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Abstract. A 2p-times continuously differentiable complex-valued function f = u+iv in a simply connected
domain Q C C is p-harmonic if f satisfies the p-harmonic equation A? f = 0. In this paper, we investigate the
properties of p-harmonic mappings in the unit disk |z| < 1. First, we discuss the convexity, the starlikeness
and the region of variability of some classes of p-harmonic mappings. Then we prove the existence of
Landau constant for the class of functions of the form Df = zf, — zf;, where f is p-harmonic in |z| < 1. Also,
we discuss the region of variability for certain p-harmonic mappings. At the end, as a consequence of the
earlier results of the authors, we present explicit upper estimates for Bloch norm for bi- and tri-harmonic

mappings.

1. Introduction and Preliminaries

A complex-valued function f = u + iv in a simply connected domain () C C is called p-harmonic if u and
v are p-harmonic in €}, i.e. f satisfies the p-harmonic equation A? f = 0, where

Af=A---Af,
———
P
where p is a positive integer and A represents the Laplacian operator
> *? P
mde——==s=+ 5.
d0zdz  Jx*  Jy?

Throughout this paper we consider p-harmonic mappings of the unit disk ID = {z € C : |z| < 1}. Obviously,
when p = 1 (resp. p = 2), f is harmonic (resp. biharmonic). The properties of harmonic [11, 15] and
biharmonic [1-3, 18, 19] mappings have been investigated by many authors. Concerning p-harmonic
mappings, we easily have the following characterization.

2010 Mathematics Subject Classification. Primary 30C65, 30C45; Secondary 30C20

Keywords. p-harmonic mapping, starlikeness, convexity, region of variability, Landau’s theorem

Received: 15 February 2012; Accepted: 15 June 2012

Communicated by Miodrag Mateljevi¢

Research supported by NSFs of Chna (No: 11071063), the Construct Program of the Key Discipline in Hunan Province and the
Start Project of Hengyang Normal University (No. 12B34).

Email addresses: mathechen@126.com (SH. Chen), samy@iitm.ac.in (S. Ponnusamy), xtwang@hunnu. edu. cn (X. Wang)



SH. Chen, S. Ponnusamy and X. Wang / Filomat 27:4 (2013), 577-591 578

Proposition 1.1. A mapping f is p-harmonic in D if and only if f has the following representation:

P
f@) =) PG, (), (1)
k=1
where Gy_y41 18 harmonic for each k € {1,...,p}.

Proof. We only need to prove the necessity since the proof for the sufficiency part is obvious. Again, as the
cases p = 1,2 are well-known, it suffices to prove the result for p > 3. We shall prove the proposition by the
method of induction. So, we assume that the proposition is true for p = n (> 3).

Let F be an (1 + 1)-harmonic mapping in ID. By assumption, AF is n-harmonic and so can be represented
as

n
AF@) = Y 12P4Gy ki (2),
k=1

where G,_x+1 (1 < k < 1) are harmonic functions with

(o8] (o)
Guk1(2) = Aopkcer + Y Bjuk1? + Y i forke(1,...,n}.
j=1 j=1

Then

z Z n
f f MFdEdz = Y BT, (@) + 9,
0 Jo k=1

where

aon k+1 Ajn— k+1 ; ]n —k+1 _]
Ty 2) = Z Z kk+ ) Z kk+ )

k=1

and g is a harmonic function in ID. A rearrangement of the series in the sum shows that (1) holds for
p=n+1 0O

We remark that the representation (1) continues to hold even if f is p-harmonic in a simply connected
domain Q.
For a sense-preserving C'-mapping (i.e. continuously differentiable), we let

Ap=I1fl=1fzl and Af =|f]+|f
so that the Jacobian J of f takes the form

Jr = AsAs =P = P> 0.

In [4], the authors obtained sufficient conditions for the univalence of C!-functions. Now we introduce the
concepts of starlikeness and convexity of C!-functions.

