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Abstract. We give the factorization of a class of bialgebras into bicrossproduct introduced by Kim-Park-
Yoon in [7], which generalizes Radford’s known results in [10].

1. Introduction and Preliminaries

Crossed products introduced independently by Blatter-Cohen-Montgomery [4] and by Doi-Takeuchi
[6] play a fundamental role in the theory of extensions of Hopf algebras. Moreover, let H be a Hopf
algebra and B an H-comodule algebra, set A = BcoH, then an H-extension A ⊂ B is H-cleft if and only if
B � A#σH (see [9, 7.2.2]). And subsequently crossed products and crossed coproducts were studied by
many authors (see [1, 2, 5, 7, 13]). Especially in [1, 2], Y. Bespalov and B. Drabant investigated all sorts of
cross product bialgebras deeply and for which a fully-fledged formulation in terms of (co-)modular and
(co-)cyclic conditions (called Hopf Data) was developed. In 1999, E. S. Kim, Y. S. Park and S. B. Yoon gave
the necessary and sufficient conditions for crossed product and crossed coproduct to be a bialgebra named
bicrossproduct in [7] generalizing Radford’s biproduct (see [8, 10]).

In 1985, Radford gave a result that a bialgebra with a projection had a factorization of biproduct. It is
a natural question: Under which conditions an (co)algebra can be factorized into crossed (co)product and
when does a bialgebra have a factorization of bicrossproduct?

On the other hand, Bespalov and Drabant obtained an equivalent description of cross product bialgebras
in terms of projections and injections or splittings of idempotents (see [2, Proposition 2.3, 2.9 et al]).

In this paper, we will give the answers to the above questions by a concrete construction based on the
fundamental theorem of Hopf modules [9, 1.9.4], which also provides a class of explicit examples for the above
mentioned Bespalov and Drabant’s results.

The paper is organized as follows.
Assume that (B, ·, ρ) is a right H-Hopf module and (B, ρ) is a right H-comodule algebra. Set A = BcoH =

{a ∈ B|ρ(a) = a ⊗ 1H}. In section 2, we obtain that B can be factorized into crossed product A#σH under an
extra condition (see Theorem 2.2). As a corollary, we can get that if A ⊂ B is an H-cleft extension, then
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B � A#σH as an algebra (see Corollary 2.4). The duality of Section 2 is given in Section 3. Section 4 is
devoted to the situation of bialgebra. We consider the case of bialgebras (see Theorem 4.1) by combining
section 2 with section 3 and we can conclude Radford’s known results in [10] by using our approach (see
Corollary 4.4).

Throughout the paper, we freely use the definitions and terminologies of [7, 9, 12] and all algebraic
systems are supposed to be over the field k. Unless specifically stated, H denotes an Hopf algebra with
antipode S. Let C be a coalgebra. Then we use Sweedler’s notation for the comultiplication: ∆(c) =

∑
c(1)⊗c(2)

for any c ∈ C. We denote by CM (MC) the category of left (right) C-comodules and for any V ∈ CM (MC),
we still use a simple Sweedler’s notations: ρ̃(v) =

∑
v<−1> ⊗ v<0> (ρ(v) =

∑
v0 ⊗ v1) for all v ∈ V. If B ∈ MH,

then we denote {a ∈ B|ρ(a) = a ⊗ 1H} by BcoH. Given a k-space M, we write idM for the identity map on M.

The Fundamental Theorem of Hopf Modules Let M be a right H-Hopf module. Then M � McoH ⊗ H
as right H-Hopf modules (see [9, 1.9.4] or [12, Theorem 4.1.1]).

Let H be Hopf algebra and (B, ρ) be a right H-comodule algebra. Set A = BcoH. If there exists a right
H-colinear map γ : H → B which is convolution invertible, then we call A ⊂ B is an H-cleft extension and
denoted by (B, ρ, γ).

In the following we recall from [7, 13] or [1, 2] about crossed (co)product and bicrossproduct.

Let H be a Hopf algebra and A an algebra. A weak action of H on A means a bilinear map (h, a) 7→ h · a of
H × A −→ A such that, for h ∈ H and a, b ∈ A,

h · (ab) =
∑

(h(1) · a)(h(2) · b), h · 1 = ε(h)1 and 1 · a = a.

If the extra condition h · (1 · a) = (h1) · a holds for all h, 1 ∈ H and a ∈ A, then A is called an H-module algebra.
Let H be a Hopf algebra with a weak action on the algebra A, and let σ : H ⊗ H −→ A be a k-linear

map. Let A#σH be the (in general nonassociative) algebra whose underlying space is A ⊗ H and whose
multiplication is given by

(a ⊗ h)(b ⊗ 1) =
∑

a(h1 · b)σ(h2, 11) ⊗ h312

for all a, b ∈ A and h, 1 ∈ H. The algebra A#σH is called a crossed product if it is associative and with unit
1A ⊗ 1H.

