withp,1 #0.
i=0

Proof. T(yu-3):
The associate system of the graded quasi-filiform Lie algebra 77, ,_3) is of the form:

n-3
Y. aipis1 =0,
i=1

aop2 — ﬂn—4(P(4—3 + Pu-1) — 52 a,-3Pn— + 20, app—2 =0,
aopis1 + (1) an-3-i(pu-3 + pn-1) — (1) 52a, 5 pp2 =0, i=2,.n1 -4,
AgpPn—2 + ”7_4011}?;1—2 =0,
—5401pyp = 0.
It turns out that p,_» # 0 gives a solution of this system such that dim G/ = xg, then the regular vectors
are given by : f = Y/ p; ! with p,_» # 0.
7—(71,11—4):
The associate system is of the form:

n-3
Y. aipi1 =0,
i=1

aopp2 — an—S(pn—4 + pn—l) - HTJjan—élpn—S + %an—lpn—?a = 0/

aops + 571—6(}7(1—4 + Pn-1) + ”7_711;1—5%—3 - %%—4%—2 + nz;san—lpn—Z =0,

aopic1 + (=1 aysi(Pp-s + pur) + (1) =20, 5 py s — (1) 30, 5 ipyr =0
i=3,.n-5,

aopn-3 = 0,
— 250 pps + S2arpu—2 =0,
AopPn—3 + 520 pu-3 + S2a5p,—2 = 0.
It follows that p,—» # 0 gives a solution of this system such that dim G/ = xg, then the regular vectors
are given by : f = Y/ p; ! with p,_» # 0.
Lypnoddorevenand r <n—2.
We cancel the columns (r + 1) until (n — 1) and the corresponding lines. We obtain the following minor

0 0 ... 0 —pua
0 0 o P 0
0 —pug - 0 0
Pui 0 ... 0 0

It is of non-zero determinant and this leads to f = }.i, pix;, with p,_1 # 0 and one of the p; satisfies
pi#0whereie{r+1,..,n—-2}.
The same reasoning and calculations are used for Q(m) and Ly -2, O

Remark 6.6. Since L, ® C and Q,,—1 & C are the central extension of L, and Q,,, then the reqular vectors could be
given using Proposition 2.6.
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7. index of Lie algebras whose nilradical is L, or Q»,

Snobel and Winternitz determined the Lie algebras whose nilradical is isomorphic to the filiform Lie
algebra L. In their work this algebra is denoted by 1,1 and it is defined with respect to the basis{xi, ..., x,}
by

[xi,x,] =xi21, i=2,...,n—1.

Theorem 7.1. [11] Let T be a solvable Lie algebra over a field K = R or C and having as nilradical n,,. Then it is
isomorphic to one of the following Lie algebras.

1. Ifdimt=n+1,set B={x,,..,x,, f} bea basis of T.
Tn+1,1 defined as
[fxil=m=-2+B)x;, i=1,..,n-1,
[f, xn] = xu.
Tys1,2 defined as
[f,xi]=x, i=1,.,n-1
Tn+1,3 defined as
[f,xi]=mn-1x;, i=1,..,n-1,
Lf, xn] = 2 + x4-1.
2. Ifdimt =n+2,set B={x1,...,xn, f1, f2} be a basis of 1.
Tus2,1 defined as
[, xi]=(n-1-d)x;,i=1,.,n-1,
[fo,xi]=xi,i=1,.,n-1,
[, x] =xp, i=1,..,n—1.

7.1. Index of Lie algebras whose nilradical is n,1 (Ly,)

Proposition 7.2. Indexes of Lie algebras whose nilradical is w1 are

Ifdimt=n+1, then x(ty41;) =n—-1,i=1,2,3.
Ifdimt=mn+2, then x(Tys2,1) =n— 2.

Proof. Set dim © = n + 1. The corresponding matrix to the algebra 71,1 is of the form:

0 0 - 0 0 -(n-2+P)x
0 0 0 0 -(n-2+P)x2
0 0 L o —2e
0 0 - 0 0 —Xp
n-2+B)x1 (m-2+P)x2 -+ (M—-2+P)xp-1 x, O

Its rank is 2, then x(ty411) =n —1.
The corresponding matrix of the Lie algebra 7,1, is of the form:

o o0 - 0 0 —x

o o0 - 0 0 -x

o o0 - 0 0 —xp
o o -~ 0 0 O

X1 X2 cee Xn—1 0 0

Its rank is 2, then x(ty412) =n —1.
The corresponding matrix to the Lie algebra 7,13 is of the form:
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0 0 0 0 0 —-n-1x;