Definition 1.2. A Cl-mapping f with f(0) = 0 is called starlike if f maps D univalently onto a domain Q that is
starlike with respect to the origin, i.e. for every w € Q the line segment [0, w] joining 0 and w is contained in Q). It is
known that f is starlike if it is sense-preserving, f(0) =0, f(z) # 0 forall z € ID \ {0} and

(sz)

%(argf(reit)) :=Re @ )>O forall z =re* € D\ {0},

where Df = zf, —zf; (cf. [23, Theorem 1]).
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Definition 1.3. Let f and D f belong to C}(ID). Then we say that f is convex in ID if it is sense-preserving, f(0) = 0,
f(2)-Df(z) # 0 forall z € D\ {0} and
D*f(2)
Re
(o7

As argDf (reit) represents the argument of the outer normal to the curve C, = {f(r¢'?) : 0 < 0 < 2n} at
the point f(re"), the last condition gives that

)>O forallz € D\ {0}.

2
%(arg Df(re”)) = Re(%]{g))) >0 forallz=re! €D\ {0},

showing that the curve C, is convex for each r € (0,1) (see [23, Theorem 2]). Non-analytic starlike and
convex functions were studied by Mocanu in [23]. Harmonic starlike and harmonic convex functions were
systematically studied by Clunie and Sheil-Small [11], and these two classes of functions have been studied
extensively by many authors. See for instance, the book by Duren [15] and the references therein.

The complex differential operator

Jd _d
D=z E - Za—Z
defined by Mocanu [23] on the class of complex-valued C!-functions satisfies the usual product rule:

D(af +bg) = aD(f) + bD(g) and D(fg) = fD(g) + gD(f),

where 4, b are complex constants, f and g are Cl-functions. The operator D possesses a number of interesting
properties. For instance, the operator D preserves both harmonicity and biharmonicity (see also [3]). In the
case of p-harmonic mappings, we also have the following property of the operator D.

Proposition 1.4. D preserves p-harmonicity.

Proof. Let f be a p-harmonic mapping with the form

p

f@) =Y PG, (),

k=1

where each G, ¢4+1(z) is harmonic in D for k € {1,...,p}. As D(Izlz) = 0, the product rule shows that
D(Izlz(k‘l)) =0 foreach k € {1,...,p}. In view of this and the fact that D preserves harmonicity gives that

4
Y [P DDGyri1(2)) + DR )Gy ()]
k=1

= Z |Z|2(k_1)D(Gp—k+1(Z))'

k=1

D(f(z)

=

O

One of the aims of this paper is to generalize the main results of Abdulhadi, et. al. [3] to the case of
p-harmonic mappings. The corresponding generalizations are Theorems 3.1 and 3.3.

The classical theorem of Landau for bounded analytic functions states that if f is analytic in ID with
f(0) = f"(0)—1=0, and |f(z)] < M for z € D, then f is univalent in the disk ID, := {z € C: [z| < p}and in
addition, the range f(ID,) contains a disk of radius Mp2 (cf. [20]), where
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Recently, many authors considered Landau’s theorem for planar harmonic mappings (see for example,
[6, 8,9, 13, 16, 22, 28]) and biharmonic mappings (see [1, 7, 8, 21]). In Section 4, we consider Landau’s
theorem for p-harmonic mappings with the form D(f) when f belongs to certain classes of p-harmonic
mappings. Our results are Theorems 4.1 and 4.2.

In a series of papers the second author with Yanagihara and Vasudevarao (see [24, 25, 29, 30]) have
discussed the regions of variability for certain classes of univalent analytic functions in ID. In Section 5 (see
Theorem 5.2), we solve a related problem for certain p-harmonic mappings. Finally, in Section 6, we present
explicit upper estimates for Bloch norm for bi- and tri-harmonic mappings (see Corollaries 6.2 and 6.3).

2. Lemmas

For the proofs of our main results we require a number of lemmas. We begin to recall the following
version of Schwarz lemma due to Heinz ([17, Lemma]) and Colonna [12, Theorem 3], see also [6, 8, 9].