A#σH is an associative algebra with unit 1A ⊗ 1H if and only if σ satisfy the following conditions:

(C1) σ is normal. i.e., σ(h, 1H) = σ(1H, h) = εH(h)1A,

(C2)
∑

(h1 · σ(l1, 11))σ(h2, l212) =
∑
σ(h1, l1)σ(h2l2, 1),

(C3)
∑

(h1 · (l1 · b))σ(h2, l2) =
∑
σ(h1, l1)(h2l2 · b)

for all b ∈ A and h, 1, l ∈ H.
Dually, let H be a Hopf algebra and C a coalgebra. We call H weakly coacts on C if there exists a k-linear

map ρ : C −→ H ⊗ C, c 7→ ∑ c<−1> ⊗ c<0> such that the conditions

(W1)
∑

c<−1> ⊗ c<0>(1) ⊗ c<0>(2)

=
∑

c(1)<−1>c(2)<−1> ⊗ c(1)<0> ⊗ c(2)<0>,

(W2)
∑
ε(c<0>)c<−1> = ε(c)1H,

(W3)
∑
ε(c<−1>)c<0> = c

hold for all c ∈ C. Moreover if the following condition∑
c<−1>(1) ⊗ c<−1>(2) ⊗ c<0> =

∑
c<−1> ⊗ c<0><−1> ⊗ c<0><0>
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holds for all c ∈ C, then we call C a left H-comodule coalgebra.

Let α : C −→ H ⊗ H be a linear map, write α(c) =
∑
α1(c) ⊗ α2(c). Let C oα H be the (in general

noncoassociative) coalgebra (in general without a counit), whose underlying vector space is C ⊗ H with
comultiplication given by

∆α(c ⊗ h) =
∑

c(1) ⊗ c(2)<−1>α1(c(3))h(1) ⊗ c(2)<0> ⊗ α2(c(3))h(2).

If (C ⊗ H,∆α, εC ⊗ εH) is coassociative counitary coalgebra, then we call it crossed coproduct denoted by
C oα H.

Moreover, C oα H is crossed coproduct if and only if for all c ∈ C the following conditions hold:

(CC1) (idH ⊗ εH) ◦ α = (εH ⊗ idH) ◦ α = µH⊗HεC,

(CC2)
∑

c(1)<−1>α1(c(2)) ⊗ α1(c(1)<0>)α2(c(2))(1) ⊗ α2(c(1)<0>)α2(c(2))(2)

=
∑
α1(c(1))α1(c(2))(1) ⊗ α2(c(1))α1(c(2))(2) ⊗ α2(c(2)),

(CC3)
∑

c(1)<−1>α1(c(2)) ⊗ c(1)<0><−1>α2(c(2)) ⊗ c(1)<0><0>

=
∑
α1(c(1))c(2)<−1>(1) ⊗ α2(c(1))c(2)<−1>(2) ⊗ c(2)<0>.

Bicrossproduct Let A be both an algebra and a coalgebra. Assume that A#σH is a crossed product
and A oα H is a crossed coproduct. Then (Aσ ◃▹αH,mA#σH, µA#σH, ∆AoαH, εAoαH) is a bialgebra if and only if
(B1) ∼ (B10) as in [7, Theorem 2.1] are satisfied. In this case we call Aσ ◃▹αH a bicrossproduct.

From now on, we employ the techniques of Hopf modules and the projections and injections into and
from the (co-)invariants BcoH deeply investigated in [11] and [3].

Proposition 1.1. Let H be Hopf algebra and (B, ·) is a right H-module coalgebra. Suppose that there
exists a right H-linear map ϕ : B→ H which is invertible with convolution inverse ϕ−1. Define a linear map
ρ : B→ B ⊗H by

ρ(b) =
∑

b(1) · (ϕ−1(b(2))ϕ(b(3))(1)) ⊗ ϕ(b(3))(2).

Then (B, ρ) is a right H-comodule.
Proof. Since ϕ is right H-linear, then for all h ∈ H and b ∈ B we have∑

h(1)ϕ
−1(b · h(2)) = ε(h)ϕ−1(b). (1.1)

For all b ∈ B, we compute as follows:

(ρ ⊗ idH)ρ(b)

=
∑

(b(1) · (ϕ−1(b(2))ϕ(b(3))(1)))(1) · (ϕ−1((b(1) · (ϕ−1(b(2))ϕ(b(3))(1)))(2))

ϕ((b(1) · (ϕ−1(b(2))ϕ(b(3))(1)))(3))(1)) ⊗ ϕ((b(1) · (ϕ−1(b(2))ϕ(b(3))(1)))(3))(2)

⊗ϕ(b(3))(2)

=
∑

b(1) · (ϕ−1(b(2))ϕ(b(3) · (ϕ−1(b(4))ϕ(b(5))(1)))(1)) ⊗ ϕ(b(3) · (ϕ−1(b(4))ϕ(b(5))(1)))(2)

⊗ϕ(b(5))(2) ( by Eq. (1.1) )

=
∑

b(1) · (ϕ−1(b(2))(ϕ(b(3))ϕ−1(b(4))ϕ(b(5))(1))(1)) ⊗ (ϕ(b(3))ϕ−1(b(4))ϕ(b(5))(1))(2)

⊗ϕ(b(5))(2)

= (idB ⊗ ∆)ρ(b).