0 0 0 -(n—-2)x
0 0 0 0 0 —(n-m-=2)x,-
0 0 0 0 0 —X-1
0 0 0 0 0 —X; — Xn_1
m-Tey n-2)xa -+ M-M=2)xp2 Xy-1 Xp+X1 O

Its rank is 2, then x(ty413) =n —1.
If dim 7 = n + 2, the corresponding matrix to the Lie algebra 7,42 is of the form:

0 0 - 0 0 (n—2)x X1

0 0 -+ 0 0 (n—3)x2 X2

0 0 .- 0 0 n—n)x,.1  xp-1
0 0 -+ 0 0 Xn 0
-n-2)xy -n-3)x, -+ —-Mm-mMx,.1 -x, O 0
—X1 —X2 cee —Xn-1 0 0 0

Its rank is 4, then x(Ty421) =n—-2. O

7.1.1. Regular vectors
Ifdimt=n+1

1. Ty
n
f= Zpi x; with py, ..., pn # 0.
i=1
2. Ty
n
f= Zpi x; with py, ..., pp1 # 0.
i=1
3. Tn+1,3
n
f= Zpi x; with py, ..., p, # 0.
i=1

Ifdimt=n+2

4. Ty
n
f= Zpi x; with py, ..., pn # 0.
i=1

Proof. Straightforward calculations following Remark 2.7. [J
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7.2. Lie algebras whose nilradical is Qo
Proposition 7.3. [11] Any real solvable Lie algebra of dimension 2n + 1 with nilradical Qy, is isomorphic to one of
the following Lie algebras:

Let B = {x1, ..., X2n, y} be a basis of T

1. T2n41 (A2)
[x1, xi] = X4, 2 Skk <2n-2,
[k, Xone1-k] = (=1) %20, 2 <k <n,
[y/ xl] = X1,
[v,x]=(=-2+A)x, 2<k<2n-2,
[y, x21] = (21 = 3 + 2A5) x2,.

2. Tops1 2 —mn,¢)
[x1, xx] = xps1, 2 gkk <2n-2,
[xk, X2n1-k] = (1) x2, 2 <k <m,
[y, x1] = x1 + exps, € =-1,0,1,
[y, a]=k-n)x, 2<k<2n-1,
[y, x21] = X2

3. Tont1 (Ag, e, A%n—l
[x1, %6] = Xpy1, 2<k<2n-2,

k
[xk, X2ns1-k] = (—1)2 o, 2<k<n,
n—3—t

2

[]// x2+t] = Xogt F kZ /\gk+1x2k+1+t1 0<t<2n-6,
=2

[yl x2n—k] = x2n—k1 k = 1/ 2/ 3/

[y, X2u] = 2x20.

7.2.1. Index of Lie algebras whose nilradical is Qa,

Proposition 7.4. Indexes of n-dimensional Lie algebras whose nilradical is Qo are
X (T2ne1 (A2)) = 1,
X (201 2 =1, 6)) =1,
X(72n+1 (Ag, ceeey /\%n_l)) =1.

Proof. The corresponding matrix of the Lie algebra 75,41 (A2) is of the form:

0 X3 Xy e 0 0 —x1

—X3 0 0 s Xopn 0 —AQXZ

—xs 0 0 - 0 0 —n—-m-1)+A)x3
0 —Xon 0 s 0 0 - (1’1 -1+ A2) Xon-1

0 0 0 0 0 — (21 =3+215) X
X1 Arxo (1’1 — (i’l - 1) + AZ) X3 s (7’1 -1+ Az) X2p-1 (27’1 -3+ 2/\2) Xon 0

Its rank is 27, then x (12,41 (A2)) = 1.
The corresponding matrix of the algebra 72,11 (2 — 1, €) is of the form

0 X3 X4 e Xon—1 0

0 —x1—¢€xo,
—X3 0 0 - 0 X0, 0 —(n—=2)x
—Xy 0 0 S =Xoy 0 0 —-(n-2)x3
—Xop-1 0 Xon 0 0 0 —-(m-Q@2n-1)x01
0 —Xon 0 0 0 0 —Xon
0 0 0 0 0 0 0
x1+exy M—=2)x, (n-3)x; n-=Q2n-1)x-1 x4 0 0
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Its rank is 2n, then x (12,41 2 —1,¢)) = 1.
Since the corresponding matrix of the algebra 75,41 (/\;, ey /\%”‘1) is of rank 27 then the indexis1. O

Remark 7.5. The procedure described in Remark 2.7 could be used to compute the regular vectors of Lie algebras
whose nilradical is Qyy,.
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