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Abstract. In previous papers, various notions of T0 and T1 objects in a topological category were introduced
and compared. In this paper, we characterize each of these classes of objects in categories of various types
of uniform convergence spaces and compare them with the usual ones as well as examine how these
generalizations are related.

1. Introduction

Semiuniform convergence spaces which form a strong topological universe, i.e., a cartesian closed and
hereditary topological category such that products of quotients are quotients, are introduced in [28–30], and
[15]. It is well known, [28, 30], that the construct Conv of Kent convergence spaces can be bicoreflectively
embedded in SUConv of semiuniform convergence spaces, and consequently, each semiuniform conver-
gence spaces has an underlying Kent convergence space, namely its bicoreflective Conv-modification. The
strong topological universe SUConv contains all (symmetric) limit spaces as well as uniform convergence
spaces [17] as a generalization of Weil’s uniform spaces [31] and thus all (symmetric) topological spaces
and all uniform spaces. Since topological and uniform concepts are available in SUConv, it is shown, in
[29], that semiuniform convergence spaces are the suitable framework for studying continuity, Cauchy
continuity, uniform continuity, completeness, total boundedness, compactness, and connectedness as well
as convergence structures in function spaces such as simple convergence, continuous convergence, and
uniform convergence. There are other known attempts to embed topological and uniform spaces into a
common topological supercategory (e.g. quasiuniform spaces by L. Nach [19], syntopogeneous spaces
by A. Császár [18], generalized topological spaces (= super topological spaces) by D.B. Doitchinov [21],
merotopopic spaces (= seminearness spaces) by M. Katétov [23], and nearness spaces by H. Herrlich [22])
that have not even led to cartesian closed topological categories.

Various generalizations of the usual separation properties at a point p are given in [2] and [3]. One of
the uses of separation properties at a point p is to define the notions of (strong) closedness in set-based
topological categories which are introduced in [2, 3]. These notions are used in [2, 8, 12, 13] to generalize
each of the notions of compactness, connectedness, Hausdorffness, and perfectness to arbitrary set-based
topological categories. Moreover, it is shown, in [11, 12, 14] that they form appropriate closure operators in
the sense of Dikranjan and Giuli [20] in some well-known topological categories.
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There are several ways to generalize the usual T0− axiom of topology to topological categories ([2, 5,
25, 32]) and the relationships among various forms of generalized T0-axiom in topological categories have
been investigated in ([5, 32]). One of the uses of T0 objects is to define various forms of Hausdorff objects
([2, 6]) in arbitrary topological categories.

Also, there is a generalization of the usual T1− axiom of topology to topological categories [2] and it is
used to define each of T3, T4, regular, completely regular, and normal objects of an arbitrary topological
category [9, 10].

The main goal of this paper is

1. to give the definition of each of the of Ti, i = 0, 1 semiuniform convergence spaces and to examine
how these generalizations are related with the usual Ti, i = 0, 1 semiuniform convergence spaces,

2. to give the definition of each of the of Ti, i = 0, 1 semiuniform convergence spaces at a point p and to
examine how these are related with the Ti, i = 0, 1 semiuniform convergence spaces.

2. Preliminaries

Let E andB be any categories. The functor U : E → B is said to be topological or that E is a topological
category over B ifU is concrete (i.e., faithful and amnestic), has small (i.e., sets) fibers, and for which every
U−source has an initial lift or, equivalently, for which each U−sink has a final lift [1] or [27]. Note that a
topological functorU : E → B is said to be normalized if constant objects, i.e., subterminals, have a unique
structure.

Let E be a topological category and X ∈ E. A is called a subspace of X if the inclusion map i : A→ X is
an initial lift (i.e., an embedding).

A filter α on a set B is said to be proper (improper) if and only if α does not contain (resp., α contains)
the empty set, ϕ. Let F(B) denote the set of filters on B. Let M ⊂ B and [M] = {A ⊂ B : M ⊂ A} and [x] = [{x}].
Note that α ∪ β is the filter

[{U ∩ V | U ∈ α, V ∈ β }], α∩β = [{ U ∪ V | U ∈ α, V ∈ β }], and α × β = [{U ×V :
U ∈ α, V ∈ β}]. If α, β ∈ F(B × B), then α−1 = {U−1 : U ∈ α}, where U−1 = {(x, y) : (y, x) ∈ U}. If U ◦ V = {(x, y)
: there exists z ∈ B with (x, z) ∈ V and (z, y) ∈ U} , ϕ for every U ∈ α and every V ∈ β, then α ◦ β is the filter
generated by {U ◦ V : U ∈ α,V ∈ β}.

Lemma 2.1. For a set B, let σ and δ be filters on B × B and let f : B→ C be a function. Then
(i) ( f × f )(σ ∩ δ) = ( f × f )(σ) ∩ ( f × f )(δ),
(ii) If σ ⊂ δ, then ( f × f )(σ) ⊂ ( f × f )(δ).

Definition 2.2. (cf. [28, 30])

1. A semiuniform convergence space is a pair (B,ℑ), where B is a set ℑ is a set of filters on B × B such
that the following conditions are satisfied:
(UC1) [x] × [x] belongs to ℑ for each x ∈ B.
(UC2) β ∈ ℑ whenever α ∈ ℑ and α ⊂ β.
(UC3) α ∈ ℑ implies α−1 ∈ ℑ.
If (B,ℑ) is a semiuniform convergence space, then the elements of ℑ are called uniform filters.

2. A semiuniform convergence space (B,ℑ) is called a semiuniform limit space provided that the follow-
ing is satisfied:
(UC4) α ∈ ℑ and β ∈ ℑ imply α ∩ β ∈ ℑ.

3. A semiuniform limit space (B,ℑ) is called uniform limit space provided that the following is satisfied:
(UC5) α ∈ ℑ and β ∈ ℑ imply α ◦ β ∈ ℑ (whenever α ◦ β exists).

4. A map f : (B,ℑ)→ (B′ ,ℑ′ ) between semiuniform convergence spaces is called uniformly continuous
provided that ( f × f )(α) ∈ ℑ′ for each α ∈ ℑ.

5. The consctruct of semiuniform convergence spaces (and uniformly continuous maps) is denoted by
SUConv, whereas its full subconsctructs of semiuniform limit spaces and uniform limit spaces are
denoted by SULim and ULim, respectively.
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2.2 A source { fi : (B,ℑ) → (Bi,ℑi), i ∈ I} in SUConv is an initial lift if and only if α ∈ ℑ precisely when
( fi × fi)(α) ∈ ℑi for all i ∈ I (cf. [28], [30] p. 33 or [16] p. 67).

