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Abstract. This paper presents a connection between some new results from the theory of sequence spaces
in functional analysis and computer science, with an application to physical chemistry and crystallography.
We determine the β–duals of the matrix domains of factorable triangles in the spaces of strongly C1 summable
and bounded sequences, with index p. Furthermore we apply our results to crystallography, in particular,
to determine the shape of Wulff’s crystals which, in some cases, can be considered as neighbourhoods in
certain metrizable topologies. Finally we use our own software for the graphical representations of some
of the crystals.

1. Introduction

This paper deals with two subjects in mathematics and computer graphics, namely the study of certain
linear topological spaces and the graphical representation of neighbourhoods in the considered topologies.
Many important topologies arise in the theory of sequence spaces, in particular, in FK and BK spaces and
their dual spaces.

Factorable matrices, in particular factorable triangles, have recently been studied by various authors
([11–16]). Here we present some new results on the matrix domains of factorable triangles in spaces of
sequences that are strongly summable or bounded, with index p, by the Cesàro method of order one, and
determine their β–duals.

Our results have an interesting and important application in physical chemistry, in particular in crys-
tallography concerning the growth of crystals. According to Wulff’s principle [19], the shape of a crystal is
uniquely determined by its surface energy function. A surface energy function is a real–valued function
depending on a direction in space. We will see that if the surface energy function is given by a norm then
the shape of the corresponding crystal is given by a neighbourhood in the dual norm.

Visualisation and animations are of vital importance in modern mathematics. For those purposes, we
developed our own software package ([5, 8]) and some important extensions ([2, 3, 10]). We demonstrate
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how our software can be applied to the representations of certain surface energy functions related to the
FK topologies of our new spaces and of the corresponding Wulff’s crystals.

We emphasize that all our graphics in this paper were created with our software package. We solved
the visibility and contour problems for various types of surfaces analytically. This also involves several
numerical methods ([3, 5, 8]). We had to extend our software to represent the new surfaces related to the
sequence spaces of our new mathematical results.

2. Notations and Known Results

Let ω denote the set of all complex sequences x = (xk)∞k=1, and ℓ∞, c, c0 and ϕ be the sets of all bounded,
convergent, null and finite sequences; also let cs, bs and ℓ1 denote the sets of all convergent, bounded and
absolutely convergent series. Finally, letU be the set of all sequences u = (uk)∞k=1 with uk , 0 for all k. We
write e and e(n) (n = 1, 2, . . . ) for the sequences with ek = 1 for all k, and e(n)

n = 1 and e(n)
k = 0 for k , n. Let

x, y ∈ ω. Then we write x · y = (xkyk)∞k=1; if u ∈ U, then x/u = (xk/uk)∞k=1, in particular, 1/u = e/u.
An FK space X is a complete linear metric sequence space with continuous coordinates Pn : X → |C

(n = 1, 2, . . . ) where Pn(x) = xn for all x = (xk)∞k=1 ∈ X; a BK space is an FK space whose metric is given by a
norm. An FK space X is said to have AK if x =

∑∞
k=1xke(k) for each sequence x = (xk)∞k=0 ∈ X, that is, x[m] → x

(m→∞) for the m–section x[m] =
∑m

k=1 xke(k) of the sequence x.
Let X and Y be subsets of ω, and z be a sequence. Then we write z−1 ∗ X = {x ∈ ω : x · z ∈ X}, and

M(X,Y) = {a ∈ ω : a · x ∈ Y for all x ∈ X} for the multiplier space of X and Y, in particular, the multipliers
Xβ =M(X, cs) and Xγ =M(X, bs) are called the β– and γ–duals of X. We note that obviously

M
(
u−1 ∗ X,Y

)
= (1/u)−1 ∗M(X,Y) for each u ∈ U. (1)

Let A = (ank)∞n,k=0 be an infinite matrix of complex numbers, x ∈ ω, and X and Y be subsets of ω. We
write An = (ank)∞k=1 (n = 1, 2, . . . ) for the sequence in the nth row of A, and Anx =

