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Abstract. In this paper, we study the existence of multiple positive solutions for a nonlocal boundary value
problem where the nonlinear term f is allowed to change sign. We obtain at least two positive solutions by
using a fixed point theorem in double cones.

1. Introduction

The study of multi-point boundary value problems (BVPs for short) for nonlinear second-order ordinary
differential equations was initiated by Il’in and Moviseev [8, 9]. Gupta studied certain three-point BVPs
[7], and several authors studied nonlinear second order BVPs with integral boundary conditions, see for
example [11, 12] and the references therein. We quote also the research of A. Ashyralyev [1, 2] where
nonlocal BVPs are considered for parabolic and elliptic differential and difference equations.
The fixed point theorem of Krasnoselskii is one of the methods used in these studies.
Karakostas in [11], by applying the Krasnoselskii fixed point theorem on a suitable cone, proved the
existence of multiple positive solutions for a nonlocal BVPs of the form

u′′(t) + q(t) f (u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫ β

α
u(r)d1(r),

where f : R→ R is continuous, with f (x) ≥ 0 when x ≥ 0.
By using the fixed point theorem in double cones, Guo in [6] showed the existence of positive solutions

for second-order three point BVP where the nonlinearity is allowed to change sign. And by a theorem
similar to the one in [6], Xu [4] considered a nonlinear second-order m-point BVP where the nonlinear term
is allowed to change sign.

In [10], Liu studied the existence of positive solutions for BVPs with integral boundary conditions and
sign changing nonlinearities of the form:

(φpu′)′ + f (t, u) = 0 0 < t < 1,
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au(0) − bu′(0) =
m−2∑
i=1

αiu(ξi), u(1) =
∫ 1

0
1(s)u(s)ds.

In this paper we are concerned with existence results for BVP associated to nonautonomous second order
differential equations when the non linearities are sign changing and with integral boundary conditions.
In particular using the fixed point theorem in double cones, we study the following problem

u′′(t) + q(t) f (u(t)) = 0, 0 < t < 1, (1)

u(0) = 0, (2)

u(1) =
∫ β

α
u(r)d1(r), (3)

where q and f verify the assumptions:

(H1) 0 < α < β < 1 and 1 : [α, β] → R is an increasing function, left continuous at t = β, right continuous
at t = α, and such that β(1(β) − 1(α)) < 1.
It is clear that without loss of generality we can assume that 1(α) = 0.

(H2) f : [0,∞)→ R is continuous and f (0) ≥ (. 0).

(H3) q : [0, 1]→ [0,∞) is continuous and not identically zero on [β, 1].

We start by recalling the fixed point theorem in double cones.
For a cone K in a Banach space (X, ||.||) and a constant r > 0. Let θ : K → R+ a continuous functional such
that θ(λx) ≤ θ(x) for λ ∈ (0, 1). For positive constants a, b we define the following sets:

Kr = {x ∈ K : ||x|| < r} ,

∂Kr = {x ∈ K : ||x|| = r} ,

K(b) = {x ∈ K : θ(x) < b} ,

∂K(b) = {x ∈ K : θ(x) = b} ,

and
Ka(b) = {x ∈ K : a < ||x||, θ(x) < b} .

Theorem 1.1. Let X be a real Banach space with norm ||.|| and K,K′ ⊂ X two solid cones with K′ ⊂ K. Suppose
T : K → K and T∗ : K′ → K′ are two completely continuous operators and θ : K′ → R+ is a continuous functional
satisfying θ(x) ≤ ||x|| ≤Mθ(x) for all x ∈ K′, where M ≥ 1 is a constant. If there exist constants b > a > 0 such that

(C1) ||Tx|| < a for x ∈ ∂Ka;

(C2) ||T∗x|| < a for x ∈ ∂K′a and θ(T∗x) > b for x ∈ ∂K′(b);

(C3) Tx = T∗x, for x ∈ K′a(b) ∩ {u : T∗u = u}.

