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Approximation Theorems for g-Bernstein-Kantorovich Operators

N. I. Mahmudov?, P. Sabancigil®

?Eastern Mediterranean University, Gazimagusa, TRNC, Mersin 10, Turkey

Abstract. In the present paper we introduce a g-analogue of the Bernstein-Kantorovich operators and
investigate their approximation properties. We study local and global approximation properties and
Voronovskaja type theorem for the g-Bernstein-Kantorovich operators in case 0 < g < 1.

1. Introduction

In the last two decades interesting generalizations of Bernstein polynomials were proposed by Lupas
[15] and by Phillips [20]. Generalizations of the Bernstein polynomials based on the g-integers attracted
a lot of interest and was studied widely by a number of authors. A survey of the obtained results and
references on the subject can be found in [19]. Recently some new generalizations of well known positive
linear operators, based on g-integers were introduced and studied by several authors, see [23], [5], [6], [8],
[21], [22], [16].

The classical Kantorovich operator B;,, n = 1,2, ... is defined by (cf. [14])

", [
B;, (f;x) :=(n+1)Z( P )x 1-x" f f () dt
k=0 k

/n+1

- 1
_ n\ oy ik k+t | B
_1;)'( k )x 4= j; f(n+1)dt’ f:10,1] » R. O

These operators have been extensively considered in the mathematical literature. Also, a number of
generalizations have been introduced by different authors (see, for instance [24], [25], [26]).

In this paper, inspired by (1), we introduce a g-type generalization of Bernstein-Kantorovich polynomial
operators as follows.

o= Epen [ o

where f € C[0,1],0<g < 1.
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The paper is organized as follows. In Section 2, we give standard notations that will be used throughout
the paper, introduce g-Bernstein-Kantorovich operators and evaluate the moments of B; ;. In Section 3
we study local and global convergence properties of the g-Bernstein-Kantorovich operators and prove
Voronovskaja-type asymptotic formula. In the final section we give statistical approximation result for the
g-Bernstein-Kantorovich operators.

2. g-Bernstein-Kantorovich operators
Let g > 0. For any n € N U {0}, the g-integer [1] = [n], is defined by
[M]:=14+g+..+ q"‘l, [0]:=0;

and the g-factorial [n]! = [n],! by

[n]':==[1][2]...[=], [O]!:=1.

For integers 0 < k < n, the g-binomial coefficient is defined by

n| [n]!
k|7 [k'[n=k

The g-analogue of integration in the interval [0, A] (see [13]) is defined by
A (o)
f fBdst=A(1 —q)Zf(Aq”)q”, 0<g<l.
0 n=0

Let 0 < g < 1. Based on the g-integration we propose the Kantorovich type g-Bernstein polynomial as
follows.

k] +
B, (f,x) = ank(q,x)ff([[]+1] )dqt, 0<x<1l,neN
where
n—1
P (4 %) ::[ ]x 1-2x);" k, (1-x) = H(l—qsx).
s=0

It can be seen that for 4 — 17 the g-Bernstein-Kantorovich operator becomes the classical Bernstein-
Kantorovich operator.

Lemma 2.1. Foralln € N, x € [0,1] and 0 < g < 1 we have

m

* m _ m [7’1]] v m_j n i j+i
By, (¢ »c)—Z( ; )[Ml]m[m_].ﬂ];( ; )(q = 1) By (¢, 7). @

j:O i=
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Proof. The recurrence formula can be derived by direct computation.

1
NI - L m | KV gD
Bn,q(t,x)=kZépn,k(q;X)Z;f( ) g
= 0

J
n m k(m 1) k]]
= p”, (q;x) ) m

kzzo‘ ¢ Z‘ [n+1]"[m—j+1]

7=0
m " [7’1]] n ; ][
B ' " i g -1+1 — Pk (4;X)
;{( ) )[n+1] [m_]ﬂ];( ) (] k
_y(m [} ”””(m ')k_ y
- ]_0( )[n+1]’” [m-j+1] i n ]Pnk(’% x)
m=j

]-H

£l
— [n+1]"[m—j+1] &

]

O

k=0

3 W
I

j=0 i=

Lemma 2.2. Foralln € IN, x € [0,1] and 0 < g < 1 we have

N 29 11

Boa (0=, B0 = G+ Dy

c e 9@+ qlnln-1] , 49+7¢+q [n] 11
e e T R TEE AR [T

Proof. Taking into account (2), by direct computation, we obtain explicit formulas for B;

B, (tZ, x) as follows.