While (idB ⊗ εH)ρ(b) =
∑

b(1) · (ϕ−1(b(2))ϕ(b(3))) = b. �
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Definition 1.2. Let H be Hopf algebra and (B, ·) a right H-module coalgebra. Suppose that there exists
a right H-linear map ϕ : B → H which is convolution invertible. Let ρ be given as in Proposition 1.1. Set
A = BcoH, then we call A ⊂ B is a quasi-H-cleft coextension and denoted by (B, ·, ϕ).

Similarly, we have
Proposition 1.3. Let H be Hopf algebra with antipode S. Assume that (B, ·, ρ) is a right H-Hopf module

and (B, ·) is a right H-module coalgebra. Set A = BcoH. Define the map ν : B→ A ⊗ B by

ν(b) =
∑

b(1)0 · S(b(1)1) ⊗ b(2),

then (B, ν) is a left A-comodule.

2. The Factorization of a Class of Comodule Algebras

In this section, we give the factorization of a class of comodule algebras into crossed product based on
the fundamental theorem of Hopf modules.

Lemma 2.1. Let H be Hopf algebra with antipode S. Assume that (B, ·, ρ) is a right H-Hopf module
and (B, ρ) is a right H-comodule algebra. Set A = BcoH. Define the map ⇀: H ⊗ A −→ A by h ⇀ a =∑

((1 · h(1))a) · S(h(2)) and an element σ ∈ Homk(H ⊗H,A) by

σ(h, 1) =
∑

((1 · h(1))(1 · 1(1))) · S(h(2)1(2)).

If for all a ∈ A, b ∈ B and h ∈ H, the following condition hold:

(ab) · h = a(b · h). (2.1)

Then (1)⇀ is a weak action of H on A.
(2) (C1), (C2) and (C3) are satisfied.

Proof. (1) First we note that

ρ(
∑

((1 · h(1))a) · S(h(2))) =
∑

((1 · h(1))a) · S(h(2)) ⊗ 1

for all a ∈ A and h ∈ H, so⇀ is well-defined.
For all h ∈ H and a, b ∈ A, we can obtain

h⇀ (ab) =
∑

((1 · h(1))ab) · S(h(2))

=
∑

(((h(1) ⇀ a) · h(2))b) · S(h(3))

=
∑

(h(1) ⇀ a)(((1 · h(2))b) · S(h(3))) ( by Eq.(2.1) )

=
∑

(h(1) ⇀ a)(h(2) ⇀ b)

and h⇀ 1A = εH(h)1A.
Hence⇀ is a weak action of H on A.
(2) It is obvious that σ is normal. Next we will verify that (C2) and (C3) hold. First by Eq.(2.1) we have∑

(h(1) ⇀ a)(1 · h(2)) = (1A · h)a. (2.2)
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For all a ∈ A and h, 1, l ∈ H, we compute as follows.∑
(h(1) ⇀ (1(1) ⇀ a))σ(h(2), 1(2))

=
∑

(h(1) ⇀ (1(1) ⇀ a))((1 · h(2))(1 · 1(2))) · S(h(3)1(3))

=
∑

[(h(1) ⇀ (1(1) ⇀ a)(1 · h(2))(1 · 1(2))] · S(h(2)1(3)) ( by Eq.(2.1) )

=
∑

((1 · h(1))(1 · 1(1))a) · S(h(2)1(2)) ( by Eq.(2.2) )

=
∑

[((1 · h(1))(1 · 1(1))) · S(h(2)1(2))][((1 · h(3)1(3))a) · S(h(4)1(4))] ( by Eq.(2.1) )

=
∑
σ(h(1), 1(1))(h(2)1(2) ⇀ a)

and ∑
(h(1) ⇀ σ(1(1), l(1)))σ(h(2), 1(2)l(2))

=
∑

(h(1) ⇀ σ(1(1), l(1)))[(1 · h(2))(1 · (1(2)l(2))) · S(h(3)1(3)l(3))]

=
∑

[(h(1) ⇀ σ(1(1), l(1)))(1 · h(2))(1 · (1(2)l(2)))] · S(h(3)1(3)l(3)) ( by Eq.(2.1) )

=
∑

[(1 · h(1))σ(1(1), l(1))(1 · (1(2)l(2)))] · S(h(2)1(3)l(3)) ( by Eq.(2.2) )

=
∑

[((1 · h(1))(1 · 1(1))) · S(h(2)1(2))][((1 · h(3)1(3))(1 · l(1))) · S(h(4)1(4)l(2))]

( by Eq.(2.1) )

=
∑
σ(h(1), 1(1))σ(h(2)1(2), l). �

Remark. Eq.(2.1) manifests that B is an A-H-bimodule.

