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Extreme values of an infinite mixture of normally distributed variables

Ehfayed Shneina, Vladimir Božin

University of Belgrade, Faculty of Mathematics, Serbia

Abstract. We study distribution of extreme values of a mixture of an infinite sequence of independent
normally distributed variables with the same mean and an increasing sequence of standard deviations, and
prove that the common distribution function belongs to the domain of attraction of Gumbel extreme value
distribution. The norming constants for the maximum also are given.

1. Introduction

Let (Xn) be a sequence of independent random variables with common distribution function F. Suppose
that there exist sequences an > 0 and bn of real numbers such that

P
(

max
1≤ j≤n

X j ≤
x
an
+ bn

) d−→ G(x),

where G is a non degenerate distribution function; then G belongs to one of the three classes of maximum
stable distributions, which, possibly after linear transformation of the argument, have the following form:

Type I. (Gumbel) G1(x) = exp(−e−x), −∞ < x < +∞;
Type II. (Fréchet) G2(x) = 0, for x ≤ 0 and G2(x) = exp(−x−α), for x > 0 and some α > 0;
Type III. (Weibull) G3(x) = exp(−(−x)α), for x < 0 and some α > 0, and G3(x) = 1, for x ≥ 0.

These three types of distributions are called the extreme values distributions, and we say that the common
distribution function F of the corresponding i.i.d. variables X1, X2, . . . belongs to the domain of attraction of
G, with normalizing constants an > 0 and bn. Note that the normalizing constants are not unique.

Throughout this paper we will use the notation Mn = max{X1, . . .Xn}.
In this paper, we study distribution of extreme values of a mixture of an infinite sequence of independent

normally distributed variables with the same mean and an increasing sequence of standard deviations. This
paper extends the result of Mladenović [2], where extreme values of mixture of two independent normally
distributed variables were studied, to the case of a mixture of an infinite sequence of such variables.

We will show that the common distribution function of a mixture of an infinite sequence of independent
normally distributed variables belongs to the domain of attraction of Type I. Thus, limiting distribution of
the maximum of the mixture is given by P (an(Mn − bn) ≤ x)→ e−e−x

, with the normalizing constants an and
bn also computed in the paper.
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Our result will make use of two Theorems from [1] (for general reference, see also [3, 4]). The first
Theorem enables us to determine the domain of attraction and its type for our common distribution
function.

Theorem 1.1 (Theorem 1.6.2 [1]). Let (Xn) be a sequence of independent random variables with the common dis-
tribution function F(x), x ∈ R, and xF = sup{x|F(x) < 1}. Necessary and sufficient conditions for the function F to
belong to the domain of attraction of possible types are

Type I. There exist a strictly positive function 1(t) defined on the set (−∞, xF), such that for every real number
x the equality limt→xF−

1−F(t+x1(t))
1−F(t) = e−x holds true.

Type II. xF = +∞ and limt→∞
1−F(tx)
1−F(t) = x−α, for some α > 0 and all x > 0.

Type III. xF < +∞ and limh→0+
1−F(xF−hx)
1−F(xF−h) = xα, for some α > 0 and all x > 0.

The second Theorem enables us to find the normalizing constants.

Theorem 1.2 (Theorem, 1.5.1 [1]). Let (Xn) be a sequence of independent random variables with the common
distribution function F(x), x ∈ R. Let (un) be a sequence of real numbers, 0 ≤ τ ≤ +∞, and Mn = max{X1,X2, . . .Xn}.
Then the equality

lim
n→∞

P (Mn ≤ un) = e−τ

holds true if and only if limn→∞ n(1 − F(un)) = τ.

We say that a random variable X is a mixture of an infinite sequence of random variables (Zk) with
probabilities pk,

∑∞
k=1 pk = 1, if X = ZK, where K ∈N is a random variable independent of random variables

Zk with P (K = k) = pk, i.e. X is equal to Zk with probability pk.
In this paper we consider an infinite sequence of normally distibuted random variables, Zk ∼ N(µk, σ2

k),
such that µk = µ0, k ≥ 1 and 0 < σ1 < σ2 < . . . < σk → σ0 as k→∞.

The distribution function of variable Zk is

Fk(x) = P (Zk ≤ x) = Φ
(x − µk

σk

)
,

where

Φ(x) =
∫ x

−∞

1√
2π

e−
t2
2 dt.

Then a random variable X which is a mixture of an infinite sequence of variables Z1,Z2, . . .Zk, . . . with
probabilities p1, p2, . . . pk,

∑∞
k=1 pk = 1, has the distribution function given by

F(x) =
∞∑

k=1

pkΦ
(x − µk

σk

)
. (1)

2. Main results

We are now ready to determine the type of the domain of attraction and corresponding normalizing
constants for our mixture.