∑∞
k=1ankxk and Ax = (Anx)∞n=1

provided the series converge for all n. The set XA = {x ∈ ω : Ax ∈ X} is called the matrix domain of A in X.
We write (X,Y) for the set of all infinite matrices A that map X into Y, that is, for which X ⊂ YA. We note
that obviously for all u, v ∈ U

A ∈
(
u−1 ∗ X, v−1 ∗ Y

)
if and only if B = (bnk)∞n,k=1 ∈ (X,Y), where bnk = ankvk/un for all n and k. (2)

Let (X, d) be a metric space and x0 ∈ X. Then BX(x0, r) = {x ∈ X : d(x, x0) < r} and SX(x0, r) = {x ∈ X : d(x, x0) =
r} denote the open ball and sphere of radius r > 0 and centre in x0. Let a be a sequence and (X, d) be a linear
metric sequence space. Then we write

∥a∥∗X,δ = sup
x∈BX(0,δ)

∣∣∣∣∣∣∣
∞∑

k=1

akxk

∣∣∣∣∣∣∣
provided the expression on the righthand side exists and is finite which is the case whenever X is an FK
space and a ∈ Xβ by [18, Theorem 7.2.9]; if X is a normed sequence space, then we write

∥a∥∗X = sup
∥x∥=1

∣∣∣∣∣∣∣
∞∑

k=1

akxk

∣∣∣∣∣∣∣ .
Throughout, let 1 ≤ p < ∞ and q be the conjugate number of p, that is, q = ∞ for p = 1 and q = p/(p − 1)

for 1 < p < ∞. Let

wp
0 =

x ∈ ω : lim
n→∞

1
n

n∑
k=1

|xk|p = 0

 , wp =
{
x ∈ ω : x − ξ ∈ wp

0 for some ξ ∈ |C
}
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and

wp
∞ =

x ∈ ω : sup
n

1
n

n∑
k=1

|xk|p < ∞


denote the sets of sequences that are strongly summable to zero, strongly summable and strongly bounded,
with index p, by the Cesàro method of order 1. We denote the set of all integers k with 2ν ≤ k ≤ 2ν+1 − 1 by
K<ν>, and write

∑
ν and maxν for the sum and maximum taken over all k ∈ K<ν>. It is well known ([4, 6])

that the strong limit of a sequence x ∈ wp, that is, ξ ∈ |C such that x− ξe ∈ wp
0 is unique, wp

0, wp and wp
∞ are BK

spaces with the equivalent sectional and block norms

∥x∥′ = sup
n≥1

1
n

n∑
k=1

|xk|p


1/p

and ∥x∥ = sup
ν≥0

( 1
2ν
∑
ν|xk|p

)1/p
,

wp
0 has AK, and every sequence x ∈ wp has a unique representation x = ξ · e +∑∞k=1(xk − ξ)e(k) where ξ is the

strong limit of the sequence x. Furthermore, we write

∥a∥Mp =


∞∑
ν=0

2νmaxν|ak| (p = 1)
∞∑
ν=0

2ν/p (
∑
ν|ak|q) < ∞ (1 < p < ∞)

andMp = {a ∈ ω : ∥a∥Mp < ∞}. It is known that

(wp
0)β = (wp)β = (wp

∞)β =Mp ([10, Theorem 5.5 (a)]), (3)

Mp is a BK space with AK ([10, Theorem 5.7]), and wp
∞ is β–perfect, that is,

(Mp)β =
(
(wp
∞)β
)β
= wp

∞ and ∥ · ∥∗Mp
= ∥ · ∥ on (Mp)β ([10, Theorem 5.8]). (4)

A matrix T = (tnk)∞n,k=1 is said to be a triangle if tnk = 0 for k > n and tnn , 0 (n = 1, 2, . . . ). Let u, v ∈ U
be given and A(u, v) = (ank)∞n,k=1 be the factorable triangle with ank = unvk for 1 ≤ k ≤ n (n = 1, 2, . . . ). The
sets W(u, v; X) = XA(u,v) were defined in [7] for arbitrary subsets X of ω. Here we study the sets wp