(m ]) Z ]+,Pnk(‘1 x)

] []] / +i
Z‘( )[ﬂ+1]mnm j+1]4 (m ])(‘7 -1)'B,, (t] ,x).u

. 1 " [n]

By () = o (Bug (1,2) + (4" = 1) Byg (1,2)) + ST
o 9" -1 [1] 1 29 [n] 1
_([2][n+1] * [n+1])x R+l R+ Rr+1]

and
1
B;/q (t2’x) = m (Bn,q 1,x)+2 (67” - 1) Bn,q (t,x) + (q" - 1)2 Bn,q (tzz x))
2[n] n?

" (]
g (B 0+ @ = DB (2.0) + P ()

- Bln+1% \[n+1P7 [Rln+17 [Bln+1)

n n 2
1 (P 20@ =Y @D (1_L)x2
7]

n n 2
. [n]* Q2@ -0 @ -1  2[n]
(nl[n+1F  [21[nn+17  [Blnlln+ 11  [2l[n+ 1]

:2q+3q2+q3q[n][n—1]x2+4q+7q2+q3 [n] 1

[2][3] [n+ 1] 2IB]  [n+ 1]2x " [3][n + 1]2’D

723

(t,x) and
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Remark 2.3. It is observed from the above lemma that for q = 1, we get the moments of the Bernstein-Kantorovich
operators.

Lemma 2.4. Foralln € N, x € [0,1] and 0 < g < 1 we have

B:,,q((t—x)le)_[](x(l x)+[1]), B;,q((t—x)LL,x)S%(x(l—x)Jr#),

where C is a positive absolute constant.

Proof. Note that estimation of the moments for the g-Bernstein operators is given in [17]. The proof is
based on the estimations of the second and fourth order central moments of the g-Bersntein polynomials.

1 C
Bug ((t —x)° ,x) = mx(l —-Xx), Bug ((t - x)4,x) < Wx(l - x).
Indeed

B;,q (t-x)?, x

1
Mgt V. o gt gk KN
M(>f( —ﬁw=;mmwfhﬁu mmuﬁilﬁ%t
2
<2 ”k(q’x)f([n+1] Tl n+1]) dt+ZZPnk(q/x)f([—]— ) gt

< 4 + 4 + —
T Bln+1P [n+1] [n]

A similar calculus reveals:

B, ((t=x*,x)

—

1
x(1- x)<[]( 1- x)+[n])

1

1
_ ETEINN N I A I Y
ank(ql )f( 7’l+1 X) dqt—épn,k(qrx)f([n_'_l] - [Vl] [7’1+1] + m —X) d‘it

0

4
<4ank(q,x)f([n+1] e 1]) dt+4ank(q,x)f([[__ )

32 32 4 C 1
2 oen < = (xa-0+—|.
N CT ST TS T ”Smf@a @+MJD

Lemma 2.5. Assume that 0 < g, <1,q, — 1and g — aas n — oo. Then we have

. . v I+a 1
]}g{}o [n];, By g, (E—x;x) = —Tx + 5

lim [n],, B;,q” ((t - x)z;x) = —%xz - %ax2 + x.

n—oo
Proof. To prove the lemma we use formulas for B; , (t;x) and B}, (t2 ; x) given in Lemma 2.2.
an [n]q,, 1) x4 1 [n]q,, }
(2, [n+1],, [Z]q [n+1],

- tim {- S A L bl
SO Tpean, @, TR e,

n—oo

lim [n], B, (t—xx) = 1}1_1;{)10 {[n]qn (

2 2

n—oo
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lim [n], B, ((t —x)? ,x)

= lim [n],, ( (tz,x) o 2xB*,q (t—x, x))
0 (G +2 - [n],, 4g, + 70> +g> [n
= lim [n],, 0 (g +2) 1" " _ 1%+ lim [n],, T+ 70, + ;| ]qnz x
e (31, [n +113, e 21, Bl [n+11;,

_ ;}gl;lo [n],, 2xB,, ;. (t—x,x)

= hm 0 gy 1-qy) (an +qa+ Z)x - hm (4qn + 35 + an)x + lim

= lim [n],, 2xB; , (t - x,x)

s A
= —(1—a)x2—3x2+2x+(1+a)x2—x

——1x2—%ax +x.0
3 3

3. Local and global approximation
We begin by considering the following K-functional:

Ky (f,6%) := inf{||f - g]| + 6* ||

where

C?[0,1]1:={g9:49,4,9" € C[0,1]}.