Lemma 2.1. Let f be a harmonic mapping of ID such that f(0) = 0 and f(ID) c ID. Then
4 4
lf(z)| < - arctan |z| < ;Izl for zeD

and
A (z)<é; for zeD
P m(1-1eP) '

Lemma 2.2. ([22, Lemma 2.1]) Suppose that f(z) = h(z) + g(z) is a harmonic mapping of D with h(z) = Y., a,2"
and g(z) = Y51 by2" for z € D. If J¢(0) = 1 and |f(z)| < M, then

la,l, by < VM2 -1, n=2,3,...,
|a,| + |bal < V2M2 -2, n=2,3,...

and
\/E if1 <M< My,
Af(0) > Ap(M) :={ VM2 =1+ VM2 +1 ?
ﬁ if M > M,
where My = = ~ 1.1296.

232716

The following lemma concerning coefficient estimates for harmonic mappings is crucial in the proofs of
Theorems 3.1 and 3.3. This lemma has been proved by the authors in [10] with an additional assumption
that f(0) = 0. However, for the sake of clarity, we present a slightly different proof than that in [10].

Lemma 2.3. Let f = h + g be a harmonic mapping of ID such that |f(z)| < M with h(z) = Y, a,2" and g(z) =
Yoo buz". Then |ag| < M and for any n > 1

aM
|a,| + 1b,| < . 3)
Tt

The estimate (3) is sharp. The extremal functions are f(z) = M or

1+ pz"
1—52”)’

fu(2) = 21\7:10( arg(

where |a| = |B| = 1.
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Proof. Without loss of generality, we assume that |f(z)| < 1. For 6 € [0,2n), let
vo(2) = Im (¢ f(2)

and observe that . . ‘
v(2) = Im (¢h(2) + e=9g(z)) = Im (eh(z) — e09(z)).

Because |vg(z)| < 1, it follows that

i07,(y _ o—if a2 LT+2¢8
¢h(z) — e g(z)<K(Z)—A+nlog(1_Z),

where & = ¢ ™MW and A = ¢h(0) — e¥4(0). The superordinate function K(z) maps ID onto a convex
domain with K(0) = A and K’(0) = %(1 + &), and therefore, by a theorem of Rogosinski [26, Theorem 2.3]
(see also [14, Theorem 6.4)), it follows that
4y -2, < 21+ E <= forn=1,2,...
T T
and the desired inequality (3), with M = 1, is a consequence of the arbitrariness of 0 in [0, 27).
For the proof of sharpness part, consider the functions

n

_ 2Mu 1+pz — 18l =
fn(Z) = TIII’I (lOg 1= ﬁZ”), |0(| - |ﬁ| - 1/

whose values are confined to a diametral segment of the disk IDy;. Also,

2Ma (v 1 kel O 1 =
fa(z) = 7[; Zk——l(ﬁz )Zk 1 _kZ; 2]{__1([32 )2k 1]/

which gives

iM
|an| + |b,| = .
Tt

The proof of the lemma is complete. [

As an immediate consequence of Lemmas 2.2 and 2.3, we have

Corollary 2.4. Let f = h+ g be a harmonic mapping of D with h(z) = Yy anz", §(z) = Y.pq buz" and |f(z)] < M.

IfJf(0) =1and M > \/ﬁ’ then for any n > 2,

M
TT

la,] + |b,] < < V2MZ - 2.

3. The convexity and the starlikeness
The following simple result can be used to generate (harmonic) starlike and convex functions.

Theorem 3.1. Let f be a univalent p-harmonic mapping with the form

4
f@) = G@) Y AP+,
k=1

where G is a locally univalent harmonic mapping and Ay (k = 1,...,p) are complex constants. Then we have the
following:
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D(f) _ D(G) D*(f)) _ D*G))
(a) I and D) - DG

(b) f is convex (resp. starlike) if and only if G is convex (resp. starlike).