Theorem 2.1. Let (Xn) be a sequence of independent random variables with common distribution F(x) defined by (1),
then F belongs to the domain of attraction of Gumbel extreme value distribution, i.e., there exist norming constants
an > 0 and bn such that

lim
n→∞

P
(
Mn ≤

x
an
+ bn

)
= lim

n→∞
F
( x
an
+ bn

)
= exp(−e−x),

where Mn = max{X1,X2 . . .Xn}.
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Proof. Let

φ(x) =
1√
2π

e−
x2
2

and

Φ(x) =
∫ x

−∞
φ(t)dt.

We shall use the following asymptotic relation

1 −Φ(x) =
1
x
φ(x)(1 + R(x)),

where R(x)→ 0 as x→∞.
Suppose Xk ∈ N(µk, σ2

k) for k ∈N. Then

1 − F(t) =
∞∑

k=1

pk

(
φ

( t − µk

σk

)
σk

t − µk

) (
1 + R

( t − µk

σk

))
.

Let

R1(t) = max
1≤k<∞

∣∣∣∣∣R ( t − µk

σk

)∣∣∣∣∣ .
Since µk = µ0 and σ0 > σk > 0, for t > µ0, we have t−µk

σk
≥ t−µ0

σ0
. Therefore, since R(x) → 0 as x → ∞,

R1(t)→ 0 as t→∞. Hence∣∣∣∣∣∣∣1 − F(t) −
∞∑

k=1

pk

(
φ

( t − µk

σk

)
σk

t − µk

)∣∣∣∣∣∣∣ < R1(t)
∞∑

k=1

pkφ
( t − µk

σk

)
σk

t − µk
→ 0, as t→∞.

Therefore

1 − F(t) = o(1) +
∞∑

k=1

pk

(
φ

( t − µk

σk

)
σk

t − µk

)
,

1 − F(t) + o(1) =
1√
2π

∞∑
k=1

pk
σk

t − µk
e
− 1

2

(
t−µk
σk

)2

,

1 − F(t) + o(1) =
1√
2π

σ0

t − µ0
e
− 1

2

(
t−µ0
σ0

)2 ∞∑
k=1

pk
σk

σ0

t − µ0

t − µk
e−

1
2∆k(t),

where

∆k(t) =
( t − µk

σk

)2

−
( t − µ0

σ0

)2

,

1 − F(t) + o(1) =
1√
2π

σ0

t − µ0
e
− 1

2

(
t−µ0
σ0

)2

p(t),

where

p(t) =
∞∑

k=1

pk
σk

σ0

t − µ0

t − µk
e−

1
2∆k(t).
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Let

1(t) =
σ2

0

t − µ0
.

We have to prove that

p(t + x1(t))
p(t)

→ 1, as t→∞.

Note that p is an analytic function. Using the Taylor expansion with the Lagrange form of the reminder, we
get p(t + h) = p(t) + p′(ξ)h, where t ≤ ξ ≤ t + h, and

p(t + h)
p(t)

=
p(t) + p′(ξ)h

p(t)
= 1 +

p′(ξ)
p(t)

h + o(h).

Put

h = x1(t) =
xσ2

0

t − µ0
.

Note that h→ 0 as t→∞. We have ht1 = xσ2
0 where t1 = t − µ0.

Since or assumption is that µk = µ0, we have

∆k(t) =
( t − µ0

σk

)2

−
( t − µ0

σ0

)2

= t2
1

 1
σ2

k

− 1
σ2

0

 = δkt2
1,

where δk =
1
σ2

k
− 1
σ2

0
.

Hence,

p(t) =
∞∑

k=1

pk
σk

σ0
e−

1
2 δkt2

1 .

We now compute, using for instance the Dominated convergence theorem to justify term by term differen-
tiation:

p′(t) = −
∞∑

k=1

pk
σk

σ0
δkt1e−

1
2 δkt2

1 ,

−p′(t)
t1
=

∞∑
k=1

pk
σk

σ0
δke−

1
2 δkt2

1 .

Note that δk → 0 as k→∞.
Note also that |p′(t)| is a decreasing function of t, and hence p′(ξ)

p(t) h→ 0 if p′(t)
p(t) h→ 0. Since h = x1(t) = x

σ2
0

t1
,

if x is kept constant, the condition p′(t)
t1p(t) → 0 as t→∞ will imply p′(t)

p(t) h→ 0 as t→ 0.
We have:

p′(t)
p(t)t1

= −
∑∞

k=1 pk
σk
σ0
δke−

1
2 δkt2

1∑∞
k=1 pk

σk
σ0

e−
1
2 δkt2

1

→ 0,

as t1 →∞, and therefore

p(t + x1(t))
p(t)

= 1 + o(1), as t→∞.
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Note also that if x is kept constant, t1
t1+x1(t) = 1 + o(1), as t→∞ too.