Then T has at least two fixed points y1 and y2 in K, such that

0 ≤ ||y1|| < a < ||y2||, θ(y2) < b.

The paper is organized as follows: Section 2 contains the basic preliminaries. The main result are given in
Section 3.
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2. Preliminaries

We present some lemmas that are important to prove our main results.
Denote by I the interval [0, 1], and by X the space of all continuous functions C(I). Let X0 = {x ∈ X : x(0) = 0} .
The spaces X and X0 become Banach spaces when they are furnished with the usual sup-norm ∥.∥.

Lemma 2.1. If u ∈ X0 is a concave function satisfying condition (3) and 1 is a function satisdying (H1), then we
have

(i) u(t) ≥ 0, t ∈ [0, 1],

(ii) u(t) ≥ µ||u||, t ∈ [α, 1],

where
µ := min

{
γ, 1 − β, (β − α)γ1(β)

}
,

and

γ := min
{
α, 1 − β,

1 − β
1 − α

}
.

(Notice that 0 < µ < 1).

Proof. We prove the lemma in three steps:
1. If u(1) ≥ 0, then, by the concavity of u and the fact that u(0) = 0, we have

u(t) ≥ 0, t ∈ [0, 1].

Assume that u(1) < 0. From (3), (H1) and the mean value theorem, it follows that there is ξu ∈ [α, β] such
that u(1) = u(ξu)1(β) (notice that 1(α) = 0).
Moreover, since 1(β) > 0 and u(1) < 0, we have u(ξu) < 0. This and β1(β) < 1 lead to

u(1) = 1(β)u(ξu) >
1
β

u(ξu) ≥ 1
ξu

u(ξu),

which contradicts the concavity of u.
2. Now, we shall prove that, if u is a concave function in X0, then

u(t) ≥ γ||u||, s ∈ [α, β].

Indeed let t0 ∈ [0, 1] be such that ||u|| = u(t0). We distinguish three cases:

• Case(1): β ≤ t0.

Then s ≤ t0, for every s ∈ [α, β], and, since u is a concave function, we have su(t0) ≤ t0u(s). Thus,
α||u|| ≤ u(s), and hence

u(s) ≥ γ||u||.

• Case(2): α ≤ t0 ≤ β.

If s ∈ [α, t0], then following the same arguments as in case(1), we obtain

u(s) ≥ γ||u||.

Let s ∈ (t0, β]. Then we observe that
1 − s
1 − t0

≤ u(s) − u(1)
u(t0) − u(1)

,

because of the concavity of the function u. Thus we have

(1 − s)u(t0) ≤ (1 − t0)u(s) + (t0 − s)u(1) ≤ (1 − t0)u(s).



N. Daoudi-Merzagui, Y. Tabet / Filomat 27:3 (2013), 485–497 488

This implies that
(1 − β)u(t0) ≤ (1 − α)u(s),

hence,
1 − β
1 − α ||u|| ≤ u(s),

and finally,
u(s) ≥ γ||u||.

• Case(3): t0 < α.

Then t0 < s for every s ∈ [α, β], and following the same arguments as in case(2), we obtain

(1 − s)u(t0) ≤ (1 − t0)u(s),

which implies that
(1 − β)||u|| ≤ u(s),

and so,
u(s) ≥ γ||u||.

3. In order to show that
u(s) ≥ µ||u||, s ∈ [α, 1],

we distinguish two cases , u(β) < u(1) and u(1) ≤ u(β).
-If u(β) < u(1), then by the concavity, for every s ≥ β, we have u(β) ≤ u(s).

Therefore, by the above first part of the proof of Lemma 2.1 for all s ∈ [α, 1], we have

u(s) ≥ min
{
min

{
u(s) : s ∈ [α, β]

}
,min

{
u(s) : s ∈ [β, 1]

}}
,

and so
u(s) ≥ min

{
γ||u||,u(β)

}
= γ||u||.