2.3 An epi sink { fi : (Bi,ℑi)→ (B,ℑ)} in SUConv is a final lift iff α ∈ ℑ implies that there exist i ∈ I and
βi ∈ ℑi such that ( fi × fi)(βi) ⊂ α (cf. [28], [16] p. 67 or [30] p. 263).

2.4 The discrete semiuniform convergent structure ℑd on B is given by ℑd = {[ϕ], [x] × [x] : x ∈ B}.
2.5 The indiscrete semiuniform convergent structure on B is given by ℑ = F(B × B).

3. T0 and T1 semiuniform convergence spaces at a point

In this section, we give the definition of each of the of Ti, i = 0, 1 semiuniform convergence spaces at a
point p.

Let B be set and p ∈ B. Let B ∨p B be the wedge at p [2], i.e., two disjoint copies of B identified at p, or in
other words, the pushout of p : 1→ B along itself (where 1 is the terminal object in Set, the category of sets).
More precisely, if i1 and i2 : B→ B∨p B denote the inclusion of B as the first and second factor, respectively,
then i1p = i2p is the pushout diagram. A point x in B ∨p B will be denoted by x1(x2) if x is in the first (resp.
second) component of B ∨p B. Note that p1 = p2.

The principal p-axis map, Ap : B ∨p B→ B2 is defined by Ap(x1) = (x, p) and Ap(x2) = (p, x). The skewed
p-axis map, Sp : B∨p B→ B2 is defined by Sp(x1) = (x, x) and Sp(x2) = (p, x). The fold map at p, ▽p : B∨p B→ B
is given by ▽p(xi) = x for i = 1, 2 [2, 3].

Note that the maps Ap, Sp and ▽p are the unique maps arising from the above pushout diagram for
which Api1 = (id, f ), Spi1 = (id, id) : B→ B2, Api2 = Spi2 = ( f , id) : B→ B2, and ▽pi j = id, j = 1, 2, respectively,
where, id : B→ B is the identity map and f : B→ B is the constant map at p [12].

LetU : E → Set be a topological functor, X an object in E withU(X) = B and p is a point in B.

Definition 3.1. (cf. [2, 3])
(1) X is T0 at p if and only if the initial lift of the U-source {Ap : B

∨
p B → U(X2) = B2 and ∇p : B

∨
p B →

UD(B) = B} is discrete, whereD is the discrete functor which is a left adjoint toU.
(2) X is T′0 at p if and only if the initial lift of the U-source {id : B

∨
p B → U(B

∨
p B)′ = B

∨
p B and ∇p :

B
∨

p B→UD(B) = B} is discrete, where (B
∨

p B)′ is the final lift of theU-sink {i1, i2 : U(X) = B→ B
∨

p B},
i1 and i2 are the canonical injections.
(3) X is T1 at p if and only if the initial lift of the U-source {Sp : B

∨
p B → U(X2) = B2 and ∇p : B

∨
p B →

UD(B) = B} is discrete.

Remark 3.2. (1) Note that for the category Top of topological spaces, T0 at p, T′0 at p, or T1 at p reduce to the
usual T0 at p or T1 at p, respectively, where a topological space X is called T0 at p (resp. T1 at p) if for each
x , p, there exists a neighborhood of x not containing p or (resp. and) there exists a neighborhood of p not
containing x [7].
(2) A topological space X is Ti i = 0, 1 if and only if X is Ti, i = 0, 1, at p for all points p in X ([7], Theorem
1.5(5)).
(3) LetU : E → Set be a topological functor, X an object in E and p ∈ U(X) be a retract of X, i.e., the initial
lift h : 1̄→ X of theU-source p : 1→U(X) is a retract, where 1 is the terminal object in Set. Then if X is T0
at p (resp. T1 at p), then X is T′0 at p but the reverse implication is not true, in general ([4], Theorem 2.10).
(4) IfU : E → Set is a normalized topological functor, then each of T0 at p and T1 at p implies T′0 at p ([4],
Corollary 2.11).
(5) One of the uses of T0 at p and T1 at p is to define the notions of (strong) closedness in set-based topological
categories which are introduced in [2, 3]. These notions are used in [2, 8, 12, 13] to generalize each of the
notions of compactness, connectedness, Hausdorffness, and perfectness to arbitrary set-based topological
categories. Moreover, it is shown, in [11, 12, 14] that they form appropriate closure operators in the sense
of Dikranjan and Giuli [20] in some well-known topological categories.
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Theorem 3.3. Let (B,ℑ) be a semiuniform convergence space and let p ∈ B. (B,ℑ) is T1 at p if and only if for each
x , p, [x] × [p] < ℑ and ([x] × [x]) ∩ ([p] × [p]) < ℑ.
Proof. Suppose that (B,ℑ) is T1 at p. If [x] × [p] ∈ ℑ for some x , p, then let α = [x1] × [x2] . Clearly,
(π1Sp×π1Sp)(α) = [x]× [p] ∈ ℑ, (π2Sp×π2Sp)(α) = [x]× [x] ∈ ℑ, where πi : B2 → B, i = 1, 2, are the projection
maps, and (▽p×▽p) ([x1] × [x2]) = [x]× [x] ∈ ℑd, the discrete semiuniform convergence structure on B. Since
(B,ℑ) is T1 at p, we get a contradiction. Hence, [x] × [p] < ℑ for all x , p.