7

. g€ C20, 1]} 5> 0,

Then, in view of a known result [7], there exists an absolute constant Cy > 0 such that

Ky (f,6%) < Cown (f,0)
where

wz (f,0) :== sup sup (f(x—h)—2f(x)+f(x+h)|

0<h<d x+he[0,1]

is the second modulus of smoothness of f € C[0,1].
Our first main result is stated below.

Theorem 3.1. There exists an absolute constant C > 0 such that

(1 + q"*l)x -1
[2][n +1]

B;,, (f;%) ~ f ()] < Ca (f, 5*{ n<]>) + a)[f,

|

where f € C[0,1], 0, (x) = ¢ (x)+[1] 0<x<1land0<g<1

Proof. Let
B, (f;x) = B, (fix) + f(x) = f (aux +by),

where f € C[0,1], a, = 1fq [H’ll] and b, = 11q

t
g(t):g(x)+g’(x)(t—x)+f(t—s)g"(s)ds, geCZ[O,l],

4q, + 70, + q;
n—oo 2], [3],,
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we have

t nX+by
B, (g;x) =g(x) +B,, ( f (t=5)g" () ds;x) - f (@nx +b,—s)g" (5)ds, geC*[0,1].

Hence
t W X+by,
g ;X) — g(x)) <B,, ( f [t —sl||g” (s)|ds ;x) + f lanx + by, —s||g” (s)|ds
<|g” B:w ((t - x)? ;x) + |lg” x + by —x)?
4 1 4 2
< 7 _r 1-— 4+ — |+ — 2 + —
W00 ) )

10 ”
= mén () ||lg

(4)

Using (4) and the uniform boundedness of E;,q we get

B, (f—g;x)l B, (g:) — g ()] + | f (¥) = g )| + |f (@ux + b)) — f ()|
"W+ (f 1@, —1)x +byl).

B, (f;x)— f(x)| <
<4|f- g“+ 6(x)'

Taking the infimum on the right hand side over all g € C?[0, 1], we obtain

0, (x
By, (f;x) - f ()] < 10K, (f,- %) + @ (f, 1@ = 1) x +by),
which together with (3) gives the proof of the theorem.

Corollary 3.2. Assume that q, € (0,1), g, — 1asn — co. Forany f € C?[0,1] we have

lim 1B, (f) - £l = 0

n—oo

We next present the direct global approximation theorem for the operators B;, ;. In order to state the
theorem we need the weighted K-functional of second order for f € C[0, 1] defined by

Kzr‘f’ (f/ 62) = 1nf{||f — g” + 62 “(PZg//

where

:g€W2((p)}, 620, ¢*(x)=x(1-%)

W2 (p) = {g€C[0,1]: ¢’ € AC[0,1], *¢” € C[0,1]},

and g° € ACJ[0,1] means that g is differentiable and g’ is absolutely continuous in [0,1]. Moreover, the
Ditzian-Totik modulus of second order is given by

wf(f,é) ‘= sup sup (f(x—(p(x)h)—Zf(x)+f(x+(p(x)h)|.

0<h<6 x+he(x)€[0,1]

It is well known that the K-functional K3, ( f 62) and the Ditzian-Totik modulus a)f (f, 6) are equivalent (see
[7D-

Now we state our next main result.
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Theorem 3.3. There exists an absolute constant C > 0 such that

B%(ﬂ—fﬂéﬁﬁfﬂ:%ﬁ)+3¢Qﬁ%y

where f € C[0,1],0<g<1, @*(x) =x(1-x), P (x) =2x+ 1.

Proof. Let

E:w (f;x) =B, (f;x) + f(x) = f (anx + by),

29 1
T+qn T T

where f € C[0,1], a, =

t
mnzwn+yma—@+ijwww®%,geWR@,

we have

¢ W X+by
E"n,q (x)=9(x)+B,, (f (t—9)g" (s)ds; x) - f (@x+b,—s)g” (s)ds, g€ W*(p).

Hence

W X+by,
la,x + b, — 5|

q" (s)| ds|.