Proof. (a) The two equalities are immediate consequences of the formula

a p
k=1 =

So, we omit the details.
(b) It suffices to prove the case of convexity since the proof for the starlikeness is similar.
Letz = ré', where 0 < r <1and 0 < t < 2n. Then

. p
f(Z) = G(z) Z /\k|zl2(k—1) — G(reiﬁ) Z AkT,Z(k—l),
k=1 =1

so that

If(re")  AG(re") N . o
= /\kr( R
ot ot ;‘

and

Pf(re")  PG(re") w
= A2
or P2 ;

Therefore Part (a) yields

J df(re") D*(f) D*G)y 9 dG(re")
E(arg 81:3 ):Re(D(f)):Re(D(G))_ ( a:e ),

= E ar
from which the proof of Part (b) of this theorem follows. [

As an immediate consequence of Theorem 3.1(a), we easily have the following.

Corollary 3.2. Let f be a univalent p-harmonic mapping defined as in Theorem 3.1. If f is convex and D(f) is
univalent, then D(f) is starlike.

Abdulhadi, et. al. [3, Theorem 1] discussed the univalence and the starlikeness of biharmonic mappings
in ID. A natural question is whether [3, Theorem 1] holds for p-harmonic mappings. The following result
gives a partial answer to this problem.

Theorem 3.3. Let f be a p-harmonic mapping of D satisfying f(z) = |z|*P~VG(z), where G is harmonic, orientation
preserving and starlike. Then f is starlike univalent.

Proof. We see that the Jacobian J¢ of f is
Jr =P - 1P
= [2*" (G-I - IGP) + 2(p — DIzl *|GI*Re (@)
> 27 D(G. - 1G:P).

Hence J¢(z) > 0 when 0 < [z| < 1 and obviously, J¢(0) = 0. The univalence of f follows from a standard
argument as in the proof of [3, Theorem 1]. Finally, Theorem 3.1 implies that f is starlike. [
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4. The Landau theorem
We now discuss the existence of the Laudau constant for two classes of p-harmonic mappings.
Theorem 4.1. Let f(z) = Y}_, 12P* VGy_ys1(2) be a p-harmonic mapping of D satisfying AGp_s1(z) = f(0) =

Gy(0) = J£(0) =1 = O and for any z € D, |Gp_41(2)| < M, where M > 1. Then there is a constant p (0 < p < 1) such
that D(f) is univalent in D, where p satisfies the following equation:

TM L 2T(M)p!
Ao(M) — ( Z(Zk 1)p 201 _ Z ( - 16Mso arctanp =0

2 3 2
-p) ~ (1-p) n
with
so=( “17_1) 2 ~ 4.1996,
V17 -3 - V17
T
2M2 -2 if1<M<M,:= ~ 2.2976
2 _
T(M) = 401 Vr© -8 @)

7 l'fM>M1

and Ao(M) is given by (2). Moreover, the range D(f)(ID,,) contains a univalent disk Dg, where

p T(M)pZ(k—l) 16M
=p Ao(M) — - Sp arctan p|.
| ; -p2 ]

Proof. Foreach k € {1,2,...,p}, let

(o) (o]
Gp-k+1(2) = Ao p—r+1 + Z Ajp-k17 + Z bip-kaZ,
=) =1

where ag, = 0. We define the function H as

P P
=D|Y] |z|2<“>Gp_k+1] = Y EP“ID(Gy ).
k=1 k=1

Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

|an,p| + |bn,p| <T(M),

where T(M) is given by (4), and

aM
la;p—ks1l + 1bjpri1l < -

forj>1,n>2and2 <k <p.
We observe that
J£(0) = 1(G)=(0)* = [(Gp)z(0)* = JG,(0) =1

and hence by Lemmas 2.1 and 2.2, we have
A£(0) 2 Ao(M),
where A¢(M) is given by (2). Now, we define

2— 2

ﬁ (0<x<1)

g(x) =
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Then there is an g = 4/ %ﬁ ~ 0.66 such that

(r0) = min (x):(\/ﬁ_l) 2
o 0<x<1q \/ﬁ_:g 5_@

= 50.