We have in fact also proven that

p(t +O(1/t))
p(t)

= 1 + o(1), (2)

as t→∞.
We now consider asymptotic behavior as x→∞. For x > 0 we have, as t→∞

1 − F(t + x1(t))
1 − F(t)

= e
t21−(t1+x1(t))2

2σ20
t1

t1 + x1(t)
p(t + x1(t))

p(t)
(1 + o(1)) = e

− x21(t)2

2σ20 e
− x1(t)t1

σ20 (1 + o(1)).

Recall that 1(t) =
σ2

0
t1

, and hence

1 − F(t + x1(t))
1 − F(t)

= e
− x21(t)2

2σ20 e−x(1 + o(1))→ e−x, as t→∞.

We conclude that the distribution function F(x) belongs to the domain of attraction of the function G1(x),
and we have the type I of extreme value distribution.

Now we proceed to find the normalizing constants a∗n and b∗n.

Theorem 2.2. Limiting distribution of the maximum of the mixture, in notation of the previous theorem, is given by

P{a∗n(Mn − b∗n) ≤ x} → e−e−x
,

where

a∗n =

√
2 ln(n)
σ0

,

b∗n = µ0 + σ0

√
2 ln(n) − σ0

2
√

2 ln(n)
(ln(ln(n)) + ln(4π)) − τn,

with τn > 0 the smallest positive solution of an equation

τ =
σ0√

2 ln(n)

∣∣∣∣∣∣∣ln p
(
µ0 + σ0

√
2 ln(n) − σ0

2
√

2 ln(n)
(ln(ln(n)) + ln(4π)) − τ

)∣∣∣∣∣∣∣ ,
when 2 ln(n) − 1

2 (ln(ln(n)) + ln(4π)) > | ln p(µ0)|, and 0 otherwise.

Proof. Let v(0)
n =

un−µ0

σ0
and v(k)

n =
un−µk

σk
, so that Fk(un) = Φ(v(k)

n ). We have (see proof of the previous theorem)

1 −
∞∑

k=1

pkΦ(v(k)
n ) ∼

∞∑
k=1

pkφ(v(k)
n )/v(k)

n =
1√

2πv(0)
n

e−
1
2 (v(0)

n )2
p(un)(1 + o(1)),

where

p(un) =
∞∑

k=1

pk
σk

σ0

un − µ0

un − µk
e−

1
2∆k(un),

∆k(un) =
(un − µk

σk

)2
−

(un − µ0

σ0

)2
=

 1
σ2

k

− 1
σ2

0

 u2
n + Aun + B→∞, as n→∞.
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Hence, the constant un should be determined from the conditions v(0)
n =

un−µ0

σ0
, i.e. un = µ0 + σ0v(0)

n , and

p(un)
φ(v(0)

n )

v(0)
n

∼ 1
n

e−x, (3)

as n→∞.
This asymptotic relation can be rewritten as

1
np(un)

e−x v(0)
n

φ(v(0)
n )
→ 1,

or, by taking logarithms,

− ln(n) − ln(p(un)) − x + ln(v(0)
n ) − ln(φ(0)

n )→ 0,

which is equivalent to

− ln(n) − ln(p(un)) − x + ln(v(0)
n ) −

(
−1

2
ln(2π) − 1

2
(v(0)

n )2
)
→ 0,

i.e.

− ln(n) − ln(p(un)) − x + ln(v(0)
n ) +

1
2

ln(2π) +
1
2

(v(0)
n )2 → 0.

Provided that ln(p(un))
ln(n) = o(1), we will have (v(0)

n )2

2 ln(n) → 1 as n→∞ and hence, by taking logarithms again

2 ln(v(0)
n ) − ln(2) − ln(ln(n)) = o(1).