Theorem 2.2. Let H be Hopf algebra with antipode S. Assume that (B, ·, ρ) is a right H-Hopf module
and (B, ρ) is a right H-comodule algebra. Set A = BcoH. If for all a ∈ A, b ∈ B and h ∈ H, Eq.(2.1) holds. Then
we get a crossed product A#σH and B � A#σH as an algebra.

Proof. By Lemma 2.1 we have a crossed product A#σH with multiplication

(a ⊗ h)(a′ ⊗ h′) =
∑

a(h(1) ⇀ a′)σ(h(2), h′(1)) ⊗ h(3)h′(2)

for all a, a′ ∈ A and h, h′ ∈ H.
We note that B � A ⊗H as right H-Hopf module and the isomorphic map is given by

φ : B −→ A ⊗H, φ(b) =
∑

b0 · S(b1) ⊗ b2.

Then we only need to prove that φ is an algebra map. In fact, for all b, b′ ∈ B, we have

φ(b)φ(b′) =
∑

(b0 · S(b1))(b2 ⇀ (b′0 · S(b′1)))σ(b3, b′2) ⊗ b4b′3

=
∑

(b0 · S(b1))[((b2 ⇀ (b′0 · S(b′1)))(1 · b3)(1 · b′2)) · S(b4b′3)] ⊗ b5b′4
(by Eq.(2.1))

=
∑

(b0 · S(b1))[((1 · b2)(b′0 · S(b′1))(1 · b′2)) · S(b3b′3)] ⊗ b4b′4 ( by Eq.(2.2) )

=
∑

(b0b′0) · S(b1b′1) ⊗ b2b′2 ( by Eq.(2.1) )

= φ(bb′). �

Proposition 2.3. Assume that (B, ρ, γ) is an H-cleft extension. Define:

· : B ⊗H −→ B, b · h =
∑

b0γ
−1(b1)γ(b2h).
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Set A = BcoH. Then
(1) (B, ·) is a right H-module and Eq.(2.1) holds for all a ∈ A, b ∈ B and h ∈ H.
(2) (B, ·, ρ) is a right H-Hopf module.
Proof. First, since γ is invertible colinear map, we have∑

γ−1(h(2))0 ⊗ h(1)γ
−1(h(2))1 = γ

−1(h) ⊗ 1H (2.3)

By Eq.(2.3), Part (1) is straightforward.
So we only check that (B, ·, ρ) is a right H-Hopf module as follow: for all b ∈ B and h ∈ H,

ρ(b · h) =
∑

b00γ
−1(b1(1))0γ(b1(2)h)0 ⊗ b01γ

−1(b1(1))1γ(b1(2)h)1

=
∑

b0γ
−1(b1(2))0γ(b1(3)h)0 ⊗ b1(1)γ

−1(b1(2))1γ(b1(3)h)1

=
∑

b0γ
−1(b1(1))γ(b1(2)h)0 ⊗ γ(b1(2)h)1 ( by Eq.(2.3) )

=
∑

b0γ
−1(b1(1))γ(b1(2)h(1)) ⊗ b1(3)h(2) ( by γ is colinear )

=
∑

b00γ
−1(b01(1))γ(b01(2)h(1)) ⊗ b1h(2)

=
∑

b0 · h(1) ⊗ b1h(2). �

By Theorem 2.2 and Proposition 2.3, the following corollary is obvious.
Corollary 2.4. ([4]) Let (B, ρ, γ) is an H-cleft extension. Set A = BcoH. Then we get a crossed product

A#σH and B � A#σH as algebra.

Below we give the factorization of a class of algebras into smash product that we should note that the
condition (2.1) is changed.

Lemma 2.5. Let H be Hopf algebra with antipode S. Assume that (B, ·, ρ) is a right H-Hopf module and
(B, ρ) is a right H-comodule algebra such that the following condition

(bb′) · h = b(b′ · h) (2.4)

holds for all b, b′ ∈ B and h ∈ H. Set A = BcoH. Define the left action of H on A by

⇀: H ⊗ A −→ A, h⇀ a =
∑

((1 · h(1))a) · S(h(2)).

