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Growth properties of modified a-potentials in the upper-half space
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Abstract. The aim of this paper is to discuss the behavior at infinity of modified a-potentials represented
by the modified kernels in the upper-half space of the n-dimensional Euclidean space, which generalizes
the growth properties of analytic functions, harmonic functions and superharmonic functions.

1. Introduction and main results

Let R" (n > 2) denote the n-dimensional Euclidean space with points x = (x1,x2, -+, Xn-1, X4) = (X', Xz,
where ¥’ € R"! and x, € R. The boundary and closure of an open Q of R" are denoted by dQ and Q
respectively. The upper half-space is the set H = {x = (x/,x,) € R" : x, > 0}, whose boundary is dH. We
identify R" with R""! X R and R"~! with R""! x {0}, writing typical pointsx, y € R" asx = (X, x,), ¥ = (V', ¥u),
where x” = (x1,x2, -+ ,Xu-1), ¥ = (Y1, Y2, , Yn-1) € R" ! and putting x - y = 27:1 Xjyi=x" Yy + xXuy, |x| =
Vxox, X = Vx'-x.

For x € R” and r > 0, let B,,(x, r) denote the open ball with center at x and radius 7 in R".

It is well known that (see, e.g. [4, Ch. 6]) the positive powers of the Laplace operator A can be defined
by

(=0 f(x) = FHE£(E)), (1)

where a > 0, f is a Schwarz function and

FFE) = f() = fR e,

It follows that we can extend the definition (1) to certain negative powers of A, (-A)™2 for0 <a <n
and define an operator I, by

Lf =(-A)"2f = FH(E™ ),

where 0 < a < n and f is a function in the Schwartz class.
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If I, is defined as the inverse Fourier transform of |£|™* (in the sense of distributions), one can show that
Lo(x) = palx*™
where y, is a certain constant (see, e.g. [4, p. 414] for the exact value of y,).
The function I, is known as the Riesz kernel. It follows immediately from the rules for manipulating
Fourier transforms that any Schwartz function f can be written as a Riesz potential,

9(y)

re X =yl

() = Lag(x) = (Lo * 9)(x) =

7

where 0 < @ < nand g = (-A)? f.
This Riesz kernel I, in R” inspired us to introduce the modified Riesz kernel for H. To do this, we first
set

| —loglx| if a=n=2,
E“(")‘{ma—" if 0<a<n.

Let G,(x, y) be the green function of order « for H, that is

Galx,y) = Ex(x — y) — Ex(x — v") x,yeITI,x;ty,0<aSn,

where * denotes reflection in the boundary plane dH just as y* = (y1, Y2, , Yn-1, —Yn)-
We define the Poisson kernel P,(x, ") when x € H and iy’ € JH by
dG,(x, )
Yn
where C, =2(n—a)if0<a <nand =2ifa=n=2.
We remark that in the case o = 2, Gy(x,y) and P,(x,y’) are the classical Green function and Poisson

kernel for H respectively (see, e.g. [5, p. 127]).
In case @ = n = 2, we consider the modified kernel function, which is defined by

Jnz0 - va |.’X _ ylln—a+2’

Pa(x,y') =

B E.(x—v) if [yl <1,
E"f’“("‘y)‘{E(x—y>+%(logy L) i =1,

In case 0 < a < n, we define

Es(x—y) if lyl <1,

Eom(x—y) = m X use .
=) { Ealc—y) - T oilaC (52) if 2 1,

where m is a non-negative integer, C}/(f) (w = *5*) is the ultraspherical (or Gegenbauer) polynomials([8]).
The expression arises from the generating function for Gegenbauer polynomials

(1-2tr+72)7 =Y CoOF, )
k=0

where |r] < 1, [t{ < 1 and @ > 0. The coefficients C(f) is called the ultraspherical ( or Gegenbauer )
polynomial of degree k associated with w, the function C{/(t) is a polynomial of degree k in ¢.
Then we define the modified Poisson kernel P, ,,(x, y’) and Green function G, (¥, y) respectively by

, Pu(x,y") if [y'| <1,
am (X y )=

, m=1 Coxalxft ~222 ( xy/ . ,
Pa(x, ') = Yo imeen G * ) I V121,

) Enmrix=y) = Eppmalx—y") if a=n=2,
Cam(x y) - { Egpmr1(x — ]/) = Egmi1(x — ]/*) if 0<a<mn,
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where x,y € Hand x # v.
Write

