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Abstract. In this paper, we introduce and investigate an interesting subclass Nh,p
Σ

(
λ, µ

)
of analytic and

bi-univalent functions in the open unit disk U. For functions belonging to the class Nh,p
Σ

(
λ, µ

)
, we obtain

estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3|. The results presented in this paper
would generalize and improve some recent works of Çağlar et al. [3], Xu et al. [10], and other authors.

1. Introduction

Let R = (−∞,∞) be the set of real numbers, C be the set of complex numbers and

N := {1, 2, 3, . . .} =N0\ {0}

be the set of positive integers.
LetA denote the class of all functions of the form:

f (z) = z +
∞∑

n=2

anzn, (1)

which are analytic in the open unit disk

U = {z : z ∈ C and |z| < 1} .

We also denote byS the class of all functions in the normalized analytic function classAwhich are univalent
inU.

It is well known that every function f ∈ S has an inverse f−1, which is defined by

f−1
(

f (z)
)
= z (z ∈ U)
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and

f
(

f−1 (w)
)
= w

(
|w| < r0

(
f
)

; r0
(

f
)
=

1
4

)
.

In fact, the inverse function f−1 is given by

f−1 (w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent inU if both f and f−1 are univalent inU. Let Σ denote the
class of bi-univalent functions in U given by (1). For a brief history and interesting examples of functions
in the class Σ, see [8] (see also [1]). In fact, the aforecited work of Srivastava et al. [8] essentially revived
the investigation of various subclasses of the bi-univalent function class Σ in recent years; it was followed
by such works as those by Frasin and Aouf [4], Xu et al. [9, 10], Hayami and Owa [6], and others (see, for
example, [5], [7] and [11]).

Recently, Çağlar et al. [3] introduced the following two subclasses of the bi-univalent function class Σ
and obtained non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3| of functions
in each of these subclasses (see also [4] and [10]). It should be mentioned in passing that the functional
expression used in the inequalities in (2) and (7) of Definitions 1 and 2 is precisely the same as that used by
Zhu [12] for investigating various extensions, generalizations and improvements of the starlikeness criteria
which were proven by earlier authors (see, for details, Remark 1 below).

Definition 1. (see [3]) A function f (z) given by (1) is said to be in the class Nµ
Σ

(α, λ) if the following
conditions are satisfied:

f ∈ Σ and

∣∣∣∣∣∣∣arg

(1 − λ)
(

f (z)
z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1
∣∣∣∣∣∣∣ < απ2 (2)

(
0 < α 5 1; λ = 1; µ = 0; z ∈ U)

and ∣∣∣∣∣∣∣arg

(1 − λ)
(
1 (w)

w

)µ
+ λ1′ (w)

(
1 (w)

w

)µ−1
∣∣∣∣∣∣∣ < απ2 (3)

(
0 < α 5 1; λ = 1; µ = 0; w ∈ U)

,

where the function 1 is given by

1 (w) = w − a2w2 +
(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (4)

Theorem 1. (see [3]) Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the class

Nµ
Σ

(α, λ) (0 < α 5 1; λ = 1; µ = 0).

Then

|a2| 5
2α√(

λ + µ
)2 + α

(
µ + 2λ − λ2) (5)

and

|a3| 5
4α2(
λ + µ

)2 +
2α

2λ + µ
. (6)
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Definition 2. (see [3]) A function f (z) given by (1) is said to be in the class Nµ
Σ

(
β, λ

)
if the following

conditions are satisfied:

f ∈ Σ and ℜ
(1 − λ)

(
f (z)

z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1 > β (7)

(
0 5 β < 1; λ = 1; µ = 0; z ∈ U)

and

ℜ
(1 − λ)

(
1 (w)

w

)µ
+ λ1′ (w)

(
1 (w)

w

)µ−1 > β (8)

(
0 5 β < 1; λ = 1; µ = 0; w ∈ U)

,

where the function 1 is defined by (4).

Remark 1. For functions f (z), which are analytic inU and normalized by

f (z) = z +
∞∑

k=n+1

akzk (n ∈N),

Zhu [12] determined the conditions on the parameters M, α, λ and µ such that the following inequality:∣∣∣∣∣∣∣(1 − λ)
(

f (z)
z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1

− 1

∣∣∣∣∣∣∣ <M

implies that the so-normalized function f (z) is in the corresponding class of starlike functions of order
α (0 5 α < 1). Interestingly, the functional expression used by Zhu [12] is precisely the same as that used
in the inequalities in (2) and (7) above. The work of Zhu [12] provided extensions, generalizations and
improvements of the various starlikeness criteria which were proven by a number of earlier authors (see,
for details, [12]).