Then (A,⇀) is a left H-module algebra.
Proof. First we have

h⇀ (1⇀ a) =
∑

[(1 · h(1))(((1 · 1(1))a) · S(1(2)))] · S(h(2))

=
∑

[(1 · h(1))(1 · 1(1))a] · S(h(2)1(2)) ( by Eq.(2.4) )

=
∑

[(1 · (h(1)1(1)))a] · S(h(2)1(2))

= (h1)⇀ a

for all a ∈ A and h, 1 ∈ H and 1H ⇀ a = a, so (A,⇀) is a left H-module.
On the other hand, for all a, a′ ∈ A and h ∈ H∑

(h(1) ⇀ a)(h(2) ⇀ a′) =
∑

[((1 · h(1))a) · S(h(2))][((1 · h(3))a′) · S(h(4))]

=
∑

[((1 · h(1))a) · S(h(2)))(1 · h(3))a′] · S(h(4)) ( by Eq.(2.4) )

=
∑

((1 · h(1))aa′) · S(h(2)) ( by Eq.(2.4) )

= h⇀ (aa′).
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Thus (A,⇀) is a left H-module algebra. �

Theorem 2.6. Let H be Hopf algebra. Assume that (B, ·, ρ) is a right H-Hopf module and (B, ρ) is a right
H-comodule algebra such that Eq.(2.4) holds for all b, b′ ∈ B and h ∈ H. Set A = BcoH. Then we obtain
Molnar’s smash product A♯H and B � A♯H as an algebra.

Proof. It straightforward by Lemma 2.5. �

3. The Factorization of a Class of Module Coalgebras

In this section, we mainly discuss the dual cases of Section 2 and obtain the factorization of a class of
module coalgebras into crossed coproduct. For the sake of the technique and the convenience to read, we
also sketch the proof of some results.

Proposition 3.1. Let H be Hopf algebra. Assume that (B, ·, ρ) is a right H-Hopf module and (B, ·) is a
right H-module coalgebra. Set A = BcoH, then (A,∆, εA) is a coalgebra where

∆(a) =
∑

a(1) ⊗ a(2) =
∑

a(1)0 · S(a(1)1) ⊗ a(2)0 · S(a(2)1)

and εA(a) = εB(a).
Proof. Straightforward. �

Theorem 3.2. Let H be Hopf algebra with antipode S. Assume that (B, ·, ρ) is a right H-Hopf module
and (B, ·) is a right H-module coalgebra. Set A = BcoH. Define the weak coaction ω of H on A as:

ω : A −→ H ⊗ A, ω(a) =
∑

a<−1> ⊗ a<0> =
∑
ε(a(1)0)a(1)1 ⊗ a(2)0 · S(a(2)1). (3.1)

and the map α : A −→ H ⊗H by

α(a) =
∑
α1(a) ⊗ α2(a) =

∑
ε(a(1)0)a(1)1 ⊗ ε(a(2)0)a(2)1. (3.2)

If the extra condition ∑
b(1)0 · S(b(1)1) ⊗ b(2)0 ⊗ b(2)1 =

∑
b0(1)0 · S(b0(1)1) ⊗ b0(2) ⊗ b1 (3.3)

holds for all b ∈ B . Then A oα H is a crossed coproduct with comultiplication

∆α(a ⊗ h) =
∑

a(1) ⊗ a(2)
<−1>α1(a(3))h(1) ⊗ a(2)

<0> ⊗ α2(a(3))h(2)

=
∑

a(1)0 · S(a(1)1) ⊗ a(1)2h(1) ⊗ a(2)0 · S(a(2)1) ⊗ a(2)2h(2).

Proof. Firstly by Eq.(3.3) we have∑
b(1)0 · S(b(1)1) ⊗ ε(b(2)0)b(2)1 =

∑
b0 · S(b1) ⊗ b2 (3.4)

for all b ∈ B and ∑
a(1)0 · S(a(1)1) ⊗ a(2)0 ⊗ a(2)1 =

∑
a(1)0 · S(a(1)1) ⊗ a2 ⊗ 1 (3.5)

for all a ∈ A.
Secondly, it is obvious that (W2), (W3) and (CC1) are satisfied. We check that (W1) holds as follows:∑

a<−1> ⊗ a<0>
(1) ⊗ a<0>

(2) =
∑
ε(a(1)0)a(1)1 ⊗ a(2)0 · S(a(2)1) ⊗ a(3)0 · S(a(3)1)
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On the other hand,∑
a(1)

<−1>a(2)
<−1> ⊗ a(1)

<0> ⊗ a(2)
<0>

=
∑

(a(1)0 · S(a(1)1))<−1>a(2)<−1> ⊗ (a(1)0 · S(a(1)1))<0> ⊗ a(2)<0> ( by Eq.(3.5) )

=
∑
ε((a(1)0 · S(a(1)1))(1)0)(a(1)0 · S(a(1)1))(1)1a(1)2

⊗(a(1)0 · S(a(1)1))(2)0 · S((a(1)0 · S(a(1)1))(2)1)) ⊗ a(2)0S(a(2)1) ( by Eq.(3.4) )

=
∑
ε(a(1)0(1)0)a(1)0(1)1S(a(1)1)a(1)2 ⊗ a(1)0(2)0 · S(a(1)0(2)1) ⊗ a(2)0S(a(2)1)

=
∑
ε(a(1)0)a(1)1 ⊗ a(2)0 · S(a(2)1) ⊗ a(3)0 · S(a(3)1).