Uy m(x,v) = fa ; Pom(x, y)dv(y') and Gum(x, p) = L Gam(x, y)du(y),

where v(resp. p) is a non-negative measure on dH(resp. H). Here note that U o(x, v)(resp. Goo(x, 1)) is
nothing but the general Poisson integral (resp. Green potential).
Let k be a non-negative Borel measurable function on R” X R”, and set

i) = [ K 0du0 and k) = [ K, 9w,
E E
for a non-negative measure i on a Borel set E C R". As in [6], we define a capacity Ci by
Ci(E) =supu(R"), ECH,

where the supremum is taken over all non-negative measures u such that S, (the support of ) is contained
in E and k(y, ) < 1 for every y € H.
For f < 1, we consider the function k, g defined by

kas(y, x) = x;ﬁyﬁlca(xf Y) forx,y € H,
wp\Ys lim .y zeq x’ z2,1Ga(x,2) = C,,,x}fﬁ lx — y'|*"2 forx € Handy € JH.

If B =1, then k, is extended to be continuous on H x H in the extended sense, where H = H U 9H.
Recently, Siegel and Talvila ([7]) proved the following.

Theorem 1.1. Let f be a measurable function on R"™! satisfying

foo
jl;z—l Wdy < 00.

Then the function v(x) = J;{H Py (x, ) f(y)dy’ satisfies
v e C2(H) N C°(H),

Av=0, x€H,

lim v(x) = f(x’) nontangentially a.e. x" € JH,

o(x) = o(x} """ as |x| — 0o, x€H.
Our first aim is to establish the following theorem.

Theorem 1.2. Let v be a non-negative measure on dH satisfying

1
— vy 00,
[ ) < ®)

Then there exists a Borel set E C H with properties:

() tim el () = 0

(ll) Z 2—7'(1170.'+ﬁ+1)Ckmg (Ez) < 00,
i=1

where E; = {x € E : 2/ < |x| < 2*1}.
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Theorem 1.3. Let u be a non-negative measure on H satisfying

Yn
———d .
I, apttno < @

Then there exists a Borel set E C H satisfying Theorem 1.2 (ii) such that

lim X, P Gy, 1) = 0.

|x|>00,xeH—E
We define the modified a-potentials on H by
Ra(x) = Ua,m(x,v) + Gam(x, 1), 5)

where 0 < @ < nand v (resp. u) is a non-negative measure on dH (resp. H) satisfying (3) (resp. (4)). Clearly,
Ry(x) is a superharmonic function.
The following theorem follows readily from Theorems 1.2 and 1.3.

Theorem 1.4. Let R, (x) be defined by (5). Then there exists a Borel set E C H satisfying Theorem 1.2 (ii) such that

olim Ry () = 0.

Remark 1.5. In the case o = 2 and 0 < p < 1, by using Lemma 2.5 below, we can easily show that Theorem 1.2 (ii)
means that E is B-rarefied at infinity in the sense of [1]. In particular, This condition witha =2, =1 (resp. a = 2,
B = 0) means that E is minimally thin at infinity (resp. rarefied at infinity) in the sense of [3].

Next we are concerned with the best possibility of Theorem 1.4 as to the size of the exceptional set.

Proposition 1.6. Let E C H be a Borel set satisfying Theorem 1.2 (ii) and R,(x) be defined by (5). Then we can find
a non-negative measure A defined on H satisfying

1
———————dA(y) < o,
fH (1 + |y|)n+m—a+2 (y)

such that

lim sup x;ﬁ X[~ 1R (x) = oo,
|x|—00,x€E

where dA(y') = dv(y) (y' € OH) and dA(y) = yudu(y) (y € H).

2. Some Lemmas

Throughout this paper, let M denote various constants independent of the variables in questions, which
may be different from line to line.

Lemma 2.1. Let m be a non-negative integer and M > 0.
(@) IF1 <y < 5, then |Poy(, y)] < Mt

<M
(ii) Ifly'| = 2| and |y’ 2 1, then |Po,u(x, )| < Ml

Lemma 2.2. Thereexistsapositive constant M such that G,(x, y) < M where0 < a < n,x = (x1,x0, -+, xp)

‘x_y‘rz—a-ﬁ-z 7
and y= (}/1/ ]/2/ U /yn) in H.