If ([x] × [x]) ∩ ([p] × [p]) ∈ ℑ for some x , p, then let α = ([x1] × [x1]) ∩ ([x2] × [x2]) . By Lemma 2.1 (i),(
π1Sp × π1Sp

)
(α) = ([x] × [x])∩ (

[
p
] × [p]) ∈ ℑ, (π2Sp × π2Sp

)
(α) = [x] × [x] ∈ ℑ, (▽p × ▽p)(α) = [x] × [x] ∈ ℑd,

a contradiction since (B,ℑ) is T1 at p. Hence, we must have ([x] × [x]) ∩ ([p] × [p]) < ℑ for all x , p.
Conversely, suppose that for each x , p, [x] × [p] < ℑ and ([x] × [x]) ∩ ([p] × [p]) < ℑ.We need to show

that (B,ℑ) is T1 at p ,i.e., by 2.2, 2.4, and Definition 3.1, we must show that the semiuniform convergence
structure ℑW on B ∨p B induced by Sp : B ∨p B → U((B2,ℑ2)) = B2 and ▽p : B ∨p B −→ U((B,ℑd)) = B
is discrete, where ℑ2 and ℑd are the product semiuniform convergence structure on B2 and the discrete
semiuniform convergence structure on B, respectively. Let α be any filter in ℑW , i.e., (πiSp × πiSp) (α) ∈ ℑ
i = 1, 2 and

(
▽p × ▽p

)
(α) ∈ ℑd.We need to show that α = [xi] × [xi] (i = 1, 2) or α =

[
p
] × [p] or α = [ϕ].

If
(
▽p × ▽p

)
(α) =

[
p
] × [p] , then α =

[
pi
] × [pi

]
(i = 1, 2) since

(
▽p

)−1 {
p
}
=
{
pi = (p, p)

}
(i = 1, 2).

If
(
▽p × ▽p

)
(α) = [ϕ], then α = [ϕ].

If
(
▽p × ▽p

)
(α) = [x] × [x] for some x ∈ B, then it follows easily that α = [xi] × [x j]

(
i, j = 1, 2

)
or

α ⊃ [{x1, x2}] × [{x1, x2}] or α ⊃ [xi] × [{xi, x j}] or α ⊃ [{xi, x j}] × [xi]
(
i, j = 1, 2 and i , j

)
.

If α = [xi] × [x j], i , j, then, in particular, (π1Sp × π1Sp)(α) = [x] × [p] or
[
p
] × [x] ∈ ℑ (i = 1, j = 2 or

i = 2, j = 1, respectively), a contradiction. Hence, α , [xi] × [x j], i , j.
If α = [xi] × [{xi, x j}], i , j, then (for i = 1) (π1Sp × π1Sp)(α) = [x] × [{x, p}] ⊂ [x] × [p] and consequently

[x] × [p] ∈ ℑ, a contradiction, (for i = 2) (π1Sp × π1Sp)(α) = [p] × [{p, x}] ⊂ [p] × [x] and consequently,
[p] × [x] ∈ ℑ, a contradiction. Hence, α , [xi] × [{xi, x j}], i , j.

We next show that if [ϕ] , α , [xi] × [{xi, x j}] (i , j), then α ⊃ [xi] × [{xi, x j}] if and only if α = [xi] × [x j]
or [xi] × [xi]. If α = [xi] × [x j] or [xi] × [xi], then clearly α ⊃ [xi] × [{xi, x j}]. If α ⊃ [xi] × [{xi, x j}] and
[ϕ] , α , [xi]×[{xi, x j}], then there exist U ∈ α such that U , ϕ, U , {xi}×{xi, x j}. Since U ∈ α, {xi}×{xi, x j} ∈ α,
and α is a filter, then U ∩ ({xi} × {xi, x j}) = {xi} × {xi} or {xi} × {x j} is in α i.e., α = [xi] × [xi] or [xi] × [x j].We
have already shown that α , [xi] × [x j], i , j. Hence, α = [xi] × [xi], i = 1, 2.

The case α ⊃ [{xi, x j}] × [xi] can be handled similarly.
If α = [{x1, x2}] × [{x1, x2}] , then, in particular, (π1Sp × π1Sp)(α) = [{x, p}] × [{x, p}] ⊂ [x] × [p] and

consequently, [x] × [p] ∈ ℑ, a contradiction. Hence, α , [{x1, x2}] × [{x1, x2}] .
If α ⊃ [{x1, x2}] × [{x1, x2}] and [ϕ] , α , [{x1, x2}] × [{x1, x2}], then there exist U ∈ α such that U , ϕ and

U , {x1, x2} × {x1, x2} . Since U ∈ α, {x1, x2} × {x1, x2} ∈ α, and α is a filter, then U∩ ({x1, x2} × {x1, x2}) ∈ α.Note
that U∩ ({x1, x2}×{x1, x2}) = {(xi, x j)} or {xi}×{(xi, x j)} or {(xi, x j)}×{xi} or {(x1, x2), (x2, x1)} or {(x1, x1), (x2, x2)} or
({x1}×{x1, x2})∪({(x2, x1)}) or ({x1}×{x1, x2})∪({(x2, x2)}) or ({x1, x2}×{x1})∪({x2, x2)} or ({x1, x2}×{x2})∪({(x2, x1)}).

If α = ([x1] × [x1]) ∩ ([x2] × [x2]), then
(
π1Sp × π1Sp

)
(α) = ([x] × [x]) ∩ (

[
p
] × [p]) ∈ ℑ, a contradiction.

If α = ([x1] × [x2]) ∩ ([x2] × [x1]), then
(
π1Sp × π1Sp

)
(α) = [{x, p}] ∩ [{x, p}] ⊂ [x] × [p] and consequently,

[x] × [p] ∈ ℑ, a contradiction. If α = ([{x1} × {x1, x2}]) ∩ ([x2] × [x1]), then
(
π1Sp × π1Sp

)
(α) =

(
[x] × [{x, p}]) ∩(

[p] × [x]
) ⊂ [x] × [p] and consequently, [x] × [p] ∈ ℑ, a contradiction.

By using the similar argument as above, for the remaining of α’s, we must have α = [xi] × [xi] i = 1, 2
and consequently, by Definition 3.1, 2.2, and 2.4, (B,ℑ) is T1 at p.

Theorem 3.4. Let (B,ℑ) be a semiuniform convergence space and p ∈ B. (B,ℑ) is T0 at p iff for each x , p in B, the
following conditions hold.

(i) [x] × [p] < ℑ
(ii) ([x] × [x]) ∩ ([p] × [p]) < ℑ or

([
p
] × [p]) ∩ ([x] × [x]) < ℑ.
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Proof. Note that ifα = ([x1] × [x1])∩([x2] × [x2]), then by Lemma 2.1(i),
(
π1Ap × π1Ap

)
(α) =

(
π1Ap × π1Ap

)
(([x1]×

[x1])∩ ([x2]× [x2])) = ([x]× [x])∩ (
[
p
]× [p]) and

(
π2Ap × π2Ap

)
(α) = (

[
p
]× [p])∩ ([x]× [x]). By using the same

argument in the proof of Theorem 3.3 and replacing Sp by Ap, we obtain the proof.