-If u(1) ≤ u(β), then again, by the concavity, we have u(s) ≥ u(1), for every s ∈ [β, 1]. Therefore, from (3), for
any such s we have

u(s) ≥
∫ β

α
u(r)d1(r) ≥ γ||u||(β − α)1(β).

Hence in any case it holds u(s) ≥ µ||u||, s ∈ [α, 1] and the proof is complete.

Lemma 2.2. Let δ = 1 −
∫ β
α

rd1(r) > 0, if y ∈ X. Then the boundary-value problem

u′′(t) + y(t) = 0, 0 < t < 1, (4)

u(0) = 0, u(1) =
∫ β

α
u(r)d1(r), (5)

has a unique solution

u(t) =
t
δ

∫ 1

0
(1 − s)y(s)ds − t

δ

∫ β

α

∫ r

0
(r − s)y(s)dsd1(r) −

∫ t

0
(t − s)y(s)ds. (6)
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Proof. From (4), we have
u′′(t) = −y(t).

For t ∈ [0, 1), integration from 0 to t, gives

u′(t) = u′(0) −
∫ t

0
y(s)ds.

For t ∈ [0, 1], integration from 0 to t, yields

u(t) = u′(0)t −
∫ t

0
(
∫ r

0
y(s)ds)dr,

i.e.,

u(t) = u′(0)t −
∫ t

0
(t − s)y(s)ds. (7)

So,

u(1) = u′(0) −
∫ 1

0
(1 − s)y(s)ds.

Integrating (7) from α to β, where 0 < α < β < 1 we have∫ β

α
u(r)d1(r) = −

∫ β

α

∫ r

0
(r − s)y(s)dsd1(r) + u′(0)

∫ β

α
rd1(r).

From (5), we obtain

u′(0) −
∫ 1

0
(1 − s)y(s)ds = u′(0)

∫ β

α
rd1(r) −

∫ β

α

∫ r

0
(r − s)y(s)dsd1(r).

Thus,

u′(0)(1 −
∫ β

α
rd1(r)) =

∫ 1

0
(1 − s)y(s)ds −

∫ β

α

∫ r

0
(r − s)y(s)dsd1(r),

and since δ = 1 −
∫ β
α

rd1(r) > 0,
then

u′(0) =
1
δ

(∫ 1

0
(1 − s)y(s)ds −

∫ β

α

∫ r

0
(r − s)y(s)dsd1(r)

)
.

Therefore, (4)-(5) has a unique solution

u(t) =
t
δ

∫ 1

0
(1 − s)y(s)ds − t

δ

∫ β

α

∫ r

0
(r − s)y(s)dsd1(r) −

∫ t

0
(t − s)y(s)ds.

Lemma 2.3. Suppose that δ = 1 −
∫ β
α

rd1(r) > 0. Then the BVP

−u′′(t) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫ β

α
u(r)d1(r),
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has the following Green’s function

G(t, s) =
1
δ


s
∫ β
α

(t − r)d1(r) + s(1 − t) if 0 ≤ s < t < r ≤ β or 0 ≤ s < r < t ≤ 1

(t − s)
∫ β
α

rd1(r) + s(1 − t) if α ≤ r ≤ s ≤ t ≤ 1

t
∫ β
α

(s − r)d1(r) + t(1 − s) if 0 ≤ t ≤ s ≤ r ≤ β
(1 − s)t if α ≤ r ≤ t ≤ s ≤ 1 or 0 ≤ t < r ≤ s ≤ 1

Proof. If 0 ≤ t ≤ r, the unique solution (6) given by Lemma2.2 can be given in the form

u(t) =
1
δ

[∫ t

0

(
s
∫ β

α
(t − r)d1(r) + s(1 − t)

)
y(s)ds

]
+

1
δ

[∫ r

t

(
t(1 − s) + t

∫ β

α
(s − r)d1(r)

)
y(s)ds +

∫ 1

r
t(1 − s)y(s)ds

]
.