Finally, we compute the condition (CC2) as follows:∑
a(1)

<−1>α1(a(2)) ⊗ α1(a(1)
<0>)α2(a(2))(1) ⊗ α2(a(1)

<0>)α2(a(2))(2)

=
∑
ε(a(1)0(1)0)a(1)0(1)1S(a(1)1)a(1)2 ⊗ ε[(a(1)0(2)0 · S(a(1)0(2)1))(1)0]

(a(1)0(2)0 · S(a(1)0(2)1))(1)1ε(a(2)0)a(2)1

⊗ε[(a(1)0(2)0 · S(a(1)0(2)1))(2)0](a(1)0(2)0 · S(a(1)0(2)1))(2)1a(2)2 ( by Eq.(3.5) )

=
∑
ε(a(1)0)a(1)1 ⊗ ε[(a(2)0 · S(a(2)1))(1)0](a(2)0 · S(a(2)1))(1)1a(2)2

⊗ε[(a(2)0 · S(a(2)1))(2)0](a(2)0 · S(a(2)1))(2)1a(2)3 ( by Eq.(3.4) )

=
∑
ε(a(1)0)a(1)1 ⊗ ε(a(2)0(1)0)a(2)1(1)1S(a(2)1)(1)a(2)2

⊗ε(a(2)0(2)0)a(2)0(2)1S(a(2)1)(2)a(2)3

=
∑
ε(a(1)0)a(1)1 ⊗ ε(a(2)0)a(2)1 ⊗ ε(a(3)0)a(3)1

while ∑
α(1)(a(1))α1(a(2))(1) ⊗ α2(a(1))α1(a(2))(2) ⊗ α2(a(2))

=
∑
α(1)(a(1)0 · S(a(1)1))α1(a(2))(1) ⊗ α2(a(1)0 · S(a(1)1))α1(a(2))(2) ⊗ α2(a(2))

( by Eq.(3.5) )

=
∑
ε(a(1)0(1)0)(a(1)0(1)1)S(a(1)1)(1)a(1)2 ⊗ ε(a(1)0(2)0)a(1)0(2)1S(a(1)1)(2)a(1)3

⊗ε(a(2)0)a(2)1 ( by Eq.(3.4) )

=
∑
ε(a(1)0)a(1)1 ⊗ ε(a(2)0)a(2)1 ⊗ ε(a(3)0)a(3)1

Similarly (CC3) holds.
Thus we get a crossed coproduct A oα H. A straight calculation shows that

∆α(a ⊗ h) =
∑

a(1)0 · S(a(1)1) ⊗ a(1)2h(1) ⊗ a(2)0 · S(a(2)1) ⊗ a(2)2h(2). �

Remark. The Eq.(3.3) manifests that B is an A-H-bicomodule.

Theorem 3.3. Let H be Hopf algebra with antipode S. Assume that (B, ·, ρ) is a right H-Hopf module
and (B, ·) is a right H-module coalgebra. Set A = BcoH. If Eq.(3.3) holds for all b ∈ B. Then B � A oα H as
coalgebras.

Proof. First B � A ⊗H as right H-Hopf module and the isomorphic map φ : B −→ A ⊗H is given by

φ(b) =
∑

b0 · S(b1) ⊗ b2.
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Next we check that φ is a coalgebra map. For any b ∈ B, we obtain

∆αφ(b) =
∑
∆α(b0 · S(b1) ⊗ b2)

=
∑

(b0 · S(b1))(1)0 · S(b0 · S(b1))(1)1 ⊗ (b0 · S(b1))(1)2b2

⊗(b0 · S(b1))(2)0 · S(b0 · S(b1))(2)1 ⊗ (b0 · S(b1))(2)2b3

=
∑

b0(1)0 · S(b0(1)1) ⊗ b0(1)2S(b1)(1)b(2) ⊗ b0(2)0 · S(b0(2)1) ⊗ b0(2)2S(b1)(2)b(3)

=
∑

b(1)0 · S(b(1)1) ⊗ b(1)2 ⊗ b(2)0 · S(b(2)1) ⊗ b(2)2

= (φ ⊗ φ)∆(b). �

Lemma 3.4. Let (B, ·, ϕ) is a quasi-H-cleft coextension. Define the right coaction ρ of H on B by

ρ(b) =
∑

b(1) · (ϕ−1(b(2))ϕ(b(3))(1)) ⊗ ϕ(b(3))(2).