Theorem 3.5. All semiuniform convergence spaces are T′0 at p.

Proof. Suppose that (B,ℑ) is a semiuniform convergence space and and p ∈ B. By Definition 3.1, 2.2, 2.4, we
will show that for any filter α on (B∨p B)2, if α ⊃ (ik × ik)(β) for some β ∈ ℑ, k = 1 or 2 and

(
▽p × ▽p

)
(α) = [ϕ]

or
[
p
] × [p] or [x] × [x] for some x ∈ B, then α = [ϕ] or [p] × [p] or [xm] × [xm], m = 1, 2.

If
(
▽p × ▽p

)
(α) =

[
p
] × [p] , then α = [p] × [p], (m = 1, 2) since

(
▽p

)−1 {
p
}
=
{
pm = p

}
(m = 1, 2).

If
(
▽p × ▽p

)
(α) = [ϕ], then α = [ϕ].

If
(
▽p × ▽p

)
(α) = [x] × [x] for some x , p in B, then it follows easily that α = [xm] × [xn] (m,n = 1, 2) or

α ⊃ [xm] × [{xm, xn}] (m, n = 1, 2) or α ⊃ [{xm, xn}] × [xm] or α ⊃ [{x1, x2}] × [{x1, x2}] .
If α = [x1] × [x2] ⊃ (ik × ik)(β) for some β ∈ ℑ and k = 1 (resp. k = 2), then {x1} × {x2} ∈ (i1 × i1)(V) for all

V ∈ βwhich shows that x2 (resp. x1) must be in the first (resp. second) component of B∨p B, a contradiction
since x , p.

If α = [x2] × [x1] ⊃ (ik × ik)(β) for some β ∈ ℑ and k = 1 (resp. k = 2), then {x2} × {x1} ∈ (i1 × i1)(V) for all
V ∈ βwhich shows that x2 (resp. x1) must be in the first (resp. second) component of B∨p B, a contradiction
since x , p.

If α = [xm] × [{xm, xn}] ⊃ (ik × ik)(β) for some β ∈ ℑ and k = 1 (resp. k = 2), (m , n, m,n = 1, 2). Then it
follows easily that {x1} × {x1, x2} ⊂ (i1 × i1)(V) for all V ∈ β and consequently x2 (resp. x1) must be in the first
(resp. second) component of B ∨p B, a contradiction.

If [ϕ] , α , [xm] × [{xm, xn}] and α ⊃ [xm] × [{xm, xn}] (m , n, m,n = 1, 2), then α = [xm] × [xm] or
α = [xm] × [xn] (see the proof of Theorem 3.1). By the same argument used above, α = [xm] × [xn], m , n,
m,n = 1, 2 can not occur. Similarly if [ϕ] , α , [{xm, xn}] × [xm] and α ⊃ [{xm, xn}] × [xm] (m , n, m,n = 1, 2),
then α = [xm] × [xm].

If α = [{x1, x2}] × [{x1, x2}] ⊃ (ik × ik)(β) for some β ∈ ℑ and k = 1 (resp. k = 2), then {x1, x2} × {x1, x2} ∈
(i1 × i1)(V) for all V ∈ β which shows that x2 (resp. x1) must be in the first (resp. second) component of
B ∨p B, a contradiction since x , p.

If [ϕ] , α , [{x1, x2}] × [{x1, x2}] and α ⊃ [{x1, x2}] × [{x1, x2}], then (see the proof of Theorem 3.1)
α = [xm] × [xm] or α = ([x1] × [x2}]) ∩ ([x2] × [x1}] or α = ([x1] × [x1]) ∩ ([x2] × [x2]).

If α = ([x1] × [x2]) ∩ ([x2] × [x1}] ⊃ (ik × ik)(β) for some β ∈ ℑ and k = 1 (resp. k = 2), then ({x1} × {x2}) ∪
({x2} × {x1}) ∈ (i1 × i1)(V) for all V ∈ β which shows that x2 (resp. x1) must be in the first (resp. second)
component of B ∨p B, a contradiction since x , p.

If α = ([x1]× [x1])∩ ([x2]× [x2]) ⊃ (ik× ik)(β) for some β ∈ ℑ and k = 1 (resp. k = 2), then ({x1}×{x1})∪ ({x2×
x2}) ∈ (i1× i1)(V) for all V ∈ βwhich shows that x2 (resp. x1) must be in the first (resp. second) component of
B∨p B, a contradiction since x , p.Hence, we must have α = [xm]× [xm], m = 1, 2. By 2.2, 2.4 and Definition
3.1, (B,ℑ) is T′0 at p.

Remark 3.6. Let (B,ℑ) be a semiuniform limit space (uniform limit space) and p ∈ B. It follows from
Theorem 3.3, Theorem 3.4 and Definition 2.2 that (B,ℑ) is T0 at p if and only if (B,ℑ) is T1 at p if and only if
for each x , p, [x] × [p] < ℑ.

4. T0 and T1 semiuniform convergence spaces

There are several ways to generalize the usual T0- axiom of topology to topological categories ([2, 5,
25, 32]) and the relationships among various forms of generalized T0-axiom in topological categories have
been investigated in [5, 32]. One of the uses of T0 objects is to define various forms of Hausdorff objects
([2, 6]) in arbitrary topological categories.
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Also, there is a generalization of the usual T1- axiom of topology to topological categories [2] and it is
used to define each of T3, T4, regular, completely regular, and normal objects of an arbitrary topological
category [9] and [10].

Let B be a nonempty set, B2 = B × B be cartesian product of B with itself and B2 ∨∆ B2 be two distinct
copies of B2 identified along the diagonal, i.e., the result of pushing out ∆ along itself. A point (x, y) in
B2∨∆B2 will be denoted by (x, y)1 ((x, y)2) if (x, y) is in the first (resp. second) component of B2∨∆B2. Clearly
(x, y)1 = (x, y)2 if and only if x = y [2].

The principal axis map A : B2 ∨∆ B2 → B3 is given by A(x, y)1 = (x, y, x) and A(x, y)2 = (x, x, y). The
skewed axis map S : B2 ∨∆ B2 → B3 is given by S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map,
∇ : B2 ∨∆ B2 → B2 is given by ∇(x, y)i = (x, y) for i = 1, 2 [2].

