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Abstract. Recently, Filipović et al. [M. Filipović, L. Paunović, S. Radenović, M. Rajović, Remarks on
“Cone metric spaces and fixed point theorems of T-Kannan and T-Chatterjea contractive mappings”, Math.
Comput. Modelling. 54 (2011) 1467-1472] proved several fixed and periodic point theorems for solid cones
on cone metric spaces. In this paper several fixed and periodic point theorems for T-contraction of two
maps on cone metric spaces with solid cone are proved. The results of this paper extend and generalize
well-known comparable results in the literature.

1. Introduction and preliminaries

In 1922, Banach proved the following famous fixed point theorem [3]. Suppose that (X, d) is a complete
metric space and a self-map T of X satisfies d(Tx,Ty) ≤ λd(x, y) for all x, y ∈ X where λ ∈ [0, 1); that is, T
is a contractive mapping. Then T has a unique fixed point. Afterward, other people considered various
definitions of contractive mappings and proved several fixed point theorems [4, 8, 11, 12, 17]. In 2007,
Huang and Zhang [9] introduced cone metric space and proved some fixed point theorems. Several fixed
and common fixed point results on cone metric spaces were introduced in [1, 15, 16, 18, 19].

Recently, Morales and Rajes [14] introduced T-Kannan and T-Chatterjea contractive mappings in cone
metric spaces and proved some fixed point theorems. Later, Filipović et al. [6] defined T-Hardy-Rogers
contraction in cone metric space and proved some fixed and periodic point theorems. In this work we
prove several fixed and periodic point theorems for a T-contraction of two maps on cone metric spaces.
Our results extend various comparable results of Abbas and Rhoades [2], Filipović et al. [6] and, Morales
and Rajes [14].

We begin with some important definitions.

Definition 1.1. (See [7, 9]). Let E be a real Banach space and P a subset of E. Then P is called a cone if and only if
(a) P is closed, non-empty and P , {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax + by ∈ P;
(c) if x ∈ P and −x ∈ P, then x = θ.
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Radenović), gha.soleimani.sci@iauctb.ac.ir (Ghasem Soleimani Rad)



Rahimi et al. / Filomat 27:5 (2013), 881–888 882

Given a cone P ⊂ E, a partial ordering ≼with respect to P is defined by
x ≼ y⇐⇒ y − x ∈ P.

We shall write x ≺ y to mean x ≼ y and x , y. Also, we write x ≪ y if and only if y − x ∈ intP (where
intP is the interior of P). If intP , ∅, the cone P is called solid. A cone P is called normal if there exists a
number K > 0 such that, for all x, y ∈ E,

θ ≼ x ≼ y =⇒ ∥x∥ ≤ K∥y∥.
The least positive number satisfying the above inequality is called the normal constant of P.

Example 1.2. (See [16]).
(i) Let E = CR[0, 1] with the supremum norm and P = { f ∈ E : f ≥ 0}. Then P is a normal cone with normal constant
K = 1.
(ii) Let E = C2

R[0, 1] with the norm ∥ f ∥ = ∥ f ∥∞ + ∥ f ′∥∞ and consider the cone P = { f ∈ E : f ≥ 0} for every K ≥ 1.
Then P is a non-normal cone.

Definition 1.3. (See [9]). Let X be a nonempty set. Suppose that the mapping d : X × X→ E satisfies
(d1) θ ≼ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, z) ≼ d(x, y) + d(y, z) for all x, y, z ∈ X.
Then, d is called a cone metric on X and (X, d) is called a cone metric space.

Example 1.4. (See [9]). Let E = R2, P = {(x, y) ∈ E|x, y ≥ 0} ⊂ R2, X = R and d : X × X → E is such that
d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric space.

Definition 1.5. (See [6]). Let (X, d) be a cone metric space, {xn} a sequence in X and x ∈ X. Then
(i) {xn} converges to x if, for every c ∈ E with θ≪ c there exists an n0 ∈ N such that d(xn, x)≪ c for all n > n0. We
denote this by limn→∞ d(xn, x) = θ
(ii) {xn} is called a Cauchy sequence if, for every c ∈ E with θ≪ c there exists an n0 ∈ N such that d(xn, xm)≪ c for
all m,n > n0. We denote this by limn,m→∞ d(xn, xm) = θ.