This can be proved by simple calculation.
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Lemma 2.3. Gegenbauer polynomials have the following properties:
(i) ICE ()] < C2(1) = gy, <1
(i) £CO(H) = 20CH (b, k> 1;
(iti) Yoo CY(r* = (1 —1)72;
(

0)ICT O -CF () < (n-a)C, i WlE-+], <1, [F<1.

Proof. (i) and (ii) can be derived from [8]. (iii) follows by taking f = 1 in (2); (iv) follows by (1), (2) and the
Mean Value Theorem for Derivatives. [

Lemma 2.4. For x, ye€ R" (a = n = 2), we have the following properties:
. k — k k
(i) 19 Ly =l < Tiy T
(i) 19 Lo S| < 27 o™
b k njyn -1
(i) G, y) = Gulx, y)] < MLy P
(

|y|k+1
. o kxnynlxlk_l .
lU) |G71,W1 (xr y)' S M2k=m+1 ‘y|k+1 7

The following lemma can be proved by using Fuglede (see [2, Théorém 7.8], )
Lemma 2.5. For any Borel set E in H, we have Cy,(E) = Cka'ﬂ (E), where Cka,/i (E) = inf A(H), the infimum being
taken over all non-negative measures A on H such that kapg(A,x) 2 1 for every x € E.
3. Proof of Theorem 1.2

For any ¢; > 0, there exists R,, > 2 such that

1
T vy < e
>fljg/'€¢9H,|y’|>Rkl} (1 + |y’|)ﬂ+m—a+2 y

For fixed x € H and |x| > 2R,,, we write

Uy m(x,v) L Pom(x, y)dv(y') + L Pom(x, y)dv(y"))u(y)do(y)

mmwmw+fpmmwmw

4 Gs

ﬂLWmmV%RMJWMW+L
U (x) + Un(x) + Us(x) + Us(x) + Us(x),

where Gi = {y’ €dH : |y'| <1}, Gy=1{y €edH:1<|yI<ll),
Gy=GCy={y edH: 2 <|yI<2l) and Gs={y €dH: |y = 2xl).
First note that

|7 (x)|

IN

w3y [ )
Moty |x|* ™2, (6)

IA

By Lemma 2.1 (i), we have

1
U>(x)] < Mxnlxlm_lf ——dv(y’
2( ) G |y/|n+m—a+l (y)

IA

1
Mo, |x|™ ——dv(y'). 7
o [ ) ?
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Write
Uz (x) = Ui (x) + Unxn(x),
where
Uit = [ o,y and Uas(o) = [ P, ¥ )V,
G MBraORe,) Go-Bua(OR:,)

If x| > 2R,,, then

_ 1
U1 (x)] < Moxulx]" 1R€1f de(y')
Bn—l(OlRel)_Bn—l(Orl) y

MR, x,|x|" L.

IA

Moreover, by (7) we have

Uz (x)] < Mexylx|™.

That is
[Ux(x)| < Meqxylx|™. 8)
We have by Lemma 2.3 (iii)
m=l xn|x|k n-—a+2
Us(x)] < Mfc Zchz 1)dv(y)
3 k=0
m=l 1 n—a+2 1
< Mxx|™ ) =C, % (1 f ——dv(y’
; 2k Tk ( ) Gs |yl|n+m—a+2 (y)
< Meyx,|x|™. )

By Lemma 2.1 (ii), we obtain

m 1 ’
Us(x)] < Mouxylx] LS dew)
Meqx,|x|™. (10)

IA

Note that Uy(x) = xﬁ fc4 kap(y’, x)dv(y’). In view of (3), we can find a sequence {a;} of positive numbers
such that lim;, a; = o0 and )i~ a;b; < co , where

1
b = f ——_du(y).
Ly eaH2 <y |<2iv2) [y [THmaT2

Consider the sets
Ei={xeH:2 < x| <2, x, Uy(x) = a7 127160},

fori=1,2,--- . If uis a non-negative measure on H such that S, C E; and k,g(y’, ) < 1for y’ € JH, then we
have

o
H

IA

aiZi(ﬁ_m_l)fx,;ﬁl,u(x)dy(x)