Definition 4.1. LetU : E → Set be a topological functor, X an object in E withU(X) = B.

1. X is T0 if and only if the initial lift of theU -source {A : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 →
UD(B2) = B2} is discrete, whereD is the discrete functor which is a left adjoint toU [2].

2. X is T′0 if and only if the initial lift of the U -source {id : B2 ∨∆ B2 → U(B2 ∨∆ B2)
′
= B2 ∨∆ B2

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where (B2 ∨∆ B2)
′

is the final lift of the U-sink
{i1, i2 : U(X2) = B2 → B2 ∨∆ B2}, i1 and i2 are the canonical injections, and D(B2) is the discrete
structure on B2 [2, 5].

3. X is T0 if and only if X does not contain an indiscrete subspace with (at least) two points [25, 32].
4. X is T1 if and only if the initial lift of the U-source {S : B2 ∨∆ B2 → U(X3) = B3 and ∇ : B2 ∨∆ B2 →
UD(B2) = B2} is discrete [2].

Remark 4.2. (1) Note that for the category Top of topological spaces, T0, T′0, T0 or T1 reduce to the usual T0,
or T1 separation axioms, respectively [2, 25, 32].

(2) For an arbitrary topological category, we have T0 implies T′0 ([5], Theorem 3.2) but the reverse
implication is generally not true (see [5] or Theorem 4.2 and Theorem 4.3, below). Moreover, there are no
implications between T0 and each of T0 and T′0 (see [5], Remark 3.6).

(3) Let U : E → Set be a topological functor, X an object in E and p ∈ U(X) be a retract of X, i.e., the
initial lift h : 1̄ → X of the U-source p : 1 → U(X) is a retract, where 1 is the terminal object in Set. Then
if X is T0 (resp. T1), then X is T̄0 at p (resp. T1 at p) but the reverse implication is not true, in general ([4],
Theorem 2.6).
(4) IfU : E → Set is a normalized topological functor, then T0 (resp. T1) implies T0 at p (resp. T1 at p) ([4],
Corollary 2.9).

Theorem 4.3. A semiuniform convergence space (B,ℑ) is T0 if and only if for each distinct pair x and y in B,[{x, y}] × [{x, y}] < ℑ.
Proof. Suppose that (B,ℑ) is T0 and

[{x, y}]×[{x, y}] ∈ ℑ for some distinct pair x and y in B.Let A = {x, y}.Note
that (A,ℑA) is subspace of (B,ℑ) ,where ℑA is the subsemiuniform convergence structure on A induced by
the inclusion map i : A→ B. Since (i×i)(

[{x, y}]×[{x, y}] = [A]×[A] ∈ ℑ, it follows from 2.2 that [A]×[A] ∈ ℑA
and consequently, ℑA = F(A × A), the indiscrete semiuniform structure on A × A, a conctradiction. Hence,
we must have for each distinct pair x and y in B,

[{x, y}] × [{x, y}] < ℑ.
Conversely, suppose that

[{x, y}] × [{x, y}] < ℑ for each distinct pair x and y in B. Let A = {x, y} ⊂ B
with x , y. Note that (A,ℑA) is not an indiscrete semiuniform convergence subspace of (B,ℑ) . Hence, by
Definition 4.1, (B,ℑ) is T0.

Theorem 4.4. A semiuniform convergence space (B,ℑ) is T0 if and only if for every distinct pair x and y in B, the
conditions (i) and (ii) hold.

(i) [x] × [y] < ℑ
(ii) ([x] × [x]) ∩ ([y] × [y]) < ℑ
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Proof. Suppose that (B,ℑ) is T0 and either (i) or (ii) does not hold. If the condition (i) does not hold, then let
α =
[
(x, y)1

]×[(x, y)2
]
.Note that, (π1A×π1A)(α) = [x]×[x] ∈ ℑ, (π2A×π2A)(α)=

[
y
]×[x] ∈ ℑ, (π3A × π3A) (α)

= [x] × [y] ∈ ℑ, where πi : B3 → B, i = 1, 2, 3 are the projection maps, and (▽ × ▽)(α) =
[
(x, y)

] × [(x, y)
] ∈ ℑ2

d,
the discrete semiuniform convergence structure on B2, a contradiction since (B,ℑ) is T0.Hence, [x]× [y] < ℑ
or
[
y
] × [x] < ℑ for each x , y.

If the condition (ii) does not hold, then let α = (
[
(x, y)1

] × [(x, y)1
]
) ∩ (
[
(x, y)2

] × [(x, y)2
]
). Clearly, by

Lemma 2.1 (i), (π1A × π1A)(α) = [x] × [x ∈ ℑ, (πiA × πiA)(α) = ([y] × [[y]) ∩ ([x] × [[x]) ∈ ℑ, i = 2, 3, and
(▽×▽)(α) = [(x, y)]× [(x, y)] ∈ ℑ2

d, a contradiction since (B,ℑ) is T0.Hence, ([x]× [x])∩ ([y] × [y]) < ℑ for all
x , y.

Conversely, suppose that the conditions hold. We need to show that (B,ℑ) is T0, i.e., by Definition
4.1, 2.2, and 2.4, we must show that the semiuniform convergence structure ℑA

W on B2 ∨∆ B2 induced by
A : B2 ∨△ B2 →U

(
(B3,ℑ3)

)
= B3 and ▽ : B2 ∨△ B2 −→ U(

(
B2,ℑ2

d)
)
= B2 is discrete, where ℑ3 and ℑ2

d are the
product semiuniform convergence structure on B3 and the discrete semiuniform convergence structure on
B2, respectively. Let α be any filter in ℑA

W , i.e., (πiA × πiA) (α) ∈ ℑ i = 1, 2, 3 and (▽ × ▽) (α) ∈ ℑ2
d.We need

to show that α =
[
(x, y)i

] × [(x, y)i
]

(i = 1, 2) or α = [ϕ].
If (▽ × ▽) (α) = [ϕ], then α = [ϕ].
If (▽ × ▽) (α) = [(x, x)] × [(x, x)] for some x ∈ B, then α = [(x, x)i] × [(x, x)i] since ∇−1({(x, x)}) = {(x, x)i =

(x, x)}, i = 1, 2.
If (▽ × ▽) (α) =

[
(x, y)

] × [(x, y)
]

for some (x, y) ∈ B2 with x , y, then it follows that α = [(x, y)i] × [(x, y) j]
(i, j = 1, 2) or α ⊃ [{(x, y)i, (x, y) j}] × [{(x, y)i, (x, y) j}] or
α ⊃ [(x, y)i] × [{(x, y)i, (x, y) j}]
or α ⊃ [{(x, y)i, (x, y) j}] × [(x, y)i]

(
i, j = 1, 2 and i , j

)
.