0(u, v) =
W(u, v; wp

0), wp(u, v) =W(u, v; wp) and wp
∞(u, v) =W(u, v; wp

∞). We mention that although the matrix domains
of arbitrary triangles T in wp

0, wp and wp
∞ were considered in [1], we improve the corresponding results

concerning the β–duals there, and add some new ones related to the second β-duals.
Since the spaces wp

0, wp and wp
∞ are BK spaces with the block norm ∥ · ∥, it is clear from [18, Theorem

4.3.12] that wp
0(u, v), wp(u, v) and wp

∞(u, v) are BK spaces with

∥x∥(u,v) = sup
ν

 1
2ν
∑
ν

∣∣∣∣∣∣∣∣
k∑

j=1

ukv jx j

∣∣∣∣∣∣∣∣
p

1/p

.

3. Some Dual Spaces

Let Σ = (snk)∞n,k=1 and ∆+ = (∆+nk)∞n,k=1 be the matrices with snk = 1 for 1 ≤ k ≤ n and snk = 0 for k > n
(n = 1, 2, . . . ), and ∆nn = 1, ∆n,n+1 = −1 and ∆nk = 0 otherwise. We will use the convention throughout that
any term with a subscript less than one is equal to zero.

Here we determine the β–duals of the matrix domain of∆+, which is not a triangle, in arbitrary FK spaces
with AK, and of the spaces wp

0(u, v), wp(u, v) and wp
∞(u, v), and apply our results to determine the β–dual of
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a sequence space related to the β–dual of wp
∞(u, v). This last result will be needed in the representations of

some Wulff’s crystals.
Throughout, we write R = (rnk)∞n,k=1 for the matrix with rnk = 1 for k ≥ n and rnk = 0 for 1 ≤ k ≤ n − 1

(n = 1, 2, . . . ). Given a ∈ ω, we define the matrix B = (Ba) = (ba
nk)∞n,k=1 by Ba

n = anRn (n = 1, 2, . . . ), that is,
ba

nk = an for k ≥ n and ba
nk = 0 for 1 ≤ k ≤ n − 1 (n = 1, 2, . . . ).

Lemma 3.1. Let X ⊂ cs be an FK space with AK. Then we have (X∆+ )β ⊂ (Xβ)R.

Proof. We put Z = X∆+ . Since X ⊂ cs, the sequence Rx is defined. So we have x ∈ X if and only if z = Rx ∈ Z,
since∆+k z = Rkx−Rk+1x = xk for all k, that is,∆+z = x ∈ X. We also observe that anzn = anRnx =

∑∞
k=n anxk = Ba

nx
for all a ∈ ω and all n, hence a · z = Bax, and so a ∈ Zβ if and only if Ba ∈ (X, cs).
We assume a ∈ Zβ, and write C = ΣBa, hence

cnk =

∞∑
j=1

snjba
jk =


n∑

j=k
a j (1 ≤ k ≤ n)

0 (k ≥ n + 1)
(n = 1, 2, . . . ).

Then Ba ∈ (X, cs) if and only if C ∈ (X, c) by [9, Theorem 3.8]. Since X is an FK space with AK, it follows by
[9, Theorem 1.23] and [18, 8.3.6] that

lim
n→∞

cnk =

∞∑
j=k

Rka exists for each k, (5)

and supn ∥Cn∥∗X,δ < ∞ for some δ > 0, that is, there is a constant K such that

|Cnx| =
∣∣∣∣∣∣∣
∞∑

n=1

cnkxk

∣∣∣∣∣∣∣ ≤ K for all x ∈ BX(0, δ). (6)

Let x ∈ X be given, and ρ = δ/2. Since BX(0, ρ) is absorbing ([17, Chapter 4.1, Fact (ix)]), and X has AK, there
are a positive real λ and a positive integer m0 such that y[m] = λx[m] ∈ BX(0, ρ) for all m ≥ m0. Let m ≥ m0 be
given. Then we have for all n ≥ m by (6)∣∣∣∣∣∣∣

m∑
k=1

cnkxk

∣∣∣∣∣∣∣ = λ
∣∣∣∣∣∣∣

m∑
k=1

cnky[m]
k

∣∣∣∣∣∣∣ = λ ∣∣∣Cny[m]
∣∣∣ ≤ λ · K,

and so by (5)∣∣∣∣∣∣∣
m∑

k=1

(Rka)xk

∣∣∣∣∣∣∣ = λ · lim
n→∞

∣∣∣Cny[m]
∣∣∣ ≤ λ · K.