The notation θ≪ c for c ∈ intP of a positive cone is used by Krein and Rutman [13]. Also, a cone metric
space X is said to be complete if every Cauchy sequence in X is convergent in X. In the sequel we shall
always suppose that E is a real Banach space, P is a solid cone in E, and ≼ is a partial ordering with respect
to P.

Lemma 1.6. (See [6]). Let (X, d) be a cone metric space over an ordered real Banach space E. Then the following
properties are often used, particularly when dealing with cone metric spaces in which the cone need not be normal.
(P1) If x ≼ y and y≪ z, then x≪ z.
(P2) If θ ≼ x≪ c for each c ∈ intP, then x = θ.
(P3) If x ≼ λx where x ∈ P and 0 ≤ λ < 1, then x = θ.
(P4) Let xn → θ in E and θ≪ c. Then there exists a positive integer n0 such that xn ≪ c for each n > n0.

Definition 1.7. (See [6]). Let (X, d) be a cone metric space, P a solid cone and S : X→ X. Then
(i) S is said to be sequentially convergent if we have, for every sequence {xn}, if {Sxn} is convergent, then {xn} also is
convergent.
(ii) S is said to be subsequentially convergent if, for every sequence {xn} that {Sxn} is convergent, {xn} has a convergent
subsequence.
(iii) S is said to be continuous if limn→∞ xn = x implies that limn→∞ Sxn = Sx, for all {xn} in X.

Definition 1.8. (See [6]). Let (X, d) be a cone metric space and T, f : X→ X be two mappings. A mapping f is said
to be a T-Hardy-Rogers contraction, if there exist αi ≥ 0, i = 1, · · · , 5 with α1 + α2 + α3 + α4 + α5 < 1 such that for
all x, y ∈ X,

d(T f x,T f y) ≼ α1d(Tx,Ty) + α2d(Tx,T f x) + α3d(Ty,T f y) + α4d(Tx,T f y) + α5d(Ty,T f x). (1)

In Definition 1.8 if one assumes that α1 = α4 = α5 = 0 and α2 = α3 , 0 (resp. α1 = α2 = α3 = 0 and α4 = α5 , 0),
then one obtains a T-Kannan (resp. T-Chatterjea) contraction.(See [14].)
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2. Fixed point results

The following is the cone metric space version of a contractive condition of Ćirić for an ordinary metric
space.

Definition 2.1. Let (X, d) be a cone metric space. A mapping f : X→ X is said to be a λ-generalized contraction if
and only if for every x, y ∈ X, there exist nonnegative functions q(x, y), r(x, y), s(x, y) and t(x, y) such that

sup
x,y∈X
{q(x, y) + r(x, y) + s(x, y) + 2t(x, y)} ≤ λ < 1

and

d( f x, f y) ≼ q(x, y)d( f x, f y) + r(x, y)d(x, f x) + s(x, y)d(y, f y) + 2t(x, y)[d(x, f y) + d(y, f x)]

holds for all x, y ∈ X.

Theorem 2.2. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and T : X→ X is a continuous
and one to one mapping. Moreover, let f and 1 be two mappings of X satisfying

d(T f x,T1y) ≼ q(x, y)d(Tx,Ty) + r(x, y)d(Tx,T f x) + s(x, y)d(Ty,T1y)]
+ t(x, y)[d(Tx,T1y) + d(Ty,T f x)], (2)

for all x, y ∈ X, where q, r, s, and t are nonnegative functions satisfying

sup
x,y∈X
{q(x, y) + r(x, y) + s(x, y) + 2t(x, y)} ≤ λ < 1; (3)

that is, f and 1 are T-contractions. Then
(1) There exists a zx ∈ X such that limn→∞ T f x2n = limn→∞ T1x2n+1 = zx.
(2) If T is subsequentially convergent, then { f x2n} and {1x2n+1} have a convergent subsequence.
(3) There exists a unique wx ∈ X such that f wx = 1wx = wx; that is, f and 1 have a unique common fixed point.
(4) If T is sequentially convergent, then the sequences { f x2n} and {1x2n+1} converge to wx.