If α =
[
(x, y)i

] × [(x, y) j], i , j, then, in particular, (π2A × π2A)(α) = [x] × [y] or
[
y
] × [x] ∈ ℑ (i = 2, j = 1

or i = 1, j = 2, respectively), a contradiction. Hence, α ,
[
(x, y)i

] × [(x, y) j], i , j.
If α =

[
(x, y)i

] × [{(x, y)i, (x, y) j}], i , j, then (for i = 1) (π2A × π2A)(α) = [y] × [{y, x}] ⊂ [y] × [x] and (for
i = 2) (π2A× π2A)(α) = [x]× [{x, y}] ⊂ [x]× [y] and consequently [y]× [x] ∈ ℑ, [x]× [y] ∈ ℑ, a contradiction.
Hence, α ,

[
(x, y)i

] × [{(x, y)i, (x, y) j}], i , j.
We next show that if [ϕ] , α ,

[
(x, y)i

] × [{(x, y)i, (x, y) j}] (i , j), then α ⊃ [(x, y)i
] × [{(x, y)i, (x, y) j}] if and

only if α = [(x, y)i] × [(x, y) j] or [(x, y)i] × [(x, y)i]. If α = [(x, y)i] × [(x, y) j] or [(x, y)i] × [(x, y)i], then clearly,
α ⊃ [(x, y)i

] × [{(x, y)i, (x, y) j}]. If α ⊃
[
(x, y)i

] × [{(x, y)i, (x, y) j}] and [ϕ] , α ,
[
(x, y)i

] × [{(x, y)i, (x, y) j}], then
there exists U ∈ α such that U , ϕ, U , {(x, y)i} × {(x, y)i, (x, y) j}. Since U ∈ α, {(x, y)i} × {(x, y)i, (x, y) j} ∈ α,
and α is a filter, then U ∩ ({(x, y)i} × {(x, y)i, (x, y) j}) = {(x, y)i} × {(x, y)i} or {(x, y)i} × {(x, y) j} is in α i.e.,
α = [(x, y)i] × [(x, y)i] or [(x, y)i] × [(x, y) j].We have already shown that α , [(x, y)i] × [(x, y) j], i , j. Hence,
α = [(x, y)i] × [(x, y)i], i = 1, 2.

Similarly, the case α ⊃ [{(x, y)i, (x, y) j}] ×
[
(x, y)i

]
can be handled.

If α = ([(x, y)1] × [(x, y)1]) ∩ ([(x, y)2] × [(x, y)2]), then (π2A × π2A)(α) = ([x] × [x]) ∩ ([y] × [y]) ∈ ℑ, a
contradiction. If [ϕ] , α , ([(x, y)1] × [(x, y)1])∩ ([(x, y)2] × [(x, y)2]) and α ⊃ ([(x, y)1] × [(x, y)1])∩ ([(x, y)2] ×
[(x, y)2]), then α = [(x, y)i] × [(x, y)i] i = 1, 2 (see the proof of Theorem 3.3).

If α = [{(x, y)1, (x, y)2}] × [{(x, y)1, (x, y)2}], then (π2A × π2A)(α) = [{x, y}] × [{x, y}] ⊂ [x] × [y] and
[{x, y}] × [{x, y}] ⊂ [y] × [x], and consequently, [x] × [y] ∈ ℑ and [y] × [x] ∈ ℑ, a contradiction. Hence,
α , [{(x, y)1, (x, y)2}] × [{(x, y)1, (x, y)2}].

If [ϕ] , α , [{(x, y)1, (x, y)2}] × [{(x, y)1, (x, y)2}] and α ⊃ [{(x, y)1, (x, y)2}] × [{(x, y)1, (x, y)2}], then by using
a similar argument as above and in the proof of Theorem 3.3, we must have α = [(x, y)i] × [(x, y)i] i = 1, 2.

Hence, by Definition 4.1, 2.2, and 2.4, (B,ℑ) is T0.

Theorem 4.5. All semiuniform convergence spaces are T′0.

Proof. Let (B,ℑ) be any semiuniform convergence space. By Definition 4.1, 2.2, and 2.4, we will show that for
any filterαon (B2∨△B2)2, ifα ⊃ (ik×ik)(β) for someβ ∈ ℑ2, k = 1 or 2 and (▽×▽) (α) = [ϕ] or [(x, y)]×[(x, y)] ∈ ℑ2

d
for some (x, y) ∈ B2, where ℑ2 and ℑ2

d are the product semiuniform convergence structure and the discrete
semiuniform convergence structure on B2, respectively, then α = [ϕ] or [(x, y)n] × [(x, y)n], n = 1, 2.
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If (▽ × ▽) (α) = [ϕ], then α = [ϕ]. If (▽ × ▽) (α) = [(x, x)]× [(x, x)] for some x ∈ B, then α = [(x, x)i]× [(x, x)i]
since ∇−1({(x, x)}) = {(x, x)i = (x, x)}, i = 1, 2.

If (▽ × ▽) (α) =
[
(x, y)

]× [(x, y)
]

for some (x, y) ∈ B2 with x , y, then it follows that α =
[
(x, y)m

]× [(x, y)n
]

(m,n = 1, 2) or α ⊃ [(x, y)m
] × [{(x, y)m, (x, y)n

}]
or α ⊃ [{(x, y)m, (x, y)n

}] × [(x, y)m
]
, m , n, m,n = 1, 2 or

α ⊃ [{(x, y)1, (x, y)2
}] × [{(x, y)1, (x, y)2

}]
.

If α =
[
(x, y)1

] × [(x, y)2
] ⊃ (ik × ik)(β) for some β ∈ ℑ2 and k = 1 (resp. k = 2), then {(x, y)1} × {(x, y)2} ∈

(ik × ik)(V) for all V ∈ βwhich shows that (x, y)2 (resp. (x, y)1) must be in the first (resp. second) component
of B2 ∨△ B2, a contradiction since x , y.

