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A note on Putinar’s matricial models

Jaewoong Kima

aDepartment of Mathematics, Seoul National University, Seoul 151-742, Korea

Abstract. In this note we consider the conjecture that every hyponormal Putinar’s matricial model of rank
two is subnormal. Related to this conjecture, we show that there exists a non rationally cyclic subnormal
Putinar’s matricial model of rank two and then give a sufficient condition for it to be a subnormal operator.

1. Introducton

Let H and K be complex Hilbert spaces, let L(H ,K ) be the set of bounded linear operators from H
and K and write L(H) := L(H ,H). An operator T ∈ L(H) is said to be normal if T∗T = TT∗, quasinormal if
T∗T2 = TT∗T, hyponormal if the self commutator [T∗,T] = T∗T − TT∗ ≥ 0, and subnormal if it has a normal
extension, i.e., T = N|H , where N is a normal operator on some Hilbert spaceK containingH . In general it
is quite difficult to determine the subnormality of an operator by definition. An alternative description of
subnormality is given by the Bram-Halmos criterion, which states that an operator T is subnormal if and
only if ∑

i, j

(Tix j,T jxi) ≥ 0

for all finite collections x0, x1, · · · , xk ∈ H ([2], [4]). It is easy to see that this is equivalent to the following
positivity test:


I T∗ · · · T∗k

T T∗T · · · T∗kT
...

...
. . .

...
Tk T∗Tk · · · T∗kTk

 ≥ 0 (all k ≥ 1). (1)

Condition (1) provides a measure of the gap between hyponormality and subnormality. In fact, the positivity
condition (1) for k = 1 is equivalent to the hyponormality of T, while subnormality requires the validity
(1) for all k. Let [A,B] := AB − BA denote the commutator of two operators A and B, and define T to be
k-hyponormal whenever the k × k operator matrix
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Mk(T) := ([T∗ j,Ti])k
i, j=1 (2)

is positive. An application of the Choleski algorithm for operator matrices shows that the positivity of (2)
is equivalent to the positivity of the (k + 1) × (k + 1) operator matrix in (1); the Bram-Halmos criterion can
be then rephrased as saying that T is subnormal if and only if T is k-hyponormal for every k ≥ 1 ([15]). The
classes of k-hyponormal operators have been studied in an attempt to bridge the gap between subnormality
and hyponormality (cf. [5]-[9],[12]-[16],[21]).

In view of the gap theory, it seems to be interesting to consider the following problem:

Which 2-hyponormal operators are subnormal ? (3)

The first inquiry involves the self commutator. Subnormal operators with finite rank self commutators have
been extensively studied ([1],[20],[26]-[28]). Particular attention has been paid to hyponormal operators
with rank one or rank two self commutators ([17],[22],[24],[25],[26],[29]). In particular, B. Morrel [22] showed
that a pure subnormal operator with rank one self commutator (pure means having no normal summand)
is unitarily equivalent to a linear function of the unilateral shift. Morrel’s theorem can be essentially stated
(also see [4, p. 162] ) that if

(i) T is hyponormal;
(ii) [T∗,T] is of rank one; and
(iii) ker[T∗,T] is invariant for T,

(4)

then T−β is quasinormal for some β ∈ C. It would be interesting (in the sense of giving a simple sufficiency
for the subnormality) to note that Morrel’s theorem gives that

If T satisfies the condition (4), then T is submormal.

On the other hand, it was shown [13, Lemma 2.2] that if T is 2-hyponormal then

T(ker[T∗,T]) ⊂ ker[T∗,T].

Therefore by Morrel’s theorem, we can see that

every 2-hyponormal operator with rank one self commutator is subnormal.

Recently, S.H. Lee and W.Y. Lee [19] obtained an extension of Morrel’s theorem to the case of rank two self
commutators:

Theorem 1.1. ([19]) Let T ∈ L(H). If
(i) T is a pure hyponormal operator;
(ii) [T∗,T] is of rank two; and
(iii) ker[T∗,T] is invariant for T,
then we have
(1) If T|ran[T∗,T] has a rank one self commutator then T is subnormal;
(2) If T|ran[T∗,T] has a rank two self commutator then T is either a subnormal operator or a “Putinar’s martricial
model” of rank two; that is, T has the following two diagonal structure, with respect to the orthogonal decomposition
H = H0 ⊕H1 ⊕ · · · :

T =


B0 0 0 0 · · ·
A0 B1 0 0 · · ·
0 A1 B2 0 · · ·
0 0 A2 B3 · · ·
...

...
...

...
. . .


, (5)
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where
(i) dimHn = dimHn+1 = 2 (n ≥ 0);
(ii) [T∗,T] = ([B∗0,B0] + A∗0A0) ⊕ 0∞;
(iii) A∗nBn+1 = BnA∗n (n ≥ 0),

(6)

and if Tn denotes the compression of T to the spaceHn ⊕Hn+1 ⊕ · · · for n ≥ 0, then

Hn = ran[T∗n,Tn] for every n ≥ 0,

and Tn = m.p.n.e.(Tn+1) (n ≥ 0) (See below for “m.p.n.e”). Here note that under unitary equivalence we may assume
that all An are positive and invertible.