Then (1) (B, ·, ρ) is a right H-Hopf module and (B, ·) is a right H-module coalgebra.
(2) The Eq.(3.3) holds.

The following result is obvious by Theorem 3.3 and Lemma 3.4.
Corollary 3.5. Let (B, ·, ϕ) is a quasi-H-cleft coextension. Set A = BcoH. Then we have a crossed coproduct

A oα H with coproduct

∆(a ⊗ h) =
∑

a(1) · ϕ−1(a(2)) ⊗ ϕ(a(3))h(1) ⊗ a(4) · ϕ−1(a(5)) ⊗ ϕ(a(6))h(2)

and counit ε(a ⊗ h) = εA(a)εH(h) and B � A oα H as a coalgebra.

In the following we factorize a class of module coalgebras to smash coproduct.
Proposition 3.6. Let H be Hopf algebra. Assume that (B, ·, ρ) is a right H-Hopf module and (B, ·) is a

right H-module coalgebra. Set A = BcoH. If the extra condition∑
b(1) ⊗ b(2)0 ⊗ b(2)1 =

∑
b0(1) ⊗ b0(2) ⊗ b1 (3.6)

for all b ∈ B holds. Then ∆B(a) ⊂ B ⊗ A for all a ∈ A.
Proof. By Eq.(3.6) we have ∑

a(1) ⊗ a(2)0 ⊗ a(2)1 =
∑

a(1) ⊗ a(2) ⊗ 1 (3.7)

for all a ∈ A. i.e., ∆B(a) ⊂ B ⊗ A,∀ a ∈ A. �

Theorem 3.7. Let H be Hopf algebra with antipode S. Assume that (B, ·, ρ) is a right H-Hopf module
and (B, ·) is a right H-module coalgebra. Set A = BcoH. Define ω : A −→ H ⊗ A as Eq.(3.1) and suppose that
the Eq.(3.6) is satisfied for all b ∈ B. Then we have smash coproduct A ×H with comultiplication

∆A×H(a ⊗ h) =
∑

a(1)0 · S(a(1)1) ⊗ ε(a(2)0)a(2)1h(1) ⊗ a(3) ⊗ h(2).

Theorem 3.8. Let H be Hopf algebra. Assume that (B, ·, ρ) is a right H-Hopf module and (B, ·) is a right
H-module coalgebra. Set A = BcoH. If the Eq.(3.6) holds for all b ∈ B. Then B � A ×H as a coalgebra.

Proof. Similarly to the proof of Theorem 3.3. �

4. The Factorization of Bialgebra Into Bicrossproduct

In this section, we are devoted to the factorization of bialgebra and arrive at Radford’s known result.
Theorem 4.1. Let H be Hopf algebra and B a bialgebra. Suppose that (B, ·, ρ) is a right H-Hopf module,

(B, ·) is a right H-module coalgebra and (B, ρ) is a right H-comodule algebra. Set A = BcoH. If the Eq.(2.1)
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and Eq.(3.3) are satisfied for all a ∈ A, b ∈ B and h ∈ H. Then Aσ ◃▹αH is a bialgebra whose multiplication
and comultiplication are given by

(a ⊗ h)(a′ ⊗ h′) =
∑

a(h(1) ⇀ a′)σ(h(2), h′(1)) ⊗ h(3)h′(2)

and
∆α(a ⊗ h) =

∑
a(1) ⊗ a(2)

<−1>α1(a(3))h(1) ⊗ a(2)
<0> ⊗ α2(a(3))h(2)

respectively, where

ω : A→ H ⊗ A, ω(a) =
∑

a<−1> ⊗ a<0> =
∑
ε(a(1)0)a(1)1 ⊗ a(2)0 · S(a(2)1),

α : A→ H ⊗H, α(a) = α1(a) ⊗ α2(a) =
∑
ε(a(1)0)a(1)1 ⊗ ε(a(2)0)a(2)1

and
⇀: H ⊗ A −→ A, h⇀ a =

∑
((1 · h(1))a) · S(h(2)).

Furthermore, B � Aσ ◃▹αH as bialgebra.
Proof. Since the map φ is isomorphic in Theorem 2.5 and Theorem 3.3 and B is a bialgebra, the proof is

direct. �

Theorem 4.2. Let H be Hopf algebra with antipode S and B a bialgebra. Suppose that (B, ·, ρ) is a right
H-Hopf module, (B, ·) is a right H-module coalgebra and (B, ρ) is a right H-comodule algebra. Set A = BcoH.
If the Eq.(2.4) and Eq.(3.6) are satisfied for all b, b′ ∈ B. Then we can obtain a Radford’s biproduct bialgebra
A#
×H, its multiplication and comultiplication are given as follows:

(a ⊗ h)(a′ ⊗ 1) =
∑

a[((1 · h(1))a′) · S(h(2))] ⊗ h(3)1(3)

and
∆α(a ⊗ h) =

∑
a(1)0 · S(a(1)1) ⊗ ε(a(2)0)a(2)1h(1) ⊗ ⊗a(3) ⊗ h(2).