Since m ≥ m0 was arbitrary, it follows that (Ra) · x ∈ bs, and since x ∈ X was arbitrary, we conclude Ra ∈ Xγ.
Finally, since X has AK, we have Xγ = Xβ by [18, Theorem 7.2.7], and so a ∈ (Xβ)R

Let L denote the matrix of the left shift operator on ω, that is Lnx = xn−1 for all x ∈ ω and all n ∈ IN. We
write X− for the matric domain of L in X.

Theorem 3.2. Let X ⊂ cs be an FK space with AK, and X− ⊂ X. Then we have a ∈ (X∆+)β if and only if

a ∈ (Xβ)R and W ∈ (X, c0) (7)

where W = (wmk)∞m,k=1 is the triangle with wmk = Rm+1a for 1 ≤ k ≤ m and wmk = 0 for k ≥ m + 1 (m = 1, 2, . . . );
moreover, if a ∈ (X∆+ )β then

∞∑
k=1

akzk = −
∞∑

k=1

(Rk+1a)∆+k z for all z ∈ X∆+ . (8)
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Proof. Again we write Z = X∆+ .
First, we assume a ∈ Zβ. Then it follows by Lemma 3.1 that Ra ∈ Xβ and so Rma exists for all m and
consequently the matrix W is defined. Let z ∈ Z be given. Then x = ∆+z ∈ X, and we obtain

m∑
k=0

(Rk+1a)xk −Wmx =
m∑

k=0

(Rk+1a)∆+k z − (Rm+1a)
m∑

k=1

∆+k z =

−
m∑

k=0

(Rk+1a)zk+1 +

m∑
k=1

(Rk+1a)zk + (Rm+1a)zm+1 − (Rm+1a)z1 =

m∑
k=1

(Rk+1a − Rka)zk − (Rm+1a)zm+1 + (Rm+1a)zm+1 − (Rm+1a)z1 = −
m∑

k=1

akzk − (Rm+1a)z1 for all m,

that is,
m∑

k=1

akzk = −
m∑

k=1

(Rk+1a)xk +Wmx − (Rm+1a)z1 for all m. (9)

Let x ∈ X be given. Then z = Rx ∈ Z, and so a · z ∈ cs and Ra ∈ Xβ. It follows from X− ⊂ X that Xβ ⊂ Xβ− and
so (Rk+1a) ∈ Xβ. This, a ∈ Zβ and Ra ∈ c0 imply W ∈ (X, c) by (9), and trivially (X, c) ⊂ (X, ℓ∞). Furthermore
limm→∞ wmk = limm→∞ Rm+1a = 0 for each k, and W ∈ (X, ℓ∞) together imply W ∈ (X, c0) by [18, 8.3.6].
Now if a ∈ Zβ then the conditions in (7) hold and (8) follows from (9) and the fact that Ra ∈ c0.
Conversely, we assume that the conditions in (7) are satisfied. Let z ∈ Z be given. Then x = ∆+z ∈ X, and
so a · z ∈ cs by (9). Thus we have a ∈ Zβ.

For each m ∈ IN, let ν(m) denote the unique integer such that m ∈ N<ν(m)> = {n ∈ IN : 2ν(m) ≤ n ≤ 2ν(m)+1−1}.
We define the sequence d(p) = (dm(p))∞m=1 by dm(p) = 2ν(m)/p for m ∈ Nν(m) and 1 ≤ p < ∞.

We need the following lemma.