If r ≤ t ≤ 1, the unique solution (6) can be expressed

u(t) =
1
δ

[∫ r

0

(
s
∫ β

α
(t − r)d1(r) + s(1 − t)

)
y(s)ds

]
+

1
δ

[∫ t

r

(
(t − s)

∫ β

α
rd1(r) + s(1 − t)

)
y(s)ds +

∫ 1

t
t(1 − s)y(s)ds

]
.

Therefore, the unique solution of (4)-(5) can be expressed u(t) =
∫ 1

0 G(t, s)y(s)ds. The proof is completed.

Consider
K = {u ∈ X : u(t) ≥ 0, t ∈ [0, 1]} ,

and
K′ = {u ∈ X0 : u is concave and (3) holds} .

Clearly, K,K′ ⊂ X are cones with K′ ⊂ K. For all u ∈ K, define

θ(u) = min
α≤t≤1

u(t).

Let (.)+ = max {., 0} , we define the operators T, A and T∗ by:
T : K→ K, A : K→ X and T∗ : K′ → K′, such that

Tu(t) =
[∫ 1

0 G(t, s)q(s) f (u(s))ds
]+
, for all t ∈ [0, 1],

Au(t) =
∫ 1

0 G(t, s)q(s) f (u(s))ds, for all t ∈ [0, 1],

T∗u(t) =
∫ 1

0 G(t, s)q(s) f+(u(s))ds, for all t ∈ [0, 1],

Remark 1. If ψ : X→ K is a function such that (ψu)(t) = u(t)+, then T = ψ ◦ A.

Lemma 2.4. T∗ : K′ → K′ is completely continuous.

Proof. Let u ∈ K′, since f+(u(t)) ≥ 0 for all t ∈ [0, 1], then

(T∗u)′′(t) = −q(t) f+(u(t)) ≤ 0,

this implies that T∗u is concave function. It is clear that T∗u satisfies the boundary conditions (2), (3). Thus
T∗ : K′ → K′. By using the continuity of f and the definition of f+, we can have that T∗ is completely
continuous from Ascoli-Arzela theorem.

Lemma 2.5. A function u(t) is a solution of BVP (1)-(3) if and only if u(t) is a fixed point of the operator A.



N. Daoudi-Merzagui, Y. Tabet / Filomat 27:3 (2013), 485–497 491

Lemma 2.6. If A : K→ X is completely continuous, then T = ψ ◦ A : K→ K is also completely continuous.

Proof. The complete continuity of A implies that A is continuous and applies each bounded subset of K on
a relatively compact set of X.
Given a function h ∈ X, for each ε > 0 there is σ > 0 such that

||Ah − Ak|| < ε for k ∈ X, ||h − k|| < σ.

Since ∣∣∣(ψAh)(t) − (ψAk)(t)
∣∣∣ = |max {(Ah)(t), 0} −max {(Ak)(t), 0}|

≤ |(Ah)(t) − (Ak)(t)| < ε,
we have ∥∥∥(ψA)h − (ψA)k

∥∥∥ < ε for k ∈ X, ||h − k|| < σ,
and so ψA is continuous.

For any arbitrary bounded set D ⊂ X and for all ε > 0, there are yi, i = 1, ..,m such that

AD ⊂
m∪

i=1

β(yi, ε),

where β(yi, ε) =
{
x ∈ X :

∥∥∥x − yi

∥∥∥ < ε}.
Then, if we denote ψy by ȳ for all ȳ ∈ (ψoA)(D), there is a y ∈ AD such that ȳ(t) = max

{
y(t), 0

}
. We choose

yi ∈
{
y1, .., ym

}
such that

max
t∈[0,1]

|y(t) − yi(t)| < ε.