And they conjectured:

Conjecture 1.1. The Putinar’s matricial model of rank two is subnormal.

If T is a rationally cyclic subnormal operator of rank two self commutator, then there is a good characterization
([18], [20]). By Morrel’s theorem ([22]), they have two diagonal structure. So we can ask the following: If a Putinar’s
matricial model of rank two is a subnormal operator, is it rationally cyclic ? In this note we will give the negative
answer to this question and also give a sufficient condition for a Putinar’s matricial model of rank two to be subnormal.

2. The main result

We first review a few essential facts concerning weak subnormality that we will need to begin with. An
operator T ∈ L(H) is said to be weakly subnormal if there exist operator A ∈ L(H ′,H) and B ∈ L(H ′) such
that the following conditions hold:

[T∗,T] = AA∗ and A∗T = BA∗,

or equivalently there is an extension T̂ :=
(
T A
0 B

)
of T such that

T̂∗T̂ f = T̂T̂∗ f for all f ∈ H .

The operator T̂ is called a partially normal extension (briefly, p.n.e.) of T. We also say that T̂ in L(K ) is a
minimal partially normal extension (briefly, m.p.n.e.) of T ifK has no proper subspace containingH to which
the restriction of T̂ is also a partially normal extension of T. For convenience, if T̂ = m.p.n.e.(T) is also

weakly subnormal then we write T̂(2) := ̂̂T and more generally,

T̂(n) := ̂̂T(n−1),

which will be called the n-th minimal partially normal extension of T. It was ([10], [11], [13]) shown that

2-hyponormal =⇒ weakly subnormal =⇒ hyponormal

and the converses of both implications are not true in general. It was [13] known that

T is weakly subnormal =⇒ T(ker[T∗,T]) ⊂ ker[T∗,T]

and it was [11] known that if T̂ := m.p.n.e.(T) then for any k ≥ 1,

T is (k + 1)-hyponormal⇐⇒ T is weakly subnormal and T̂ is k-hyponormal.
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So, in particular, one can see that

If T is subnormal, then T̂ is subnormal.

It is worth to noticing that Morrel’s theorem gives that

every weakly subnormal operator with rank one self commutator is subnormal.

Now we will show that there exists a Putinar’s matricial model of rank two which is subnormal but not
rationally cyclic.

Theorem 2.1. There is a non rationally cyclic subnormal Putinar’s matricial model of rank two.

Proof. Let B0 =

(
0

√
α

2+2α√
α

2+2α 0

)
(0 < α < 1) and A0 =

(√
α 0

0 1

)
. Then using the relations

[B∗n+1,Bn+1] + A2
n+1 = A2

n and AnBn+1 = BnAn for n ≥ 0,

we can successively define An’s and Bn’s . A straightforward calculation shows that An+6 = An and Bn+6 = Bn.
Hence we have the following operator

T =


B0 0 0 0 · · ·
A0 B1 0 0 · · ·
0 A1 B2 0 · · ·
0 0 A2 B3 · · ·
...

...
...

...
. . .


on H = H0 ⊕H1 ⊕ · · · .

Since [T∗,T] = C ⊕ 0∞, where C =
(
1 0
0 α

)
, T is hyponormal and has a rank two self commutator. So it is a

pure hyponormal operator. By [19, Theorem 2], it is subnormal. On the other hand, if Λ := B0, then {Λ,C}
are complete unitary invariants, so that

Λ := (T∗|ran[T∗,T])∗ and C := [T∗,T]|ran[T∗,T].

Recall ([20], [18]) that the characterization of rationally cyclic subnormal operators with rank two self
commutators as follows: If S is a pure rationally cyclic subnormal operator with rank two self commutator,
then S is unitarily equivalent to a dilation and shift of one of the following operators:

(a) S = S1 ⊕ S2, where S j = α jU + β j with β j ∈ C and α j > 0 for j = 1, 2,

(b) S = Uλ,

(c) S = U(U + α) for some α ∈ C\{0},

(d) S = αU + δU(1 − δU)−1, where α ∈ C\{0} and 0 < |δ| < 1,

where if we let Ta = ∂D ∪ {a} (0 < a < 1) and λ be a measure on Ta such that dλ(eiθ) = dθ
2π and λ({a}) = ν,

then Uλ is the multiplication by z on P2(λ) which is the closure of the polynomials under the inner product

⟨ f , 1⟩ =
∫
Ta

f (z)1(z)dλ(z) =
1

2πi

∫
∂D

f (z)1(z)
dz
z
+ ν f (a)1(a),

and U is the unilateral shift. Then Λ and C are given by:

(1) For case (a), Λ =
(
β1 0
0 β2

)
and C =

(
α2

1 0
0 α2

2

)
.
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(2) For case (b),

a = 0 : Λ =
(

0 0
1√
1+ν

0

)
and C =

(
1

1+ν 0
0 1

1+ν

)
.

a , 0 (|a| < 1) : Λ =

 0 0
a(1−|a|2)

|a|
√

1+ν−|a|2
a

 and

C =


1 − ν(1 − |a|2)3

(
1+ν|a|2−|a|2

1+ν−|a|2
)
− ν|a|(1−|a|2)

(1+ν|a|2−|a|2)
√

1+ν−|a|2

− ν|a|(1−|a|2)

(1+ν|a|2−|a|2)
√

1+ν−|a|2
ν(1 − |a|2)3

(
1+ν|a|2−|a|2

1+ν−|a|2
)
 .