IA

MQIZZ(ﬁ_m_l) f v ka/ﬁ(y,/ H)dv(yl)
{y €dH:21 <[y’ |<21+2)

Maizi(ﬁ—m—l) f dV(y,)
{y' €dH:2-1 <[y’ |<2+2)

M4m+n—a+22i(n—a+ﬁ+1)a b
ivi

IA

IA
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So that
Ck 5(Ei) < M4m+n—a+22i(n—a+,8+1)aibi,
which yields
Z Z_i(n_MﬁH)Cka,g (Ej) < oo.
i=1
Setting E = (Ji2; E;i, we see that Theorem 1.2 (ii) is satisfied and

lim sup PP Uy (%) < lim sup 2ff~m-1pi=m=1) g =1p=i(F=m=1) =
|x]—00,xeH-E i—0

Combining (6), (8), (9), (10) and (11), we complete the proof of Theorem 1.2.

4. Proof of Theorem 1.3

For any ¢, > 0, there exists R,, > 2 such that

Yn
e —T )RS
j{\yeH,széz} 1+ |y|)n+m—a+2 H(]/ 2

For fixed x € H and |x| > 2R,,, we write

Gam(t, 1) = fH Galx, y)dii(y) + fH Galx, y)dii(y) + f [Gapn(x, 1) — Galx, 1dis(y)

Hj

" fH Gl ) + fH Gl yuty) + fH (Gun, )~ Guls M)

Gam 7 d
+fH7 (2, y)apy)
Vi(x) + Va(x) + V3(x) + Via(x) + Vs(x) + Ve(x) + V7(x),

where Hi = {y € H: [yl 2 Re,, Ix —yl < B}, Ho = {y € H: [y = Re,, & < |x — yl < 3lul},
Hy={y € H:ly| = R, lx -yl <3kl}, Hi={yeH:yl>Re,lx—yl> 3,
Hs=H¢={yeH:1<|y|<R,} and Hy={yeH:|yl <1}
We distinguish the following two cases.
Casel.0<a<n.

Note that
Vi() = o fH ka0, DAAY),

where dA(y) = yudu(y).

709

(11)

By the lower semi-continuity of k, g(y, x), then we can prove the following fact in the same way as Uy(x)

in the proof of Theorem 1.2.

li LIV () = 0.
lim Y )

where E = U2, E;, Ei = {x € E: 2/ < x| < 2%} and Y. 2, 2702+ DC (E;) < oo.
Moreover by Lemma 2.2

Yn
Vo)l £ Mx, —
V20 |, ety
Yn
< Muxy|x|™ —
x| Lz (1 + |y|)n+m—a+2 H(y)
< Merx,|x|™.

(12)

(13)
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Note that Cj (f) = 1. By (iii) and (iv) in Lemma 2.3, we take t = =Lt = in Lemma 2.3 (iv) and

b Txdlyi/ IXIIy |
obtain
m |x|k mas2 xnyn 2|y|n+m—a+2
[Vs(x)| < f 2m-a)C, % (1 d
3@ Z e 2 = 00 (D )
m 1 as2 Ya
< Mo, |x|™ —C, % (1 _
—_ X |x| kg{ 4k—1 k_1 ( ) H3 (1 +|y|)n+m —a+2 [u'(y)
< Meoxy|x|™ (14)
Similarly, we have by (iii) and (iv) in Lemma 2.3
|X|k nyn |y|n+m —a+2
Va(x)| < f -a C
ol = | Y = 00 O
1 n—a+2 ]/n
< m - 2 1 -
< Ml k:r;rl k-1 Ck—l ( )‘flﬂ 1+ |y|)n+m—a+2dfu(y)
< Meyx,|x|™. (15)
By Lemma 2.2, we have
Rn a+2xn
[Vs(x)| < Mw- (16)
Similarly as V3(x), we obtain
|X|k . +2 xnyn 2|y|n+m —a+2
Ve(x)| < f -a)C, 2 (1
o= L2 G Oy e )
< M . 1 k— 1Rm k+1f Yn
< Mx Zc "W o [T a2t
< MR’”xnlxl’” L (17)
Finally, by Lemma 2.2, we have
Xn
V7(x)| < M——. (18)

|x|n—a+2

Combining (12), (13), (14), (15), (16), (17) and (18), we prove the case 1.