Thus
max
t∈[0,1]

|ȳ(t) − ȳi(t)| ≤ max
t∈[0,1]

|y(t) − yi(t)| < ε,

which implies
ȳ ∈ B(ȳi, ε),

and therefore (ψoA)(D) is relatively compact.

By the continuity of f , we have A : K → X is completely continuous. T : K → K is completely continuous
by using Lemma 2.6.

Lemma 2.7. If u is a fixed point of the operator T, then u is also a fixed point of the operator A.

Proof. Let u be a fixed point of the operator T. Obviously, if Au(t) ≥ 0 for t ∈ [0, 1], then u is a fixed point of
the operator A. So, to prove the lemma, we show that if Tu(t) = u(t), then Au(t) ≥ 0 for t ∈ [0, 1]. Suppose
on the contrary, that there is a t0 ∈ (0, 1) such that Au(t0) < 0 = u(0). Let (t1, t2) be the maximal interval
which contains t0 and such that Au(t) < 0, t ∈ (t1, t2). It follows [t1, t2] , [0, 1] by (H2).
If t2 < 1, we have u(t) = 0 for t ∈ [t1, t2], Au(t) < 0 for t ∈ (t1, t2) and Au(t2) = 0. Thus (Au)′(t2) = 0. By (H2)
we have (Au)′′(t) = −q(t) f (0) ≤ 0 for t ∈ [t1, t2], so, (Au)′(t) ≥ 0 for t ∈ [t1, t2]. We obtain t1 = 0. Therefore,
Au(0) ≤ Au(t0) < 0, we arrive at a contradiction.

If t1 > 0, we have u(t) = 0 for t ∈ [t1, t2], Au(t) < 0 for t ∈ (t1, t2) and (Au)(t1) = 0. Thus (Au)′(t1) ≤ 0.
From (H2) we have (Au)′′(t) = −q(t) f (0) ≤ 0 for t ∈ [t1, t2], so t2 = 1. by the concavity of Au(t) on [t1, 1] we
have

|(Au)(s)|
s − 1

≤ |(Au)(1)|
1 − t1

.
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This implies that

|(Au)(s)| ≤ s − 1
1 − t1

|(Au)(1)| < s|(Au)(1)|.

From the above inequalities, we obtain∫ β

α
|Au(s)|d1(s) ≤

∫ β

α
s|(Au)(1)|d1(s) < |(Au)(1)|,

which contradicts

|(Au)(1)| =
∣∣∣∣∣∣
∫ β

α
Au(s)d1(s)

∣∣∣∣∣∣ ≤
∫ β

α
|Au(s)|d1(s).

Therefore u is a fixed point of operator A.

3. Main results

In this section, we show the existence of two positive solutions for BVP (1)-(3) by applying a fixed-point
theorem in double cones.
By definition of G, the continuity of G, and the fact that δ = 1 −

∫ β
α

rd1(r) > 0, it is clear that for s ∈ [0, 1]:

max
0≤t≤1

G(t, s) =
1 − s
δ
.

Theorem 3.1. Suppose that conditions (H1),(H2), and (H3) hold. Assume that there exist positive numbers a, b,
and d such that

0 < (1 +
1
µ

) max

1,
1 −

∫ β
α

sd1(s)∫ β
α

(1 − s)d1(s)

 d < a < µb < b,

and that f satisfies the following assumptions:

(H4) f (u) ≥ 0 for u ∈ [d, b];

(H5) Ma
δ

∫ 1

0 (1 − s)q(s)ds < a, where
Ma = sup

∥u∥=a

∣∣∣ f (u)
∣∣∣ .

(H6) b(1 − α1(β)) ≤ mbα
∫ 1

β
(1 − s)q(s)ds, where

mb = inf
{
f (u) : u ∈ [µb, b]

}
.

Then, (1)-(3) has at least two positive solutions u1 and u2 such that

0 ≤ ||u1|| < a < ||u2||, θ(u2) < b.