Theorem 2. (see [3]) Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the class

Nµ
Σ

(
β, λ

)
(0 5 β < 1; λ = 1; µ = 0).

Then

|a2| 5 min


√

4
(
1 − β)(

µ + 1
) (

2λ + µ
) , 2 (

1 − β)
λ + µ

 (9)

and

|a3| 5


min

 4
(
1 − β)(

µ + 1
) (

2λ + µ
) , 4 (

1 − β)2(
λ + µ

)2 +
2
(
1 − β)

2λ + µ

 (0 5 µ < 1)

2
(
1 − β)

2λ + µ
(µ = 1).

(10)

Remark 2. The following special cases of Definitions 1 and 2 are worthy of note:
(i) For µ = 1,we obtain the bi-univalent function classes

N1
Σ (α, λ) = BΣ (α, λ) and N1

Σ

(
β, λ

)
= BΣ

(
β, λ

)
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introduced by Frasin and Aouf [4].

(ii) For µ = 1 and λ = 1, we have the bi-univalent function classes

N1
Σ (α, 1) = HαΣ and N1

Σ

(
β, 1

)
= HΣ

(
β
)

introduced by Srivastava et al. [8].

(iii) For µ = 0 and λ = 1,we get the well-known classes

N0
Σ (α, 1) = S∗Σ [α] and N0

Σ

(
β, 1

)
= S∗Σ

(
β
)

of strongly bi-starlike functions of order α and of bi-starlike functions of order β, respectively.

This paper is essentially a sequel to some of the aforecited works (especially see [3] and [10]). Here we
introduce and investigate the general subclass Nh,p

Σ

(
λ, µ

) (
λ = 1; µ = 0

)
of the analytic function class A,

which is given by Definition 3 below.

Definition 3. Let the functions h, p : U→ C be so constrained that

min
{
ℜ

(
h (z)

)
, ℜ

(
p (z)

)}
> 0 (z ∈ U) and h (0) = p (0) = 1.

Also let the function f , defined by (1), be in the analytic function classA. We say that

f ∈ Nh,p
Σ

(
λ, µ

) (
λ = 1; µ = 0

)
if the following conditions are satisfied:

f ∈ Σ and (1 − λ)
(

f (z)
z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1

∈ h (U) (z ∈ U) (11)

and

(1 − λ)
(
1 (w)

w

)µ
+ λ1′ (w)

(
1 (w)

w

)µ−1

∈ p (U) (w ∈ U) , (12)

where the function 1 is defined by (4).

We note that the classNh,p
Σ

(
λ, µ

)
reduces to the function classes Bh,p

Σ
(λ) andHh,p

Σ
given by

Bh,p
Σ

(λ) = Nh,p
Σ

(λ, 1) ,

Bh,p
Σ
= Nh,p

Σ
(1, 0)

and

Hh,p
Σ
= Nh,p

Σ
(1, 1) ,

respectively, each of which was introduced and studied recently by Xu et al. [10], Bulut [2] and Xu et al. [9],
respectively.

Remark 3. There are many choices of the functions h(z) and p(z) which would provide interesting subclasses
of the analytic function classA. For example, if we let

h (z) = p (z) =
(1 + z

1 − z

)α
(0 < α 5 1; z ∈ U) (13)
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or

h (z) = p (z) =
1 +

(
1 − 2β

)
z

1 − z
(
0 5 β < 1; z ∈ U)

, (14)

it is easy to verify that the functions h(z) and p(z) satisfy the hypotheses of Definition 3. If f ∈ Nh,p
Σ

(
λ, µ

)
,

then

f ∈ Σ and

∣∣∣∣∣∣∣arg

(1 − λ)
(

f (z)
z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1
∣∣∣∣∣∣∣ < απ2 (15)

(
0 < α 5 1; λ = 1; µ = 0; z ∈ U)

and ∣∣∣∣∣∣∣arg

(1 − λ)
(
1 (w)

w

)µ
+ λ1′ (w)

(
1 (w)

w

)µ−1
∣∣∣∣∣∣∣ < απ2 (16)