Proof. Suppose that x0 is an arbitrary point of X, and define {xn} by
x1 = f x0 , x2 = 1x1 , · · · , x2n+1 = f x2n , x2n+2 = 1x2n+1 f or n = 0, 1, 2, ....
First we shall prove that {Txn} is a Cauchy sequence. Applying the triangle inequality we get

d(Tx2n+1,Tx2n+2) = d(T f x2n,T1x2n+1)
≼ q(x2n, x2n+1)d(Tx2n,Tx2n+1) + r(x2n, x2n+1)d(Tx2n,T f x2n)
+ s(x2n, x2n+1)d(Tx2n+1,T1x2n+1) + t(x2n, x2n+1)[d(Tx2n,T1x2n+1) + d(Tx2n+1,T f x2n)]
= q(x2n, x2n+1)d(Tx2n,Tx2n+1) + r(x2n, x2n+1)d(Tx2n,Tx2n+1)
+ s(x2n, x2n+1)d(Tx2n+1,Tx2n+2) + t(x2n, x2n+1)[d(Tx2n,Tx2n+2) + d(Tx2n+1,Tx2n+1)]
≼ (q + r + t)(x2n, x2n+1)d(Tx2n,Tx2n+1) + (s + t)(x2n, x2n+1)d(Tx2n+1,Tx2n+2).

Consequently

d(Tx2n+1,Tx2n+2) ≼ q(x2n, x2n+1) + r(x2n, x2n+1) + t(x2n, x2n+1)
1 − s(x2n, x2n+1) − t(x2n, x2n+1)

d(Tx2n,Tx2n+1). (4)

Using (3), we have
q(x, y) + r(x, y) + t(x, y)

1 − s(x, y) − t(x, y)
≤ λ
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for all x, y ∈ X. Thus, from (4), it follows that

d(Tx2n+1,Tx2n+2) ≼ λd(Tx2n,Tx2n+1),

which shows that a generalized contraction is a contraction for certain pairs of points. Following arguments
similar to those given above, we obtain

d(Tx2n+3,Tx2n+2) ≼ λd(Tx2n+2,Tx2n+1),

where
q(x, y) + s(x, y) + t(x, y)

1 − r(x, y) − t(x, y)
≤ λ

for all x, y ∈ X. Therefore, for all n,

d(Txn,Txn+1) ≼ λd(Txn−1,Txn) ≼ λ2d(Txn−2,Txn−1) ≼ · · · ≼ λnd(Tx0,Tx1). (5)

Now, for any m > n and λ < 1,

d(Txn,Txm) ≼ d(Txn,Txn+1) + d(Txn+1,Txn+2) + · · · + d(Txm−1,Txm)

≼ (λn + λn+1 + · · · + λm−1)d(Tx0,Tx1)

≼ λn

1 − λd(Tx0,Tx1)→ θ as n→∞.

From (P4) we have (λn/(1 − λ))d(Tx0,Tx1) ≪ c for all n sufficiently large and θ ≪ c. From (P1), we have
d(Txn,Txm) ≪ c. It follows that {Txn} is a Cauchy sequence by Definition 1.5.(ii). Since a cone metric space
X is complete, there exists a zx ∈ X such that Txn → zx as n→∞. Thus,

lim
n→∞

T f x2n = zx, lim
n→∞

T1x2n+1 = zx. (6)

Now, if T is subsequentially convergent, { f x2n} (resp. {1x2n+1}) has a convergent subsequence. Thus, there
exist wx1 ∈ X and { f x2ni} (resp. wx2 ∈ X and {1x2ni+1}) such that

lim
n→∞

f x2ni = wx1 , lim
n→∞
1x2ni+1 = wx2 . (7)

Because of the continuity of T, we have

lim
n→∞

T f x2ni = Twx1 , lim
n→∞

T1x2ni+1 = Twx2 . (8)