Proof. For all u ∈ ∂Ka, from (H5) we have

||Tu|| = max
t∈[0,1]

[∫ 1

0
G(t, s)q(s) f (u(s))ds

]+

||Tu|| ≤ max
t∈[0,1]

max
{∫ 1

0
G(t, s)q(s) f (u(s))ds, 0

}
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||Tu|| ≤Ma max
t∈[0,1]

∫ 1

0
G(t, s)q(s)ds

≤ Ma

δ

∫ 1

0
(1 − s)q(s)ds

< a.

So, (C1) of Theorem 1.1 is satisfied. for u ∈ ∂K′a; i.e., ||u|| = a. from (H5) we have

||T∗u|| = max
t∈[0,1]

∫ 1

0
G(t, s)q(s) f+(u(s))ds

≤Ma max
t∈[0,1]

∫ 1

0
G(t, s)q(s)ds

≤ Ma

δ

∫ 1

0
(1 − s)q(s)ds

< a.

Let u ∈ ∂K′(µb); i.e., u ∈ K′ and θ(u) = µb. For t ∈ [α, 1], we have

µb = θ(u) = min
t∈[α,1]

u(t) ≥ µ||u|| (from Lemma 2.1),

hence
||u|| ≤ b.

On the other hand
u(t) ≥ min

t∈[α,1]
u(t) = θ(u) = µb,

so
µb ≤ u(t) ≤ ||u|| ≤ b,

and therefore it holds

f (u(s)) ≥ mb, for s ∈ [β, 1]. (8)

Observe that the unique solution of the BVP{
x′′(t) + q(t) f+(u(t)) = 0, 0 < t < 1,

x(0) = 0, x(1) =
∫ β
α

x(s)d1(s),

is the function x(t) given by

x(t) = T∗u(t) =
∫ 1

0
G(t, s)q(s) f+(u(s))ds

=
t
δ

∫ 1

0
(1 − s)q(s) f+(u(s))ds − t

δ

∫ β

α

∫ r

0
(r − s)q(s) f+(u(s))dsd1(r)

−
∫ t

0
(t − s)q(s) f+(u(s))ds.

Let

E(x) :=
{
ξ ∈ [α, β] :

∫ β

α
x(s)d1(s) = x(ξ)

∫ β

α
d1(s) = x(ξ)1(β)

}
be the set of all mean values of x, by the function 1. Obviously E(x) is a compact set. Consider the point

ξx := min E(x).

It is clear that x solves the BVP
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y′′(t) + q(t) f+(u(t)) = 0, 0 < t < 1,
y(0) = 0, y(1) = y(ξx)1(β),

and so, x is the function given by the closed formula

x(t) =
t
τx

∫ 1

0
(1 − s)q(s) f+(u(s))ds − t

τx
1(β)

∫ ξx

0
(ξx − s)q(s) f+(u(s))ds

−
∫ t

0
(t − s)q(s) f+(u(s))ds,

for t ∈ [0, 1], where
τx := 1 − ξx1(β) > 0.

Notice that α ≤ ξx ≤ β and, in view of (H1), ξx > 0. Then we have

(T∗u)(ξx) = x(ξx) =
ξx

τx

∫ 1

0
(1 − s)q(s) f+(u(s))ds − ξx

τx
1(β)

∫ ξx

0
(ξx − s)q(s) f+(u(s))dsd1(r)

−
∫ ξx

0
(ξx − s)q(s) f+(u(s))ds,

=
ξx

τx

∫ 1

0
(1 − s)q(s) f+(u(s))ds − 1

τx

∫ ξx

0
(ξx − s)q(s) f+(u(s))ds,

=
ξx

τx

∫ 1

0
q(s) f+(u(s))ds − ξx

τx

∫ 1

0
sq(s) f+(u(s))ds

−ξx

τx

∫ ξx

0
q(s) f+(u(s))ds +

1
τx

∫ ξx

0
sq(s) f+(u(s))ds,

=
ξx

τx

∫ 1

ξx

(1 − s)q(s) f+(u(s))ds +
1
τx

(1 − ξx)
∫ ξx

0
sq(s) f+(u(s))ds.