If α =
[
(x, y)2

] × [(x, y)1
] ⊃ (ik × ik)(β) for some β ∈ ℑ2 and k = 1 (resp. k = 2), then {(x, y)2} × {(x, y)1} ∈

(ik × ik)(V) for all V ∈ βwhich shows that (x, y)2 (resp. (x, y)1) must be in the first (resp. second) component
of B2 ∨△ B2, a contradiction since x , y.

If α =
[
(x, y)m

]× [{(x, y)m, (x, y)n
}] ⊃ (ik × ik)(β) for some β ∈ ℑ2 and k = 1 (resp. k = 2), (m , n, m,n = 1, 2),

then it follows that {(x, y)1} × {(x, y)1, (x, y)2} ⊂ (ik × ik)(V) for all V ∈ β and consequently, (x, y)2 (resp. (x, y)1)
must be in the first (resp. second) component of B2 ∨△ B2, a contradiction since x , y.

If [ϕ] , α ,
[
(x, y)m

] × [{(x, y)m, (x, y)n
}]

and α ⊃ [(x, y)m
] × [{(x, y)m, (x, y)n

}]
(m , n, m,n = 1, 2), then

α = [(x, y)m]× [(x, y)m] or α = [(x, y)m]× [(x, y)n] (see the proof of Theorem 4.4). By the same argument used
above, α = [(x, y)m] × [(x, y)n], m , n, m,n = 1, 2 can not occur.

If α =
[{(x, y)1, (x, y)2}

] × [{(x, y)1, (x, y)2}
] ⊃ (ik × ik)(β) for some β ∈ ℑ2 and k = 1 (resp. k = 2), then

{(x, y)1, (x, y)2} × {(x, y)1, (x, y)2} ∈ (ik × ik)(V) for all V ∈ β which shows that (x, y)2 (resp. (x, y)1) must be in
the first (resp. second) component of B2 ∨△ B2, a contradiction since x , y.

If [ϕ] , α ,
[{(x, y)1, (x, y)2}

] × [{(x, y)1, (x, y)2}
]

and α ⊃ [{(x, y)1, (x, y)2}
] × [{(x, y)1, (x, y)2}

]
, then α =

[(x, y)m]×[(x, y)m] orα = ([(x, y)1]×[(x, y)2}])∩([(x, y)1]×[(x, y)2}] orα = ([(x, y)1]×[(x, y)1])∩([(x, y)2]×[(x, y)2])
(see the proof of Theorem 3.3 and Theorem 4.4).

If α = ([(x, y)1]× [(x, y)2}])∩ ([(x, y)1]× [(x, y)2}] ⊃ (ik × ik)(β) for some β ∈ ℑ2 and k = 1 (resp. k = 2), then
{(x, y)1 × (x, y)2} ∪ {(x, y)2 × (x, y)1} ∈ (ik × ik)(V) for all V ∈ β which shows that (x, y)2 (resp. (x, y)1) must be
in the first (resp. second) component of B2 ∨△ B2, a contradiction since x , y.

If α = ([(x, y)1] × [(x, y)1]) ∩ ([(x, y)2] × [(x, y)2]) ⊃ (ik × ik)(β) for some β ∈ ℑ2 and k = 1 (resp. k = 2), then
{(x, y)1 × (x, y)1} ∪ {(x, y)2 × (x, y)2} ∈ (i1 × i1)(V) for all V ∈ β which shows that (x, y)2 (resp. (x, y)1) must be
in the first (resp. second) component of B2 ∨△ B2, a contradiction since x , y.Hence, if x , y, then we must
have α = [(x, y)m] × [(x, y)m], m = 1, 2. By 2.2, 2.4 and Definition 4.1, (B,ℑ) is T′0.

Theorem 4.6. A semiuniform convergence space (B,ℑ) is T1 if and only if for each distinct pair x and y in B,
[x] × [y] < ℑ and ([x] × [x]) ∩ ([y] × [y]) < ℑ.

Proof. Suppose that (B,ℑ) is T1. If [x]× [y] ∈ ℑ for some x , y in B, then let α =
[
(x, y)2

]× [(x, y)1
]
.Note that

(π1S × π1S) (α) = [x] × [x] ∈ ℑ, (π2S × π2S)(α) = [x] × [y] ∈ ℑ, (π3S × π3S) (α) =
[
y
] × [y] ∈ ℑ and (▽ × ▽)(α)

=
[
(x, y)

] × [(x, y)
] ∈ ℑ2

d, where ℑ2
d is the discrete semiuniform convergence structure on B2, a contradiction

since (B,ℑ) is T1. Hence, we must have [x] × [y] < ℑ for each x , y.
If ([x] × [x]) ∩ ([y] × [y]) ∈ ℑ, then let α = (

[
(x, y)1

] × [(x, y)1
]
) ∩ (
[
(x, y)2

] × [(x, y)2
]
). By Lemma 2.1 (i),

(π1S × π1S) (α) = [x] × [x] ∈ ℑ, (π2S × π2S)(α) = ([y] × [y]) ∩ ([x] × [x]) ∈ ℑ, (π3S × π3S)(α) = ([y] × [y]) ∈ ℑ,
and (▽ × ▽)(α) = [(x, y)] × [(x, y)] ∈ ℑ2

d, a contradiction since (B,ℑ) is T1. Hence, ([x] × [x] ∩ ([y] × [y]) < ℑ
for all x , y.

Conversely, suppose that for each x , y, [x]×[y] < ℑ and ([x] × [x])∩([y] × [y]) < ℑ.We need to show that
(B,ℑ) is T1, i.e., by Definition 4.1, 2.2, and 2.4, we must show that the semiuniform convergence structure
ℑS

W on B2 ∨∆ B2 induced by S : B2 ∨△ B2 → U
(
(B3,ℑ3)

)
= B3 and ▽ : B2 ∨△ B2 −→ U(

(
B2,ℑ2

d)
)
= B2 is discrete,

where ℑ3 and ℑ2
d is the product semiuniform convergence structure on B3 and the discrete semiuniform

convergence structure on B2, respectively. Let α be any filter in ℑS
W, i.e., (πiS × πiS) (α) ∈ ℑ, i = 1, 2, 3 and

(▽ × ▽) (α) ∈ ℑ2
d.We must show that α =

[
(x, y)i

] × [(x, y)i
]

(i = 1, 2) or α = [ϕ].
If (▽ × ▽) (α) = [ϕ], then α = [ϕ].
If (▽ × ▽) (α) = [(x, x)]×[(x, x)] for some x ∈ B, thenα = [(x, x)i]×[(x, x)i] since∇−1({(x, x)}) = {(x, x)i = (x, x)},

i = 1, 2.
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If (▽ × ▽) (α) =
[
(x, y)

] × [(x, y)
]

for some (x, y) ∈ B2 with x , y, then it follows that α =
[
(x, y)i

] × [(x, y) j](
i, j = 1, 2

)
or α ⊃ [{(x, y)i, (x, y) j}] × [{(x, y)i, (x, y) j}] or α ⊃ [(x, y)i] × [{(x, y)i, (x, y) j}] or α ⊃ [{(x, y)i, (x, y) j}] ×

[(x, y)i]
(
i, j = 1, 2 and i , j

)
.