Lemma 3.3. We have

(a) M(wp
0, c0) = (d(p))−1 ∗ ℓ∞, (b) M(wp, c) = (d(p))−1 ∗ c, and

(c) M(wp
∞, c0) = (d(p))−1 ∗ c0.

Proof. Given any sequence a, we write D(a) = (dnk(a))∞n,k=1 for the diagonal matrix with dnn(a) = an (n =
1, 2, . . . ). Then we obviously have a ∈M(X, c0) if and only if D(a) ∈ (X, c0) for any subset X of ω.

(a) If X = wp
0 then, by [1, Theorem 2.4 3.], D(a) ∈ (wp

0, c0) if and only if

sup
m
∥Dm(a)∥Mp

= sup
m

(
2ν(m)/p · |am|

)
< ∞,

that is, a ∈ (d(p))−1 ∗ ℓ∞, and limn→∞ dnk(a) = 0 for each k ∈ IN, which is redundant.
(b) First, we show (d(p))−1 ∗ c ⊂M(wp, c).

Let b = d(p) · a ∈ c and x ∈ wp be given with strong limit ξ. It follows that

|amxm| ≤ |am| · |xm − ξ| + |am| · |ξ|

≤ |bm| ·
( 1

2ν(m)
Σν(m)|xm − ξ|p

)1/p
+ |bm| ·

|ξ|
2ν(m)/p

→ 0 (m→∞),

hence a · x ∈ c. This shows (d(p))−1 ∗ c ⊂M(wp, c).
Conversely, we assume b = d(p) · a < c. Since e ∈ wp and b · e = b < c, it follows that b <M(wp, c).

(c) If X = wp
∞ then, by [1, Theorem 2.4 2.], D(a) ∈ (wp

∞, c0) if and only if

lim
m→∞

∥Dm(a)∥Mp
= lim

m→∞

(
2ν(m)/p · |am|

)
= 0,

that is, a ∈ (d(p))−1 ∗ c0.
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A subset X of ω is said to be normal, if x ∈ X and |yk| ≤ |xk| for all k imply y ∈ X.
Let u, v ∈ U. We writeMp(∆+,u, v) = {a ∈ ω : (1/u)∆+ (a/v) ∈ Mp}.

Theorem 3.4. Let u, v ∈ U and b = d(p)/(u · v). Then we have
(a) (wp

0(u, v))β =Mp(∆+,u, v) ∩ b−1 ∗ ℓ∞;
(b) (wp(u, v)β =Mp(∆+,u, v) ∩ b−1 ∗ c;
(c) (wp

∞(u, v))β =Mp(∆+,u, v) ∩ b−1 ∗ c0.

Proof. (a) and (c). If X = wp
0 or X = wp

∞, then X is normal, and it follows from [7, Theorem 2.4 (b)] and
[10, Theorem 5.5 (a)] that a ∈ (wp

0(u, v))β if and only if (1/u)∆+ (a/v) ∈ Mp that is, a ∈ Mp(∆+,u, v), and
a/(u · v) ∈M(X, c0). But by Lemma 3.3 (a) and (c), a/(u · v) ∈M(wp

0, c0) if and only if (d(p) · a)/(u · v) = ab ∈ ℓ∞
and a/(u · v) ∈M(wp

∞, c0) if and only if (d(p) · a)/(u · v) = a · b ∈ c0.
(b) First, we show (wp(u, v))β ⊂ Mp(∆+,u, v) ∩ b−1 ∗ c.

Let a ∈ (wp(u, v))β be given. Since wp
0 ⊂ wp obviously implies (wp(u, v))β ⊂ (wp

0(u, v))β, we obtain a ∈
Mp(∆+,u, v) by Part (a). Let z ∈ wp(u, v) be given. Then x = u · Σ(v · z) ∈ wp and

n∑
k=1

akzk =

n−1∑
k=1

1
uk
∆+k (a/v) xk +

an

unvn
for all n, (10)

and a · z ∈ cs and a ∈ Mp(∆+,u, v) imply a/(u · v) ∈M(wp, c), that is, a ∈ b−1 ∗ c by Lemma 3.3 (b).
Conversely, we assume that a ∈ Mp(∆+,u, v) and a · b = d(p) · a/(u · v), hence a ∈M(wp, c) by Lemma 3.3 (b).
Then it follows from (10) that a · z ∈ cs for all z ∈ wp(u, v), hence a ∈ (wp(u, v))β.