(
0 < α 5 1; λ = 1; µ = 0; w ∈ U)

or

f ∈ Σ and ℜ
(1 − λ)

(
f (z)

z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1 > β (17)

(
0 5 β < 1; λ = 1; µ = 0; z ∈ U)

and

ℜ
(1 − λ)

(
1 (w)

w

)µ
+ λ1′ (w)

(
1 (w)

w

)µ−1 > β (18)

(
0 5 β < 1; λ = 1; µ = 0; w ∈ U)

,

where the function 1 is defined by (4). This means that

f ∈ Nµ
Σ

(α, λ)
(
0 < α 5 1; λ = 1; µ = 0

)
or

f ∈ Nµ
Σ

(
β, λ

) (
0 5 β < 1; λ = 1; µ = 0

)
.

Our paper is motivated and stimulated especially by the works of Çağlar et al. [3] and Xu et al. [10]. Here
we propose to investigate the bi-univalent function class Nh,p

Σ

(
λ, µ

)
introduced in Definition 3 and derive

coefficient estimates on the first two Taylor-Maclaurin coefficients |a2| and |a3| for a function f ∈ Nh,p
Σ

(
λ, µ

)
given by (1) . Our results for the bi-univalent function class Nh,p

Σ

(
λ, µ

)
would generalize and improve the

related works of Çağlar et al. [3] and Xu et al. [10] (see also [4] and [8]).

2. A Set of General Coefficient Estimates

In this section, we state and prove our general results involving the bi-univalent function classNh,p
Σ

(
λ, µ

)
given by Definition 3.
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Theorem 3. Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the function class
Nh,p
Σ

(
λ, µ

)
. Then

|a2| 5 min


√√√
|h′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

2
(
λ + µ

)2 ,

√
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

2
(
µ + 1

) (
2λ + µ

)
 (19)

and

|a3| 5 min
{ |h′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

2
(
λ + µ

)2 +
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

4
(
2λ + µ

) ,(
3 + µ

) |h′′ (0)| +
∣∣∣1 − µ∣∣∣ ∣∣∣p′′ (0)

∣∣∣
4
(
µ + 1

) (
2λ + µ

) }
. (20)

Proof. First of all, we write the argument inequalities in (11) and (12) in their equivalent forms as follows:

(1 − λ)
(

f (z)
z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1

= h (z) (z ∈ U) ,

and

(1 − λ)
(
1 (w)

w

)µ
+ λ1′ (w)

(
1 (w)

w

)µ−1

= p (w) (w ∈ U) ,

respectively, where h(z) and p(w) satisfy the conditions of Definition 3. Furthermore, the functions h (z) and
p (w) have the following Taylor-Maclaurin series expensions:

h(z) = 1 + h1z + h2z2 + · · ·

and

p(w) = 1 + p1w + p2w2 + · · · ,

respectively. Now, upon equating the coefficients of

(1 − λ)
(

f (z)
z

)µ
+ λ f ′ (z)

(
f (z)

z

)µ−1

with those of h(z) and the coefficients of

(1 − λ)
(
1 (w)

w

)µ
+ λ1′ (w)

(
1 (w)

w

)µ−1

with those of p (w) ,we get(
λ + µ

)
a2 = h1, (21)

(
2λ + µ

)
a3 +

(
µ − 1

) (
λ +
µ

2

)
a2

2 = h2, (22)

− (
λ + µ

)
a2 = p1 (23)
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and

− (
2λ + µ

)
a3 +

(
µ + 3

) (
λ +
µ

2

)
a2

2 = p2. (24)

From (21) and (23), we obtain

h1 = −p1 (25)

and

2
(
λ + µ

)2 a2
2 = h2

1 + p2
1. (26)

Also, from (22) and (24), we find that(
µ + 1

) (
2λ + µ

)
a2

2 = h2 + p2. (27)

Therefore, we find from the equations (26) and (27) that

|a2|2 5
|h′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

2
(
λ + µ

)2

and

|a2|2 5
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

2
(
µ + 1

) (
2λ + µ

) ,
respectively. So we get the desired estimate on the coefficient |a2| as asserted in (19).