For each 6 € [0, 27), the function
Go(2) = (Gp)=(2) = (Gp)(0) + ((Gp)=(2) = (Gp)=(0))e' ™2
is clearly a harmonic mapping of ID and satisfies G¢(0) = 0. Moreover, it follows from Lemma 2.1 that

4M

AGp(Z) < ?m forz e D.
In particular, this observation yields that
4M 1 4M
@) < A, @) + A, (0) < —=(1+ 7=5) = —lela(D (5)

forallz € D.

1
1-x2

Since xq(x) -1 =
z €Dy,

is an increasing function in the interval (0, 1), the inequality (5) shows that for any

4M
1Go(2)| < 77’10,

where mg = (2 - r5)/(1 - ). Next, we consider the mapping F defined on ID by

F(Z) = GQ(T’()Z).

m
4MH10
Applying Lemma 2.1 to the function F(z) yields that for z € D,

|zl

16M 16M
|Go(2)] < ?mo arctan (r_) < 750 arctan |z|,
0

where sy = mg/7y.

Now, we fix p with p € (0,1). To prove the univalency of H, we choose two distinct points z1,z; in ID,,.
Lety ={(zp—z)t+z1: 0<t<1}andz; —z; = |z1 — 22/e’®. We find that
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|H(z1) — H(z2)|

- | f Hz(z)dz+Hg(z)dZ|
')/
> | | G0 dz - G0 2|
p
- fz|Z|2(k_1)[Z(Gp—k+1)22(Z)dz_E(Gp—k+1)zz(z)dzl'
V k=2
p
| [ Yo DG 1)) 2 - PGyrri(2) ]
V k=2
p
| [ Y K VIG 10 = G ]|
V k=2
| [16:0) - G0z - (6 - (G0 ]
,
> |21~ 2{A4(0) - [Go(p)|

26D Z n(n = 1)(|anp-ks1l + bnpreal)p" ™!
n=2

=~
< | =
—_

- Y @k - 1) 2>Z 11 por| + b picrap")
k=2

n=1

S AT LL I YR

1-p2 &~
_ Z R s arctan p].

Let

T M S 2T(M)p* ! 16M
P(p) = ( ) Z(Zk Dp 2(k=1) _ Z = 5)3 = S arctan p.
k=1

Then it is easy to verify that P(p) is a decreasing function on the interval (0, 1),
lim P(p) = Ag(M) and lim P(p) = —
p—0+ p—1-

Hence there exists a unique py in (0, 1) satisfying P(pg) = 0. This observation shows that |[H(z1) — H(z2)| > 0
for arbitrary two distinct points z1, z; in [z| < pg which proves the univalency of D(F) in D,,.
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M _|p| p=pMp) | R=RM,pM,p) P’ R
1.1296 | 2 || 0.0714741 0.0101601 0.0420157 | 0.00945379

2 |2 00206783 0.00227639 0.0139439 | 0.00164502
2.2976 | 2 | 0.0155966 0.00151523 0.0106132 | 0.00108021

3 | 2| 0.00922255 0.00067425 0.00626141 | 0.000482413
1.1296 | 3 0.071463 0.0101647 - -

2 |3 0.0206782 0.00227641 - -
2.2976 | 3 | 0.0155966 0.00151523 - -

3 |3 000922254 |  0.000674251 - -
1.1296 | 4 | 0.0714629 0.0101647 - -

2 4 0.0206782 0.00227641 - -
2.2976 | 4 || 0.0155966 0.00151523 - —

3 |4 000922254 |  0.000674251 - -

586

Table 1: Values of p and R for Theorem 4.1 for p = 2, and the corresponding values of p” and R’ of [7, Theorem 1.1] (for p = 2)

For any z with |z| = pg, we have

p
HE@ = | Y P V(G k1):2) ~ ZGyk)=2)]|
k=1

\%

[2(G)-(0) - 2(Gy)=0)

~|l(G)-2) - (G-(0)] - (G )e(2) - (G0
4

| Y B II2(Gy 410)-(2) ~ E(Gy k)2
k=2

L TM)p* " 16M
> po[)\o(M) - Z i Poo)z = Sg arctan po]
k=2

= R

and the proof of the theorem is complete. [

From Table 1, we see that Theorem 4.1 improves Theorem 1.1 of [7] for the case p = 2, and the results
for the rest of the values of p are new. In Table 1, third and fourth columns refer to values obtained from
Theorem 4.1 for cases p = 2,3,4 for certain choices of M, while the right two columns correspond to the
values obtained from [7, Theorem 1.1] for the case p = 2.