Hence

ln(v(0)
n ) =

1
2

(ln(2) + ln(ln(n))) + o(1). (4)

Substituting back this expression for ln(v(0)
n ), we find

1
2

(v(0)
n )2 = x + ln(n) + ln(p(un)) − 1

2
ln(4π) − 1

2
ln(ln(n)) + o(1). (5)

Conversely, if (5) holds and ln(p(un))
ln(n) = o(1), the right hand side of (5) will be equal to ln(n)(1 + o(1)) and

hence, taking logarithm of both sides, we see that (4) will also hold, and hence (3) holds as well.
We will choose a sequence un so that it satisfies ln(p(un))

ln(n) = o(1). For this, it is sufficient that un = O(
√

ln(n))
as n→∞. To check that this is indeed enough, we use the assumption that µk = µ0. Hence the formula

p(un) =
∞∑

k=1

pk
σk

σ0
e−

1
2 δk(un−µ0)2

holds, and

p(un) >
pkσk

σ0
e−

1
2 δk(un−µ0)2

,

i.e.

| ln(p(un))| < 1
2
δk(un − µ0)2 − ln

(pkσk

σ0

)
.
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Now using un = O(
√

ln(n)), we get

| ln(p(un))|
ln(n)

< δkO(1)

for every k, and thus ln(p(un))
ln(n) = o(1), since δk → 0 as k→∞.

Now let us find v(0)
n so that (5) holds. Let

wn = µ0 + σ0

√
2 ln(n) − σ0

2
√

2 ln(n)
(ln(4π) + ln(ln(n))).

Note that p(µ0) =
∑∞

k=1 pk
σk
σ0

is the maximum of function p, and for t > µ0 the function p(t) is decreasing.
Define τn to be 0 when wn − µ0 ≤ σ0√

2 ln(n)
| ln p(µ0)|, and τn to be a solution of an equation

τ =
σ0√

2 ln(n)
| ln p(wn − τ)| (6)

otherwise.
The solution to (6) exists and is unique when wn − µ0 >

σ0√
2 ln(n)

| ln p(µ0)|, since the right hand side of (6)

is a decreasing function of τ for 0 < τ < wn−µ0, and becomes smaller than the left hand side for τ = wn−µ0.
The solution will satisfy 0 < τn < wn − µ0. But since wn = O(

√
ln(n)) we will have that p(wn − τn) = o(ln(n))

and hence τ = o(
√

ln(n)), because of (6).
Note that since wn → ∞ as n → ∞, for n sufficiently large the condition wn − µ0 >

σ0√
2 ln(n)

| ln p(µ0)| will

be satisfied.
We will use the sequence un = wn−τn+

σ0x√
2 ln(n)

. Note that since τn = o(
√

ln(n)) we have un ∼ σ0
√

2 ln(n).

Taking square roots in (5) and using Taylor expansion for
√

(1 + ε), we see that

v(0)
n =

√
2 ln(n)

(
1 +

1
2 ln(n)

(
x − 1

2
ln(4π) − 1

2
ln(ln(n)) + ln(p(un))

)
+ o

(
1

ln(n)

))
(7)

is needed in order to have (3), in addition to un = O(
√

ln(n)).

For n sufficiently large, we will have τn =
σ0√

2 ln(n)

∣∣∣∣∣ln p(un − σ0x√
2 ln(n)

)
∣∣∣∣∣. Using un ∼ σ0

√
2 ln(n) and (2), we

get that
∣∣∣∣∣ln p(un − σ0x√

2 ln(n)
)
∣∣∣∣∣ /|ln(un)| = 1 + o(1) and hence τn =

σ0√
2 ln(n)

| ln p(un)| + o(1/
√

ln(n)). Therefore (7) is

equivalent to

un = µ0 + σ0

√
2 ln(n)

(
1 +

1
2 ln(n)

(
x − 1

2
ln(4π) − 1

2
ln(ln(n)) + ln(p(un))

)
+ o

(
1

ln(n)

))
,

un = µ0 +
σ0x√
2 ln(n)

+ σ0

√
2 ln(n) − σ0

2
√

2 ln(n)
(ln(ln(n)) + ln(4π)) − τn + o

 1√
ln(n)

 ,
un = wn +

σ0x√
2 ln(n)

− τn + o

 1√
ln(n)

 .
The last equation is obviously satisfied for n large enough, since un = wn − τn +

σ0x√
2 ln(n)

.

Note that for un the relation un = O(
√

ln(n)) also holds, since un ∼ σ0
√

2 ln(n), and so the corresponding
v(0)

n will satisfy all the equations used in the above calculation.
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This gives us the required constants in the expression un =
x
a∗n
+ b∗n:

a∗n =

√
2 ln(n)
σ0

,

b∗n = µ0 + σ0

√
2 ln(n) − σ0

2
√

2 ln(n)
(ln(ln(n)) + ln(4π)) − τn,

where τn is the solution of equation (6) when wn − µ0 >
σ0√

2 ln(n)
| ln p(µ0)|, and 0 otherwise.
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