Next, in order to find the bound on the coefficient |a3| ,we subtract (24) from (22). We thus get

2
(
2λ + µ

)
a3 − 2

(
2λ + µ

)
a2

2 = h2 − p2. (28)

Upon substituting the value of a2
2 from (26) into (28) , it follows that

a3 =
h2

1 + p2
1

2
(
λ + µ

)2 +
h2 − p2

2
(
2λ + µ

) .
We thus find that

|a3| 5
|h′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

2
(
λ + µ

)2 +
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

4
(
2λ + µ

) . (29)

On the other hand, upon substituting the value of a2
2 from (27) into (28), it follows that

a3 =

(
3 + µ

)
h2 +

(
1 − µ) p2

2
(
µ + 1

) (
2λ + µ

) .

Consequently, we have

|a3| 5
(
3 + µ

) |h′′ (0)| +
∣∣∣1 − µ∣∣∣ ∣∣∣p′′ (0)

∣∣∣
4
(
µ + 1

) (
2λ + µ

) . (30)

This evidently completes the proof of Theorem 3.
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3. Corollaries and Consequences

By setting µ = 1 in Theorem 3, we get Corollary 1 below.

Corollary 1. Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent
function class Bh,p

Σ
(λ) (λ = 1) . Then

|a2| 5 min


√√
|h′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

2 (1 + λ)2 ,

√
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

4 (1 + 2λ)

 (31)

and

|a3| 5 min

 |h
′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

2 (1 + λ)2 +
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

4 (1 + 2λ)
,
|h′′ (0)|

2 (1 + 2λ)

 . (32)

Remark 4. Corollary 1 is an improvement of the following estimates obtained by Xu et al. [10].

Corollary 2. (see [10]) Suppose that f (z) given by its Taylor-Maclaurin series expansion (1) is in the function class
Bh,p
Σ

(λ) (λ = 1) . Then

|a2| 5

√
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

4 (1 + 2λ)
(33)

and

|a3| 5
|h′′ (0)|

2 (1 + 2λ)
. (34)

By setting µ = 1 and λ = 1 in Theorem 3, we get the following consequence.

Corollary 3. Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the function classHh,p
Σ

.
Then

|a2| 5 min


√
|h′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

8
,

√
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

12

 (35)

and

|a3| 5 min

 |h
′ (0)|2 +

∣∣∣p′ (0)
∣∣∣2

8
+
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

12
,
|h′′ (0)|

6

 . (36)

Remark 5. Corollary 3 is an improvement of the following estimates obtained by Xu et al. [9].

Corollary 4. (see [9]) Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the function
classHh,p

Σ
. Then

|a2| 5

√
|h′′ (0)| +

∣∣∣p′′ (0)
∣∣∣

12
(37)



H. M. Srivastava et al. / Filomat 27:5 (2013), 831–842 839

and

|a3| 5
|h′′ (0)|

6
. (38)

Remark 6. By setting µ = 0 and λ = 1 in Theorem 3,we get [2, Theorem 2.1].

If we set

h (z) = p (z) =
(1 + z

1 − z

)α
(0 < α 5 1; z ∈ U)

in Theorem 3, we can readily deduce Corollary 5.

Corollary 5. Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent
function class

Nµ
Σ

(α, λ)
(
0 < α 5 1; λ = 1; µ = 0

)
.

Then

|a2| 5


2α
λ + µ

(
λ = 1 +

√
1 + µ

)
2α√(

µ + 1
) (

2λ + µ
) (

1 5 λ < 1 +
√

1 + µ
)
.

(39)

and

|a3| 5


min

 4α2(
λ + µ

)2 +
2α2

2λ + µ
,

4α2(
µ + 1

) (
2λ + µ

) (
0 5 µ < 1

)
2α2

2λ + µ
(
µ = 1

)
.

(40)

Remark 7. It is easy to see, for the coefficient |a2| , that

2α
λ + µ

5
2α√(

λ + µ
)2 + α

(
µ + 2λ − λ2)(

0 < α 5 1; λ = 1 +
√

1 + µ; µ = 0
)

and

2α√(
µ + 1

) (
2λ + µ

) 5 2α√(
λ + µ

)2 + α
(
µ + 2λ − λ2)(

0 < α 5 1; 1 5 λ < 1 +
√

1 + µ; µ = 0
)
.