Theorem 4.2. Let f(z) = |zI*P"VG(z) be a p-harmonic mapping of D satisfying G(0) = Jg(0)—1 = 0and |G(z)| < M,
where M > 1 and G is harmonic. Then there is a constant p (0 < p < 1) such that D(f) is univalent in ID,, where p
satisfies the following equation:

2T(M)p

-pp 7

where the constants so, Ao(M) and T(M) are the same as in Theorem 4.1. Moreover, the range D(f)(ID,) contains a
univalent disk Dg, where

Ao(M) — ﬂso arctan p —
i

1
R= pzf"l[/\o(M) - %/Iso arctan p].

Especially, if M = 1, then G(z) = z, i.e. f(z) = |z2I*P~Vz which is univalent in ID.



Proof. Let G(z) = Y0y an2" + Y.y Enin. Using Lemmas 2.2, 2.3 and Corollary 2.4, we have

Note that

SH. Chen, S. Ponnusamy and X. Wang / Filomat 27:4 (2013), 577-591

|a,| + |b,| < T(M) forn > 2.

J6(0) = |a1* — b1 = 1

and hence, by Lemmas 2.1 and 2.2, we have

Ac(0) = Ao(M).

587

Next, we set H = D(f) = [z]*P~VD(G) and fix p with p € (0,1). To prove the univalency of f, we choose two

distinct points z1,z in Dy, Lety = {(zo —z1)t +z1: 0<t<1}andzp -z = |z1 - 2/e®. Then

|H(z1) — H(z)|

H.(z)dz + Hz(z) dz

[z1,22]

f plzP? (G (2) dz — G(z) d2)
[z1,22]

+zPP D (2G 2 (2) dz — 2G.2(2) dZ)
+(p = 1)[zPP~2(22G.(z) dZ — 2 Gx(z) dz))|

[\

f [Gz(o)(PIZIZ(” Dz + (p - D]V 222 )
[z1,22]

~GA0) (I 4 = (p — 1)izPrDF dz)] |

P

[ ]G0 - G.opdz - (Gt2) - Go)
[z1,22]

—‘(p—l) f[ LR ECCRCOLE

~Z(Gete) - G0 ]

f 2P D (zG2(2) dz — 2G2(z) dZ)
[21,22]

[\

1
21 — 2o f l2P¢Vdt) {AO(M) - ii—lzwso arctan p
0

=Y n(n = 1)l + Ibn|)P"_1}
n=2

1
4
> z1 — zzl(f IZIZ(”‘Ddt) [AO(M) - i—jzwso arctan p —
0

Since there exists a unique p in (0, 1) which satisfies the following equation:

2T(M)p
1-pp

48M
Ao(M) = ——sparctan p —
T

we see that H(z1) # H(z) and so, H(z) is univalent for |z| < po.
Furthermore, we observe that for any z with |z| = py,

IH(2)|

v

e V26, (0) — 2G5(0) + 2(G-(2) — G=(0)) — Z(G=(2) — G=(0))|

1
[/\O(M) - %/Iso arctan po]

2T(M)p
(1-p3|
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M _|p | p=pMp) | R=RM,pM,p)) P’ R
1.1296 | 2 || 0.0281673 | 0.0000106985 | 0.0194864 | 3.54498x10°

2 |2 000856025 | 1.73218x1077 | 0.00623202 | 6.5415x10~®
22976 | 2 || 0.00646284 |  6.4986x1078 0.0047235 | 2.47902x1078