7" (5)|ds

t
flt—sl ;x)+
X

Because the function 62 is concave on [0, 1], we have for u = t + t(x — t), T € [0, 1], the estimate

ngw—mﬂsB%(

|t—s|=T|x—t| Tlx —{ <|x—1f|
() 01 T R +T(2(0)-83(M) )

|

(B;,q ((t —x)? ;x) + (ayx + b, — x)z)

Hence, by (5), we find

-l

ds
x 05 ()

nX+by
f |a,x + by, — 5| /52 (s) ds
X

1)+ o

B4 (7:2) — 9 ()] < [|6%9”

L
ACY

||6§g"( 4 1 4 , 2
< (0 5 o )

||62 7/ 10 1 2 .
< &<>{Eﬂx“‘”+ﬁﬁﬂ o 1

||62 17

Since

< H(pz ”

we have

2 1

1’

trl9

B,y (g:2) = 9 ()] < ||<P ™

727
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Using (6) and the uniform boundedness of §* we get
By (fix) = f )| < B}, (f - %m wmmm g@|+[f () = g )] + | @0x +bu) = £ (x)
<a|f-g|+= (”(p2 & +oglell)+ |f (@ux + b,) = £ (x)].

Taking the infimum on the right hand side over all g € W2 (¢), we obtain

M <101<2(p( ) |f (@nx + b,) — £ (x)]. ?)
On the other hand
|f @ux +ba) = f )] = |f (c + ¢ (0) (@0 — 1) x + b)) — £ ()|
L4 1 )_ ‘
Ssupf(“w)( P12 [n+1]"+ 2][n+1]1/)(x)) f@&)
<Z)) (f 1+qn+1 )
= @RI+ [nn+u¢u>
5 g (%) — 2x +1
SWP> e ] | mtave) ®

Hence, by (7) and (8), using the equivalence of K5, ( f, ﬁ) and the Ditzian-Totik modulus w ( f )

get the desired estimate.
Next we prove Voronovskaja type result for g-Bernstein-Kantorovich operators.

Theorem 3.4. Assume that q, € (0,1), 4, — 1and q! — aasn — oo. For any f € C?[0,1] the following equality
holds

hm [n], ( i (f;x) - f(x)) fx ( 1;Lax+ %)+ %f”(x)(—%xz— :%ax2+x)
uniformly on [0,1].

Proof. Let f € C2[0,1] and x € [0, 1] be fixed. By the Taylor formula we may write

f)=f@)+f @)E—x)+ %f” (@) (t—x)* +r(tx) (- 27, )

where 7 (t; x) is the Peano form of the remainder, r (-; x) € C[0, 1] and lim,_,, r (£;x) = 0. Applying B;,, to (9)
we obtain

[M%@%Aﬁﬂ—f@ﬁ=f&ﬂm%;%(—x@
# 37 @Dl By, (0= 025) + Il By, (7 0520 ¢ - 9752).
By the Cauchy-Schwartz inequality, we have

B (r(t; x)(t— x)z;x) < /B, (2 (£2) ;%) ,/B;r% ((t —x)* ;x)‘ (10)

Observe that 7* (x; x) = 0 and 7* (-;x) € C[0, 1]. Then it follows from Corollary 3.2 that
lim B; . (r* (tx);x) = 7 (;) = 0 (11)

00

uniformly with respect to x € [0,1]. Now from (10), (11) and Lemma 2.5 we get immediately

lim [n],, B, (r (t;x) (t — x)* ;x) =0.

n—oo

The proof is completed.
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4. Statistical approximation

At this moment, we recall the concept of statistical convergence. The density of a subset K of IN is given
n
by 6(K) := lim,—e % Y xx (k), whenever the limit exists, where xx is the characteristic function of K. A
k=1

sequence X = {X;},eN is said to be statistically convergent to L if for any ¢ > 0, 6{n € N: |x, —L| > ¢} =0
and it is denoted by st — lim x = L (see[10]).
Assume that {g,},. be sequence from (0, 1] such that

st —limg, = 1. (12)

Observe that for any sequence {g,},. C (0, 1], satisfying (12) and for fixed x € [0,1], we have

n+1
- on(0) _ g
st — 11711'1'1 [}’l]q” = Si’A - 11711'1'1 m = 0, (13)
which yields
st~ limaws | f, ‘;n ](x) _o, (14)
In
and
. (1+q)x-1
st—hznw f, m =0 (15)

respectively. So, Theorem 3.1 gives the following statistical approximation theorem.

Theorem 4.1. Assume that, {q,},. is a sequence satisfying (12). Then, for all f € C[0,1] and fixed x € [0, 1], we
have

By, (fix) = f(x)| = 0.

st —lim
n
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