From (6) and (8) and using the injectivity of T, there exists a wx ∈ X (set wx = wx1 = wx2 ) such that Twx = zx.
On the other hand, from (d3) and (2) we have

d(Twx,T1wx) ≼ d(Twx,T1x2ni+1) + d(T1x2ni+1,T f x2ni ) + d(T f x2ni ,T1wx)
≼ d(Twx,Tx2ni+2) + d(Tx2ni+2,Tx2ni+1) + q(x2ni ,wx)d(Tx2ni ,Twx)
+ r(x2ni ,wx)d(Tx2ni ,Tx2ni+1) + s(x2ni ,wx)d(Twx,T1wx)
+ t(x2ni ,wx)[d(Tx2ni ,T1wx) + d(Twx,Tx2ni+1)]
≼ d(Twx,Tx2ni+2) + d(Tx2ni+2,Tx2ni+1) + (q + t)(x2ni ,wx)d(Tx2ni ,Twx)
+ r(x2ni ,wx)d(Tx2ni ,Tx2ni+1) + t(x2ni ,wx)d(Twx,Tx2ni+1)
+ (s + t)(x2ni ,wx)d(Twx,T1wx). (9)

Now, by (3), (5) and (9) we have

d(Twx,T1wx) ≼ 1
1 − λd(Twx,Tx2ni+2) +

1
1 − λd(Tx2ni+2,Tx2ni+1) +

λ
1 − λd(Tx2ni ,Twx)

+
λ

1 − λd(Tx2ni ,Tx2ni+1) +
λ

1 − λd(Twx,Tx2ni+1)

= B1d(Twx,Tx2ni+2) + B2λ
2ni+1 + B3d(Tx2ni ,Twx) + B4d(Twx,Tx2ni+1),
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where

B1 =
1

1 − λ , B2 =
1

1 − λd(Tx0,Tx1) , B3 =
λ

1 − λ , B4 =
λ

1 − λ.

Let θ ≪ c. Since λ2ni+1 → θ and Txni → Twx as i→ ∞, there exists a natural number n0 such that, for each
i ≥ n0,

(
by Definition 1.5.(i)

)
we have

d(Twx,Tx2ni+2)≪ c
4B1

, λ2ni ≪ c
4B2

, d(Tx2ni ,Twx)≪ c
4B3

, d(Twx,Tx2ni+1)≪ c
4B4
.

By (P1), we obtain

d(Twx,T1wx)≪ c
4
+

c
4
+

c
4
+

c
4
= c.

Thus, d(Twx,T1wx)≪ c for each c ∈ intP. Using (P2), we obtain d(Twx,T1wx) = θ; that is, Twx = T1wx. Since
T is one to one, 1wx = wx. Now we shall show that f wx = wx.

d(T f wx,Twx) = d(T f wx,T1wx)
≼ q(wx,wx)d(Twx,Twx) + r(wx,wx)d(Twx,T f wx) + s(wx,wx)d(Twx,T1wx)
+ t(wx,wx)[d(Twx,T1wx) + d(Twx,T f wx)]
= (r + t)(wx,wx)d(Twx,T f wx) ≼ λd(Twx,T f wx).

Using (P3), it follows that d(T f wx,Twx) = θ, which implies the equality T f wx = Twx. Since T is one to one,
then f wx = wx. Thus f wx = 1wx = wx; that is, wx is a common fixed point of f and 1. Now we shall show
that wx is the unique common fixed point. Suppose that w′x is another common fixed point of f and 1. Then

d(Twx,Tw′x) = d(T f wx,T1w′x)
≼ q(wx,w′x)d(Twx,Tw′x) + r(wx,w′x)d(Twx,T f wx) + s(wx,w′x)d(Tw′x,T1w

′
x)

+ t(wx,w′x)[d(Twx,T1w′x) + d(Tw′x,T f wx)]
= (q + 2t)(wx,w′x)d(Twx,Tw′x) ≼ λd(Twx,Tw′x).

Using (P3), it follows that d(Twx,Tw′x) = θ, which implies the equality Twx = Tw′x. Since T is one to one,
wx = w′x. Thus f and 1 have a unique common fixed point.
Ultimately, if T is sequentially convergent, then we can replace n by ni. Thus we have

lim
n→∞

f x2n = wx, lim
n→∞
1x2n+1 = wx.

Therefore if T is sequentially convergent, then the sequences { f x2n} and {1x2n+1} converge to wx.

The following results is obtained from Theorem 2.2.