3 |2 00037942 | 1.00669x1078 | 0.00277162 | 3.83502x10~°
11296 | 3 || 0.0281673 | 8.48819x107° - -

2 |3 000856025 | 1.2693x1071! - -
2.2976 | 3 | 0.00646284 | 2.71435x1012 - -

3 |3 00037942 | 1.44922x10°13 - -

Table 2: Values of p and R for Theorem 4.2 for p = 2,3, and the corresponding values of p’ and R’ of [7, Theorem 1.2] (for p = 2)

The proof of the theorem is complete. [

We remark that Theorem 4.2 is an improved version of [7, Theorem 1.2] when p = 2. In order to be more
explicit, we refer to Table 2 in which the third and fourth columns refer to values obtained from Theorem
4.2 for cases p = 2, 3 for certain choices of M, while the right two columns correspond to the values obtained
from [7, Theorem 1.2] for the case p = 2.

5. The Region of Variability

Definition 5.1. Let H, denote the set of all p-harmonic mappings of the unit disk 1D with the normalization
fa-1(0) = (p — D)t and |f(z)| < 1 for |z| < 1. Here we prescribe that Hy = 0.
For a fixed point zy € D, let
Vip(zo0) = {f(z0) : f € Hp\ Hyr}

Now, we have
Theorem 5.2. (a) Ifp =1, then Vi(zo) = {1};
() Ifp =2, Vy(z) = D.

Proof. We first prove (a). Let f € H; and f(z) = Yoooa.z" + Yoo, byZ". By Parseval’s identity and the
hypotheses [f(z)| < 1 and f(0) = 1, we have

1 271 )
lim — f If(re'®)[> do

r—1- 27 0

Il
g?
|

27
fo (In(re®)P + g(re®)P) dO

laol? + 2 (Ial? + 1bal?) < 1.
n=1

This inequality implies that for any n > 1, a, = b, = 0 which gives that f(z) = 1 for z € ID. Thus, we have

Vi(z0) = {1}.
In order to prove (b), we consider the function

P —w e )N a=-D-1) , pa " si=(p-Dn
¢(z)=—p1=|z|’” Zw”z +2° —w—Zw” z p
1-—wz"

n=1 n=1

where w € Dand p > 2.
Then ¢,-1(0) = (p — 1)}, AP¢ = 0 and therefore, ¢ € H, \ H,_1. For each fixed a € D,z fi(z) =
(@' —a)/(1 - az"") is a p-harmonic mapping and f,(ID) c D.
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p=1_ — —
Obviously, a = fa(z0) = 12("17[11 is a conformal automorphism of ID and the image of ID under f,(zo) is D
—Hz0

itself. By hypotheses, we obtain that for any g € H, \ H,_1, g(z0) € D. Hence V(z) coincides with ID. The
proof of this theorem is complete. [J

By the method of proof used in Theorem 5.2(a), we obtain the following generalization of Cartan’s
uniqueness theorem (see [5] or [27, p. 23]) for harmonic mappings.

Theorem 5.3. Let f be a harmonic mapping in ID with f(ID) C D and f.(0) = 1. Then f(z) =z in D.

6. Estimates for Bloch norm for bi- and tri-harmonic mappings
In the case of p-harmonic Bloch mappings, the authors in [10] obtained the following result.

Theorem 6.1. Let f be a p-harmonic mapping in ID of the form (1) satisfying By < oo, where

fo-f@l e
= L S -1
K oD PE W) < 0o with p(z,w) = 5 log| 1= =

Then

P
Y PGy in):(2)

k=1

By = sup(1—|z|2){

zeD

p
+ ) (k= D26, (2)
k=1

+

|

p
Y 12D Gyki)=(2)
k=1

p
+ ) k=D PGy ()

k=1
P P
> sup(1 =[P | Y PGy n)o@)| - | Y PGy )=2)| (6)
zeD k=1 k=1

and (6) is sharp. The equality sign in (6) occurs when f is analytic or anti-analytic.
Furthermore, if for each k € {1,2, ..., p}, the harmonic functions G,_y,1 in (1) are such that |G,_,1(z)| < M, then