Furthermore B � A#
×H as bialgebra.

Proof. It follows from Theorem 2.6 and Theorem 3.8. �

Lemma 4.3. Let B be a bialgebra and H be Hopf algebra. Then the following conditions are equivalent:
(1) H�πi B is bialgebra projective map. i.e. π and i are bialgebra map satisfying π ◦ i = id.
(2) (B, ·, ρ) is a right H-Hopf module, (B, ·) is a right H-module coalgebra, (B, ρ) is a right H-comodule

algebra and the equalities below hold for all h ∈ H and b, b′ ∈ B:

1) (bb′) · h = b(b′ · h),

2)
∑

b(1) ⊗ b(2)0 ⊗ b(2)1 =
∑

b0(1) ⊗ b0(2) ⊗ b1.

Proof. (1)⇒ (2) Define two maps:

ρ : B −→ B ⊗H, ρ(b) =
∑

b(1) ⊗ π(b(2))

for all b ∈ B and
· : B ⊗H −→ B, b · h = bi(h)

for all b ∈ B and h ∈ H.
Then (B, ·, ρ) is a right H-Hopf module bialgebra and 1), 2) in Part 2 hold.
(2)⇒ (1) Define: i : H → B by i(h) = 1B · h and π : B→ H by π(b) =

∑
ε(b0)b1. It is straightforward that

π and i are bialgebra map satisfying π ◦ i = id. �

Corollary 4.4. (see [12]) Let H be Hopf algebra and B a bialgebra. Let H �πi B be bialgebra projective
map. i.e. π and i are bialgebra map satisfying π ◦ i = id. Set A = {a ∈ B | ∑ a(1) ⊗ π(a(2)) = a ⊗ 1}. Then
B � A#

×H as bialgebra.
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Proof. It follows from Theorem 4.2 and Lemma 4.3. �

Next we give a concrete example.
Example 4.5. Let H4 = k{1, 1, x, 1x} be Sweelder’s 4-dimensional Hopf algebra with Chark , 2. Its

product and coproduct are given below:

12 = 1, x2 = 0, x1 = −1x

and
∆(1) = 1 ⊗ 1, ∆(x) = x ⊗ 1 + 1 ⊗ x.

Its counit and antipode are given by ε(1) = 1, ε(x) = 0 and S(1) = 1 = 1−1,S(x) = −1x respectively.
Set H = k{1, 1}. Define the right action · of H on H4 by its multiplication and the right coaction ρ of H on

H4 by
ρ : H4 −→ H4 ⊗H, ρ(1) = 1 ⊗ 1, ρ(1) = 1 ⊗ 1, ρ(x) = x ⊗ 1, ρ(1x) = 1x ⊗ 1.

Then (H4, ·) is a right H-module coalgebra, (H4, ρ) is a right H-comodule algebra, and (H4, ·, ρ) is a right
H-Hopf module. Set A = H4

coH = {1, x}. Furthermore the following conditions hold:

(bb′) · h = b(b′ · h),∑
b(1) ⊗ b(2)0 ⊗ b(2)1 =

∑
b0(1) ⊗ b0(2) ⊗ b1

for all b, b′ ∈ H4 and H4 � A#
×H as bialgebra.

Next we give the concrete stucture of A#
×H: (Multiplication • and comultiplication ∆)

• 1 ⊗ 1 1 ⊗ 1 x ⊗ 1 x ⊗ 1
1 ⊗ 1 1 ⊗ 1 1 ⊗ 1 x ⊗ 1 x ⊗ 1
1 ⊗ 1 1 ⊗ 1 1 ⊗ 1 −x ⊗ 1 −x ⊗ 1
x ⊗ 1 x ⊗ 1 x ⊗ 1 0 0
x ⊗ 1 x ⊗ 1 x ⊗ 1 0 0

and
∆(1 ⊗ 1) = (1 ⊗ 1) ⊗ (1 ⊗ 1), ϵ(1 ⊗ 1) = 1;
∆(1 ⊗ 1) = (1 ⊗ 1) ⊗ (1 ⊗ 1), ϵ(1 ⊗ 1) = 1;
∆(x ⊗ 1) = (x ⊗ 1) ⊗ (1 ⊗ 1) + (1 ⊗ 1) ⊗ (x ⊗ 1), ϵ(x ⊗ 1) = 0;
∆(x ⊗ 1) = (x ⊗ 1) ⊗ (1 ⊗ 1) + (1 ⊗ 1) ⊗ (x ⊗ 1), ϵ(x ⊗ 1) = 0.
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