On the other hand, for the coefficient |a3| ,we make the following observations:

(i) If 0 5 µ < 1 and

min

 4α2(
λ + µ

)2 +
2α2

2λ + µ
,

4α2(
µ + 1

) (
2λ + µ

) = 4α2(
λ + µ

)2 +
2α2

2λ + µ
,
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then

4α2(
λ + µ

)2 +
2α2

2λ + µ
5

4α2(
λ + µ

)2 +
2α

2λ + µ
(0 < α 5 1; λ = 1) ;

(ii) If 0 5 µ < 1 and

min

 4α2(
λ + µ

)2 +
2α2

2λ + µ
,

4α2(
µ + 1

) (
2λ + µ

) = 4α2(
µ + 1

) (
2λ + µ

) ,
then

4α2(
µ + 1

) (
2λ + µ

) 5 4α2(
λ + µ

)2 +
2α2

2λ + µ

5
4α2(
λ + µ

)2 +
2α

2λ + µ
(0 < α 5 1; λ = 1) ;

(iii) If µ = 1, then

2α2

2λ + µ
5

2α
2λ + µ

5
4α2(
λ + µ

)2 +
2α

2λ + µ
(0 < α 5 1; λ = 1) .

Thus, clearly, Corollary 5 is an improvement of Theorem 1.

By setting µ = 1 in Corollary 5, we obtain the following consequence.

Corollary 6. Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent
function class

BΣ (α, λ) (0 < α 5 1; λ = 1) .

Then

|a2| 5


2α
λ + 1

(
λ = 1 +

√
2
)

√
2

2λ + 1
α

(
1 5 λ < 1 +

√
2
)
.

(41)

and

|a3| 5
2α2

2λ + 1
. (42)

Remark 8. Corollary 6 provides an improvement of the following estimates obtained by Frasin and Aouf
[4].

Corollary 7. (see [4]) Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent
function class

BΣ (α, λ) (0 < α 5 1; λ = 1) .
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Then

|a2| 5
2α√

(λ + 1)2 + α (1 + 2λ − λ2)
(43)

and

|a3| 5
4α2

(λ + 1)2 +
2α

2λ + 1
. (44)

By setting µ = 1 and λ = 1 in Corollary 5, we get the following consequence.

Corollary 8. Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent
function classHα

Σ
(0 < α 5 1) . Then

|a2| 5
√

2
3
α (45)

and

|a3| 5
2α2

3
. (46)

Remark 9. Corollary 8 is an improvement of the following estimates which were given by Srivastava et al.
[8].

Corollary 9. (see [8]) Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent
function classHα

Σ
(0 < α 5 1) . Then

|a2| 5
√

2
α + 2

α (47)

and

|a3| 5
α (3α + 2)

3
. (48)

By setting µ = 0 and λ = 1 in Corollary 5, we get the following consequence.

Corollary 10. Let the function f (z) given by the Taylor-Maclaurin series expansion (1) be in the bi-univalent
function class S∗Σ [α] (0 < α 5 1) . Then

|a2| 5
√

2 α (49)

and

|a3| 5 2α2. (50)

Remark 10. If we set

h (z) = p (z) =
1 +

(
1 − 2β

)
z

1 − z
(
0 5 β < 1; λ = 1; z ∈ U)

(51)

in Theorem 3, we can readily deduce Theorem 2.

Remark 11. The aforecited work by Çağlar et al. [3] contains several interesting further special cases and
consequences of Theorem 2, which we have generalized here by means of Theorem 3 (see Remark 3). The
reader will find each of these further special cases and consequences of Theorem 2, too, to be motivatingly
interesting.
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4. Concluding Remarks and Observations

In our present investigation, we have considered an interesting subclass Nh,p
Σ

(
λ, µ

)
of analytic and bi-

univalent functions in the open unit diskU. We have derived estimates on the first two Taylor-Maclaurin
coefficients |a2| and |a3| for functions belonging to the class Nh,p

Σ

(
λ, µ

)
. By means of corollaries and conse-

quences which we discussed in the preceding section by suitably specializing the functions h(z) and p(z)
(and also the parameters λ and µ), we have also shown already that the results presented in this paper
would generalize and improve some recent works of Çağlar et al. [3], Xu et al. [10], and other authors.

Finally, our motivation for introducing the subclassNh,p
Σ

(
λ, µ

)
of analytic and bi-univalent functions in

the open unit disk U in Definition 3 is motivated at least partially by the work of Zhu [12] who provided
extensions, generalizations and improvements of the various starlikeness criteria which were proven by a
number of earlier authors (see, for details, Remark 1).
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