By < 2Mdy,(vo)- )

Here yo is the unique root in (0, 1) of the equation ¢y,(y) = 0, where

4 4
_2 2(k-1) 2 2(k-2)
o) = = Y Py =) Y (k= Dy, ®)
k=1 k=2
The bound in (7) is sharp when p = 1, where M is a positive constant. The extremal functions are

f(z) = %Im (log 1i—§§3),

where |a| = 1 and S(z) is a conformal automorphism of ID.

In order to emphasize the importance of this result, we recall that, when p = 1, (6) (resp. (7)) is a
generalization of [12, Theorem 1] (resp. [12, Theorem 3]). In the case of p = 2 of Theorem 6.1, after some
computation, one has the following simple formulation for biharmonic mappings.
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Corollary 6.2. Let f = H + |z*G be a biharmonic mapping of D such that B < co. Then, we have

By > sup(1 — |zP) ||H: + 2G| — [Hz + 2G| 9)
zeD
and
aM 0y 2\3/2
Br< o (8 +367% + (4 +37%) ) ~ 30.7682M. (10)

Proof. According to our notation, (6) is equivalent to (9). In order to prove (10), we first observe that (7) is
equivalent to

By <2M sup ¢a(y),
O<y<1

where 5
Paly) = ~(1+ v +y(1l - 7).

Now, to find sup ¢,(y), we compute the derivative

O<y<1
) 4 2 - Vi+ 312
Py =1+ ;]/—3]/2 =-3(y- yO)[y— T)
so that ¢5(y) > 0 for 0 < y < yo and ¢(y) < 0 for yo < y < 1. Hence
N 2
Yo = 2*3# ~ 0.82732

is the critical point of ¢, (y). Consequently, ¢2(y) < $2(yo). A simple calculation shows that

2
$a(yo) = —(1+y5) +yo(l - y)
B g(8+1zn2+4\/4+3n2)+(2 . \/4+3n2](6n2—8—4\/4+3n2

T 972 3n 3n 972

= i(l6+42n2+8«/4+3n2+ \/4+3n2(3n2—4—2\/3n2+4))
2773

_ 2 2 2\372\ _
= ﬁ(8+36n +(4+3n> )~15.3841

and therefore, By < 2M¢;(yo) which is the desired inequality (10). The result follows. [J

In the case of p = 3 of Theorem 6.1, we have

Corollary 6.3. Let f = H + |z]*G + |z|*K be a triharmonic (i.e. 3-harmonic) mapping of the unit disk 1D such that
B < oo, where H, G and K are harmonic in ID. Then we have

Bf > sup(l — |z) ||H: + |z G. + [2*K.| — |Hz + 122Gz + 2I*K]| (11)
zeD
and
B < 2Mas(y1) ~ 4.037006M, (12)

where ¢3(y1) = Supy..,; $a(y) and

Pa(y) = %(1 + 2+l + Y7 -2y,



SH. Chen, S. Ponnusamy and X. Wang / Filomat 27:4 (2013), 577-591 591

Proof. Set p = 3 in Theorem 6.1. Then, (11) is equivalent to (6) and therefore, it suffices to prove (12). The
choice p = 3 in (7) shows that

Bf < 2M sup ¢3(y),
O<y<1

where ¢3(y) is obtained from (8).

We see that ¢3(y) has a unique positive root in (0, 1). Also,

Pi(y) = é(y +21°) + 1+ 3y* — 10y

Tt

Computations show that ¢}(y) > 0 for 0 < y < y; and ¢5(y) < 0 for y1 <y < 1. Hence

Y1 ~ 0.891951

is the only critical point of ¢3(y) in the interval (0, 1). It follows that

¢3(y) < ¢P3(y1) = 2.018503.

Thus, By < 2M¢s3(y1) which is the desired inequality (12). [
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