Corollary 2.3. Suppose that (X, d) is a complete cone metric space, P is a solid cone, and T : X→ X is a continuous
and one to one mapping. Moreover, let f and 1 be two maps of X satisfying

d(T f x,T1y) ≼ αd(Tx,Ty) + β[d(Tx,T f x) + d(Ty,T1y)] + γ[d(Tx,T1y) + d(Ty,T f x)], (10)

for all x, y ∈ X, where

α, β, γ ≥ 0 and α + 2β + 2γ < 1; (11)

that is, f and 1 are T-contractions. Then
(1) There exists a zx ∈ X such that limn→∞ T f x2n = limn→∞ T1x2n+1 = zx.
(2) If T is subsequentially convergent, then { f x2n} and {1x2n+1} have a convergent subsequence.
(3) There exists a unique wx ∈ X such that f wx = 1wx = wx; that is, f and 1 have a unique common fixed point.
(4) If T is sequentially convergent, then the sequences { f x2n} and {1x2n+1} converge to wx.
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Proof. Corollary 2.3 follows from Theorem 2.2 by setting q = α, r = s = β and t = γ

Corollary 2.4. Let (X, d) be a complete cone metric space, P a solid cone and T : X→ X a continuous and one to one
mapping. Moreover, let the mapping f be a map of X satisfying

d(T f x,T f y) ≼ q(x, y)d(Tx,Ty) + r(x, y)d(Tx,T f x) + s(x, y)d(Ty,T f y)
+ t(x, y)[d(Tx,T f y) + d(Ty,T f x)], (12)

for all x, y ∈ X, where q, r, s and t are nonnegative functions satisfying

sup
x,y∈X
{q(x, y) + r(x, y) + s(x, y) + 2t(x, y)} ≤ λ < 1; (13)

that is, f is a T-contraction. Then

(1) For each x0 ∈ X, {T f nx0} is a Cauchy sequence, (Define the iterate sequence {xn} by xn+1 = f n+1x0).
(2) There exists a zx0 ∈ X such that limn→∞ T f nx0 = zx0 .
(3) If T is subsequentially convergent, then { f nx0} has a convergent subsequence.
(4) There exists a unique wx0 ∈ X such that f wx0 = wx0 ; that is, f has a unique fixed point.
(5) If T is sequentially convergent, then, for each x0 ∈ X, the sequence { f nx0} converges to wx0 .

Corollary 2.5. Let (X, d) be a complete cone metric space, P a solid cone and T : X→ X a continuous and one to one
mapping. Moreover, let the mapping f be a map of X satisfying

d(T f x,T f y) ≼ αd(Tx,Ty) + β[d(Tx,T f x) + d(Ty,T f y)] + γ[d(Tx,T f y) + d(Ty,T f x)], (14)

for all x, y ∈ X, where

α, β, γ ≥ 0 and α + 2β + 2γ < 1; (15)

that is, f be a T-contraction. Then

(1) For each x0 ∈ X, {T f nx0} is a Cauchy sequence, (Define the iterate sequence {xn} by xn+1 = f n+1x0).
(2) There exists a zx0 ∈ X such that limn→∞ T f nx0 = zx0 .
(3) If T is subsequentially convergent, then { f nx0} has a convergent subsequence.
(4) There exists a unique wx0 ∈ X such that f wx0 = wx0 ; that is, f has a unique fixed point.
(5) If T is sequentially convergent, then, for each x0 ∈ X, the sequence { f nx0} converges to wx0 .

Example 2.6. (See [14]). Let X = [0, 1], E = C2
R[0, 1] with the norm ∥ f ∥ = ∥ f ∥∞ + ∥ f ′∥∞, P = { f ∈ E| f ≥ 0} and

d(x, y) = |x − y|2t where 2t ∈ P ⊂ E. Moreover, suppose that Tx = x2 and f x = x/2, which map the set X into X.
(X, d) is a cone metric space with non-normal solid cone [9, 16]. Also, T is a one to one, continuous mapping, and
f is not a Kannan contraction [14]. All of the conditions of Corollary 2.5 are satisfied with α = γ = 0 and β = 1

3 .
Therefore, x = 0 is the unique fixed point of f .

Corollary 2.7. Let (X, d) be a complete cone metric space, P a solid cone and T : X→ X a continuous and one to one
mapping. Moreover, let the mapping f be a T-Hardy-Rogers contraction. Then, the results of the previous Corollary
hold.

Proof. See [6].