Taking into account (H6), and (8), we finally obtain that

(T∗u)(ξx) ≥ α
τx

∫ 1

β
(1 − s)q(s) f+(u(s))ds

(T∗u)(ξx) ≥ αmb

τx

∫ 1

β
(1 − s)q(s)ds

≥ 1
τx

(1 − α1(β))b

≥ 1
τx

(1 − ξx1(β))b

≥ b,

hence
||T∗u|| ≥ b.

On the other hand, from Lemma2.1, we have

θ(T∗u) = min
t∈[α,1]

T∗u(t) ≥ µ||T∗u||,
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thus
θ(T∗u) ≥ µb.

So, (C2) of Theorem 1.1 is satisfied. Finally, we show that (C3) of Theorem 1.1 is also satisfied.
Let u ∈ K′a(µb) ∩ {u : T∗u = u}, then

||u|| > a > (1 +
1
µ

) max

1,
1 −

∫ β
α

sd1(s)∫ β
α

(1 − s)d1(s)

 d.

From (ii) of Lemma 2.1 we have

u(α) ≥ min
t∈[α,1]

u(t) ≥ µ||u|| > µ 1
µ

max

1,
1 −

∫ β
α

sd1(s)∫ β
α

(1 − s)d1(s)

 d,

hence,

u(α) > max

1,
1 −

∫ β
α

sd1(s)∫ β
α

(1 − s)d1(s)

 d. (9)

If u(1) ≥ d, then, by the concavity of u and the fact that u(0) = 0, we have u(t) ≥ d, t ∈ [0, 1]. Assume that
u(1) < d. Since u is a concave function, thus for s ∈ [α, 1] we have

1
1 − s

≥ 1 − α
1 − s

≥ u(α) − u(1)
u(s) − u(1)

.

This implies that
u(α)(1 − s) ≤ u(s) − su(1).

So

u(α)
∫ β

α
(1 − s)d1(s) ≤

∫ β

α
u(s)d1(s) −

∫ β

α
su(1)d1(s).

By u(1) =
∫ β
α

u(s)d1(s) we get

u(α) ≤
1 −

∫ β
α

sd1(s)∫ β
α

(1 − s)d1(s)
u(1) <

1 −
∫ β
α

sd1(s)∫ β
α

(1 − s)d1(s)
d ≤ max

1,
1 −

∫ β
α

sd1(s)∫ β
α

(1 − s)d1(s)

 d,

which contradicts to (9). So, u(1) ≥ d. Therefore, for u ∈ K′a(µb) ∩ {u : T∗u = u}we have

d ≤ u(t) ≤ ||u|| ≤ µb ≤ b.

From (H4) we know that
f+(u(s)) = f (u(s)).

This implies that
Tu = T∗u.

So, the conditions of Theorem (1.1) are satisfied. Then T has two fixed points u1 and u2 satisfying

0 ≤ ||u1|| < a < ||u2||, θ(u2) < b.

The proof is complete.
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4. Conclusion

The condition of the positivity of f is not essential for the application of the generalisation of Krasnosel-
skii’s theorem. Indeed, we have established the existence and multiplicity of positive solutions in the case
where the nonlinear term f is allowed to change sign.

We obtain the same result in the case where the nonlinearity is not autonomous, and without separated
variables. So, we can consider f (t,u) instead of q(t) f (u), we obtain an existence and multiplicity results, if
we replace the hypothesis (H2) and (H3) by:

(H2)’ f : [0, 1] × [0,∞[→ R such that:

(i) f is continuous on [0, 1].

(ii) f (t, 0) ≥ (. 0) for all t in [0, 1].

(iii) f (.,u) . 0 on [β, 1], for every u ∈]0,∞[.
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