Case2. a=n=2.

In this case, Vi(x), Va(x), Vs(x) and V7(x) can be proved similarly in case 1. (3.7), (3.8), (3.11) and (3.13)
still hold.

Moreover we have by Lemma 2.4 (iii)

V3 ()|

IA

kxn X[ 2]y f
f yk+1 . o m+2du(y)
= Yl Yo (L+yl)

IA

m
k=1
Meyx,|x|™. (19)

m k n
Moxy|x| 24_]1;3W u(y)

IA
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By Lemma 2.4 (iv), we have

f o kxS 21y y,
H, [y[+1 v (1+ly

[Va(x)]

IA

) du(y)
k=m+1

k Yn
m
Mo, |x| Z Fj;ﬂ Wdy(y)

k=m+1
Meorx,|x|™.

IA

IA

Similarly as V3(x), we have
[Ve(x)| < MRZ;xnlxl’"—l.
Combining (12), (13), (16), (18), (19), (20) and (21), we prove the case 2.

Hence we complete the proof of Theorem 1.3.

5. Proof of Proposition 1.6

711

(20)

(1)

We prove the case 0 < a < n, because the case a = n = 2 can be proved similarly. Further, we only need

prove

limsup x, "X ky1 (A, X) = co.
|x|—00,x€EE

By Lemma 2.5, for each i we can find A; on H such that /\i(ﬁ) < Cka,ﬂ (E)) +1 and ka,ﬁ(/\i, x) > 1onE;.

Denote by A! the restriction of A; to the set {y € H:271 < |y| <2142},

Set A = Y.;2 ;27D !, where {a;} is a sequence of positive numbers such that lim;_.4; = co but

Z?zl aiZ‘f("“”ﬁ”){Cw (E;) + 1} < 0. Then

; 5 . 71'(ﬁ—m71) f 1 ,
j; (1 + [y|yr+m-a+2 Ay Z 42 7 (1+ [y|yrm—a+2 dA;(y)

i=1

M Z a2 = FIC, (Ey) +1) < oo,
=1

IA

If x € E;, then

ka,ﬁ (/\:/ x)

\%

-  Kapw0dA()
{yeH:|yl<2-1)n{yeH:|y|>2+2}

1— M7 By (Ey) + 1.

\%

We also have
2 PP e 1 (A, x) = P K p(A, %) 2 aikap(A], %),
which implies that

limsup x, *[x/F"" k1 (A, x) = oo,
|x|—00,x€EE

Thus A satisfies all the conditions in the Proposition 1.6.

6. Acknowledgments

The authors wish to thank the anonymous reviewers for their valuable suggestions.



L. Qiao, G. T. Deng / Filomat 27:4 (2013), 703-712 712

References

[1] H. Aikawa, On the behavior at infinity of non-negative superharmonic functions in a half space, Hiroshima Math. J. 11 (1981)
425-441.

[2] B.Fuglede, Le théoréme du minimax et la théorie fine du potential, Ann. Inst. Fourier(Grenoble). 15 (1965) 65-88.

[3] M. Essén and H. L. Jackson, On the covering properties of certain exceptional sets in a half space, Hiroshima Math. J. 10 (1980)
233-262.

[4] L. Grafakos, Classical and Modern Fourier Analysis, Prentice Hall, NJ, 2004.

[5] L. Hoérmander, Notions of Convexity, Progress in Mathematics, vol. 127, Birkhaduser, Boston, 1994.

[6] Y.Mizuta, On the behavior at infinity of Green potentials in a half space, Hiroshima Math. J. 10 (1980), 607-613.

[7] D.Siegel and E. Talvila, Sharp growth estimates for modified Poisson integrals in a half space, Potential Anal. 15 (2001), 333-360.

[8] G. Szego, Orthogonal Polynomials, American Mathematical Society Colloquium Publications, Vol. 23, American Mathematical
Society, Providence, 1975.

[9] W.K. Hayman and P. B. Kennedy, Subharmonic Functions., vol. 1, Academic Press, London, 1976.