3. Periodic point results

Obviously, if f is a map which has a fixed point z, then z is also a fixed point of f n for each n ∈ N.
However the converse need not be true [2]. If a map f : X → X satisfies Fix( f ) = Fix( f n) for each n ∈ N,
where Fix( f ) stands for the set of fixed points of f [10], then f is said to have property P. Recall also that
two mappings f , 1 : X→ X are siad to have property Q if Fix( f )

∩
Fix(1) = Fix( f n)

∩
Fix(1n) for each n ∈ N.

The following results extend some theorems of [2, 6].



Rahimi et al. / Filomat 27:5 (2013), 881–888 887

Theorem 3.1. Let (X, d) be a cone metric space, P be a solid cone and T : X→ X be a one to one mapping. Moreover,
let the mapping f be a map of X satisfyiing
(i) d( f x, f 2x) ≼ λd(x, f x) for all x ∈ X, where λ ∈ [0, 1), or (ii) with strict inequality, λ = 1 for all x ∈ X with x , f x.
If Fix( f ) , ∅, then f has property P.

Proof. See [6].

Theorem 3.2. Let (X, d) be a complete cone metric space, and P a solid cone. Suppose that mappings f , 1 : X → X
satisfy all of the conditions of Corollary 2.3. Then f and 1 have property Q.

Proof. From Corollary 2.3, Fix( f )
∩

Fix(1) = {w}, where w is the unique common fixed point of f and 1.
Suppose that z ∈ Fix( f n)

∩
Fix(1n), where n > 1 is arbitrary. Then we have

d(Tw,Tz) = d(T f nw,T1nz) = d(T f ( f n−1w),T1(1n−1z))

≼ αd(T f n−1w,T1n−1z) + β[d(T f n−1w,T f nw) + d(T1n−1z,T1nz)]

+ γ[d(T f n−1w,T1nz) + d(T1n−1z,T f nw)]

= αd(Tw,T1n−1z) + β[θ + d(T1n−1z,Tz)]

+ γ[d(Tw,Tz) + d(T1n−1z,Tw)]

≼ αd(Tw,T1n−1z) + β[d(T1n−1z,Tw) + d(Tw,Tz)]

+ γ[d(Tw,Tz) + d(T1n−1z,Tw)],

which implies that

d(Tw,Tz) = d(Tw,T1nz) ≼ λd(Tw,T1n−1z),

where λ = (α + β + γ)/(1 − β − γ) < 1 (by relation (11)). Now, we have

d(Tw,Tz) = d(Tw,T1nz) ≼ λd(Tw,T1n−1z) ≼ λ2d(Tw,T1n−2z) · · · ≼ λnd(Tw,Tz).

Since λn ∈ [0, 1), according to (P3), we have d(Tw,Tz) = θ; that is, Tw = Tz. Since T is one to one, then w = z,
which implies that f and 1 have property Q.

Theorem 3.3. Let (X, d) be a complete cone metric space, and P a solid cone. Suppose that the mapping f : X→ X
satisfies all of the conditions of Corollary 2.5. Then f has property P.

Proof. From Corollary 2.5, f has a unique fixed point in X. Suppose that z ∈ Fix( f n). Then we have

d(Tz,T f z) = d(T f ( f n−1z),T f ( f nz))

≼ αd(T f n−1z,T f nz) + β[d(T f n−1z,T f nz) + d(T f nz,T f n+1z)]

+ γ[d(T f n−1z,T f n+1z) + d(T f nz,T f nz)]

≼ αd(T f n−1z,Tz) + β[d(T f n−1z,Tz) + d(Tz,T f z)] + γ[d(T f n−1z,Tz) + d(Tz,T f z)]

= (α + β + γ)d(T f n−1z,Tz) + (β + γ)d(Tz,T f z),

which implies that
d(Tz,T f z) ≼ λd(T f n−1z,Tz) where λ = (α + β + γ)/(1 − β − γ) < 1, (by relation (15)). Hence,
d(Tz,T f z) = d(T f nz,T f n+1z) ≼ λd(T f n−1z,Tz) ≼ · · · ≼ λnd(T f z,Tz). Therefore we have d(T f z,Tz) = θ; that
is, T f z = Tz. Since T is one to one, f z = z.

Corollary 3.4. Let (X, d) be a complete cone metric space, and P be a solid cone. Suppose that the mapping f : X→ X
satisfies all of the conditions of Corollary 2.7. Then f has property P.

Proof. See [6].
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