We close this section with an application of our results.

Example 3.5. Let u, v ∈ U. Then we have a ∈ (Mp(∆+,u, v))β if and only if

(ukRk(a · v))∞k=1 ∈ wp
∞ and (umRm+1(a · v))∞m=1 ∈ c0.

Proof. We write Y = (1/u)−1∗Mp. SinceMp(∆+,u, v) = (1/v)−1∗Y∆+ , we obtain from (1) that a ∈ (Mp(∆+,u, v))β

if and only if b = a · v ∈ (Y∆+ )β. FurthermoreMp is a BK space with AK by [10, Theorem 5.7], hence Y is a
BK space with AK by [18, Theorem 4.3.6]. Since also obviously Y ⊂ cs and Y− ⊂ Y, it follows from Theorem
3.2 that b ∈ (Y∆+ )β if and only if Rb = R(a · v) ∈ Yβ = u−1 ∗ (Mp)β = u−1 ∗ wp

∞ by (1) and (4), and, by (2),
W̃ ∈ (Mp, c0) where W̃ = (w̃mk)∞m,k=1 is the triangle with w̃mk = umRm+1(a · v) for 1 ≤ k ≤ m (m = 1, 2, . . . ). Since
Mp is a BK space with AK ([10, Theorem 5.7]) we have, by [18, 8.3.6], W̃ ∈ (Mp, c0) if and only if

lim
m→∞

(umRm+1(a · v)) = 0. (11)

and

W̃ ∈ (Mp, ℓ∞). (12)

It follows from the equivalence of the block and sectional norms on wp
∞, the fact that ∥ · ∥ = ∥ · ∥∗Mp

by (4) and
[9, Theorem 1.23 (b)] that the condition in (12) holds if and only if

sup
m

 1
m

m∑
k=1

|w̃mk|p


1/p

= sup
m

 1
m

m∑
k=1

|umRm+1(a · v)|p


1/p

< ∞,

that is, (umRm+1(a · v))∞m=1 ∈ ℓ∞, which is redundant by (11).
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4. Graphical Representations of Wulff’s Crystals

Here we give the graphical representations of Wulff’s crystals and their surface energy functions as
potential surfaces.

According to Wulff’s principle [19], the shape of a crystal is uniquely determined by its surface energy
function. A surface energy function is a real–valued function depending on a direction in space.

Let Sn denote the unit sphere in euclidean IRn+1, and let F : Sn → IR be a surface energy function. Then
we may consider the set PM = {x⃗ = F(⃗e)⃗e ∈ IRn+1 : e⃗ ∈ Sn} as a natural representation of the function F.

If n = 2, then e⃗ = e⃗(u1,u2) = (cos u1 cos u2, cos u1 sin u2, sin u1) for (u1,u2) ∈ R = (−π/2, π/2) × (0, 2π) and
we obtain a potential surface with a parametric representation

PS = {x⃗ = f (u1, u2)(cos u1 cos u2, cos u1 sin u2, sin u1) : (u1,u2) ∈ R}
where f (u1,u2) = F(⃗e(u1,u2)).

(13)

It was shown in [2] that if F is equal to a norm, then the boundary of the corresponding Wulff’s crystal
is given by the dual norm. More precisely, we have

Corollary 4.1. ([2, Beispiel 6.15]) Let ∥ · ∥ be a norm on IR3, and for each w⃗ ∈ S2, let ϕw⃗ : IR3 → IR be defined by
ϕw⃗(x) = w⃗ • x⃗ =

∑3
k=1 wkxk (x⃗ ∈ IR3). Then the boundary ∂C∥·∥ of Wulff’s crystal corresponding to ∥ · ∥ is given by

∂C∥·∥ =
{

x⃗ =
1
∥ϕe∥∗

· e⃗ ∈ IR3 : e⃗ ∈ S2

}
, (14)

where ∥ϕe⃗∥∗ is the norm of the functional ϕe⃗, that is, the dual norm of ∥ · ∥.