If α =
[
(x, y)2

] × [(x, y)1
]
, then (π2S × π2S)(α) = ([x] × [y] ∈ ℑ, a contradiction. If α =

[
(x, y)1

] × [(x, y)2
]
,

then (π2S × π2S)(α) = ([y] × [x] ∈ ℑ, a contradiction. Hence, α ,
[
(x, y)i

] × [(x, y) j],
(
i, j = 1, 2 and i , j

)
.

If α =
[
(x, y)i

] × [{(x, y)i, (x, y) j}], i , j, then (for i = 1) (π2S × π2S)(α) = [y] × [{y, x}] ⊂ [y] × [x] and, (for
i = 2) (π2S × π2S)(α) = [x] × [{x, y}] ⊂ [x] × [y] and consequently, [y] × [x] ∈ ℑ, [x] × [y] ∈ ℑ, a contradiction.
Hence, α , [(x, y)i] × [{(x, y)i, (x, y) j}], i , j.

If α = ([(x, y)1] × [(x, y)1]) ∩ ([(x, y)2] × [(x, y)2]), then (π2S × π2S)(α) = ([y] × [y]) ∩ ([x] × [x]) ∈ ℑ, a
contradiction. If [ϕ] , α , ([(x, y)1] × [(x, y)1])∩ ([(x, y)2] × [(x, y)2]) and α ⊃ ([(x, y)1] × [(x, y)1])∩ ([(x, y)2] ×
[(x, y)2]), then α = [(x, y)i] × [(x, y)i] i = 1, 2 (see the proof of Theorem 3.3).

For the remaining cases, by using the same argument used in the proof of Theorem 4.4 and by the
assumptions, we must have α = [(x, y)i] × [(x, y)i], i = 1, 2. Hence, by Definition 4.1, 2.2, and 2.4, (B,ℑ) is
T1.

Recall that a Kent convergence space [24] (in [26] p. 1374, it is called a local filter convergence space) is
a pair (B, q), where B is a set and q ⊂ F(B) × B such that the following are satisfied:

C1) ([x], x) ∈ q for each x ∈ B.
C2) (β, x) ∈ q whenever (α, x) ∈ q and β ⊃ α.
C3) (α ∩ [x], x) ∈ q whenever (α, x) ∈ q.
C4) A map f : (B, q) → (B′, q′) between Kent convergence spaces is called continuous provided that

(( f (α), f (x)) ∈ q′ for each (α, x) ∈ q.
C5) The category of Kent (local filter) convergence spaces and continuous maps is denoted by Conv in

[24] (resp., LFCO in [26]).
Note that every semiuniform convergence spaces (B,ℑ) has an underlying Kent convergence space

(B, qγℑ) defined as follows: qγℑ = {(α, x) : α ∩ [x] ∈ γℑ}, where γℑ = {β ∈ F(B) : β × β ∈ ℑ} [28, 30].
We recall from [30] (p. 148),
1. A Kent convergence space (B, q) is called
(a) a T0-space if and only if for each pair (x, y) ∈ B × B, ([x], y) ∈ q and ([y], x) ∈ q imply x = y.
(b) a T1-space if and only if for each pair (x, y) ∈ B × B, ([x], y) ∈ q implies x = y.
2. A semiuniform convergence space (B,ℑ) is called a T0-space (resp.T1-space) (we will refer to them as

the usual ones) if and only if (B, qγℑ) is a T0-space (resp.T1-space).

Remark 4.7. (1) Let (B,ℑ) be a semiuniform convergence space.
(i) By 2.2, Definition 2.2, Theorem 4.4, and Theorem 4.6, (B,ℑ) is T1 if and only if it is T0 if and only if for
any distinct pair of points x and y in B, [x] × [y] < ℑ and ([x] × [x]) ∩ ([y] × [y]) < ℑ.
(ii) By Theorem 4.3, Theorem 4.4, and Theorem 4.5, T0 ⇒ T0 ⇒ T′0 but the reverse of each implication is not
true, in general.
(iii) If (B,ℑ) is T1 (in our sense), then it is T1 (in the usual sense given above). If (B,ℑ) is T0, then it is T0 (in
the usual sense given above) which is equivalent to our T0 (Theorem 4.1).
(iv) By Theorem 3.3, Theorem 3.4, Theorem 4.4, and Theorem 4.6, (B,ℑ) is T1 if and only if it is T0 if and
only if (B,ℑ) is T1 at p for all points p in B if and only if (B,ℑ) is T0 at p for all points p in B.
(v) By Theorem 3.5 and Theorem 4.5, (B,ℑ) is T′0 if and only if it is T′0 at p for all points p in B.
(2) Let (B,ℑ) be a semiuniform limit space (resp. uniform limit space).
(a) By 2.2, Definition 2.2, Theorem 4.3, Theorem 4.4, and Theorem 4.6, then the followings are equivalent:
(i) (B,ℑ) is T1.
(ii) (B,ℑ) is T0.
(iii) (B,ℑ) is T0.
(iv) (B,ℑ) is T1 (in the usual sense).
(v) (B,ℑ) is T0 (in the usual sense).
(vi) For any distinct pair of points x and y in B, [x] × [y] < ℑ.
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(vi) (B,ℑ) is T1 at p for all points p in B.
(vii) (B,ℑ) is T0 at p for all points p in B.
(b) By Definition 2.2, Theorem 3.5, and Theorem 4.5, (B,ℑ) is T′0 if and only if it is T′0 at p for all points p in B.
(c) By Theorem 4.4, and Theorem 4.5, T0 ⇒ T′0 but the reverse implication is not true, in general.
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