Remark 4.2. If the surface energy function F is given by a norm ∥ · ∥ in IR3, then

x⃗(u1,u2) =
∥∥∥e⃗(u1, u2)

∥∥∥ · e⃗(u1,u2)

is a parametric representation of the potential surface of ∥ · ∥ by (13), and

x⃗∗(u1,u2) =
1∥∥∥ϕe⃗(u1,u2)

∥∥∥∗ · e⃗(u1, u2)

is a parametric representation for the boundary of Wulff’s crystal corresponding to ∥ · ∥ by (14).

Example 4.3. We apply our results to the graphical representations of Wullf’s crystals corresponding to the norms
of wp

∞(u, v) andMp(∆+,u, v). We consider IR3 as a subset of ω by identifying every point X = (x1, x2, x3) ∈ IR3 with
the sequence y =

∑3
k=1 xke(k).

(a) We consider the case when the surface energy function F is given by the wp
∞(u, v)–norm. Then the dual norm is

the natural norm ofMp(∆+,u, v) by Theorem 3.4 and the identification just mentioned. Figure 1 shows the potential
surface given by the W(u, v, p)–norm with u = (−5.2, 3), v = (2,−4, 3) and p = 10 on the lefthand side, and the same
potential surface together with the corresponding Wulff’s crystal on the righthand side.
(b) Now we consider dual case of Part (a), that is, when the surface energy function F is given by the natural norm of
Mp(∆+,u, v). Then the dual norm is the natural norm of v−1 ∗ (u−1 ∗wp

∞)R by Theorem 3.4 and the identification just
mentioned. Figure 2 shows the potential surface given by theMp(∆+,u, v)–norm with u = (−5.2, 3), v = (2,−4, 3)
and p = 10 on the lefthand side, and the potential surface given by theMp(∆+,u, v)–norm with u = v(1, 1, 1) and
p = 1.1 on the righthand side.

We emphasize that Figures 1 and 2 were created by our own software for graphical representations.
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Figure 1: The potential surface and corresponding Wulff’s crystal for the wp
∞(u, v) norm

5. Conclusion

We achieved the aim of the paper, namely to present a connection between some new results from the
theory of sequence spaces in functional analysis and computer sciences, with an application to physical
chemistry and crystallography. More precisely, we introduced the BK spaces wp

0(u, v), wp(u, v) and wp
∞(u, v)

for 1 ≤ p < ∞ which are the matrix domains of factorable triangles G(u, v) in wp
0, wp and wp

∞. We were able
to prove a new general result, Theorem 3.2, which reduces the determination of the β–dual of the matrix
domain of∆+ in FK spaces X with AK to the determination of the β–dual of X and the characterisation of the
class (X, c0). Using this result, we were able to determine the β–duals and, essentially, the second β–duals
of our new spaces in Theorem 3.4 and Example 3.5.

Figure 2: The potential surface and corresponding Wulff’s crystal for theMp(∆+,u, v) norm

Furthermore, we gave an application of our results of Theorem 3.4 and Example 3.5 to the graphical
representation of Wulff’s crystals whose shape is uniquely determined by their surface energy function.
If the surface energy function is a norm then the shape of the corresponding Wulff’s crystal is given by a
neighbourhood in the dual norm. We represented the potential surfaces given by the wp

∞(u, v) norm and by
its dual norm along with the corresponding Wulff’s crystals in Figures 1 and 2, respectively. Our graphics
were created with our own software.

It would be a challenging task to extend our results to the determination of the β–duals of the matrix
domains of general triangles in spaces of strongly summable and bounded sequences, and the characteri-
sations of classes of matrix transformations between those spaces. Furthermore, it would be interesting to
obtain similar graphical representations.
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[9] E. Malkowsky, V. Rakočević, An introduction into the theory of sequence spaces and measures on noncompactness, Zbornik
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