(3) For case (c), Λ =
(
0 0
α 0

)
and C =

(
1 + |α|2 α
α 1

)
.

(4) For case (d), Λ =
(

0 0
(αδ + ρ2)ρ αδ + ρ2

)
and

C =
(
|α|2 + αδ + αδ + ρ2 (αδ + ρ2)ρ

(αδ + ρ2)ρ ρ4

) (
with ρ =

√
|δ|2

1 − |δ|2
)
.

We next find the rank of [Λ∗,Λ] for each case:
(1) [Λ∗,Λ] = 0, and so rank[Λ∗,Λ] = 0,

(2) a = 0 : [Λ∗,Λ] =
(

1
1+ν 0
0 − 1

1+ν

)
, and so rank[Λ∗,Λ] = 2

a , 0 : [Λ∗,Λ] =
(
|α|2 αa
αa −|α|2

)
, where α = a(1−|a|2)

|a|
√

1+ν−|a|2
. Since det[Λ∗,Λ] = −|α|2(|α|2 + |a|2) , 0, rank[Λ∗,Λ] = 2.

(3) [Λ∗,Λ] =
(
|α|2 0
0 −|α|2

)
, and so rank[Λ∗,Λ] = 2,

(4) [Λ∗,Λ] = |αδ + ρ2|2
(
ρ2 ρ
ρ −ρ2

)
. Since det

(
ρ2 ρ
ρ −ρ2

)
= −ρ2(1 + ρ2) , 0, rank[Λ∗,Λ] = 2.

Assume that T is rationally cyclic. Then T must be unitarily equivalent to a dilation and shift of one of
the above operators. Since rank[Λ∗,Λ] is invariant under dilation and shift, and rank[B∗0,B0] = 0, T is not
unitarily equivalent to a dilation and shift of one of the cases (b), (c), and (d). Hence T must be the case (a).
Since , for C and Λ for T, (

0
√

α
2+2α

α
√

α
2+2α 0

)
= CΛ , ΛC =

(
0 α

√
α

2+2α√
α

2+2α 0

)
,

C and Λ for T are not simultaneously diagonalizable. Since the simultaneous diagonalization is invariant
under a dilation and shift, T is not unitarily equivalent to the case (a) and so T is not rationally cyclic. Hence
T is the desired operator.

Corollary 2.2. Let T be a Putinar matricial model of rank two. If A2
−1(:= [B∗0,B0] + A2

0) and B0 are simultaneously
diagonalizable, then T is a subnormal operator.

Proof. Since A2
−1 and B are simultaneously diagonalizable, we may write that

A2
−1 =

(
α2

1 0
0 α2

2

)
, B0 =

(
β1 0
0 β2

)
.

Now we can find a rationally cyclic subnormal operator S with its complete unitary invariants such as (see
the proof of Theorem 2.1.):

Λ =

(
β1 0
0 β2

)
and C =

(
α2

1 0
0 α2

2

)
.
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By Morrel’s Theorem [22], S has two diagonal structure as in (5). Since T is a Putinar’s matricial model of
rank two, it also satisfies the relation (6). So S and T must be the same and T is subnormal.

If a Putinar’s matricial model of rank two T is rationally cyclic, then we can get the following:

Corollary 2.3. Let T be a rationally cyclic operator represented by a Putinar matricial model of rank two. If
rank[B∗0,B0] = 1, then T can not be a subnormal operator.

Proof. If T is subnormal, then it is a dilation and shift of one of the four cases in the proof of Theorem 2.1.
For them, rank[Λ∗,Λ] = 0 or 2. Since rank[Λ∗,Λ] is invariant under dilation and shift and B0 is Λ for T,
rank[B∗0,B] can not be 1. Hence T can not be subnormal.

Now we will give a sufficient condition for a Putinar’s matricial model of rank two to be subnormal.

Theorem 2.4. Let T be a Putinar’s matricial model of rank two as in (5). If Bn = B∗n+1 for some n ≥ 0, then T is a
subnormal operator.

Proof. Consider the operator

Tn+1 =


Bn+1 0 0 0 · · ·
An+1 Bn+2 0 0 · · ·

0 An+2 Bn+3 0 · · ·
0 0 An+3 Bn+4 · · ·
...

...
...

...
. . .


on H̃n+1 = Hn+1 ⊕Hn+2 ⊕ · · · .

Since T is a Putinar’s matricial model of rank two, An is positive and invertible and so we can find
√

An

and
√

An
−1. Let B̃ =

√
AnBn+1

√
An
−1 and define operators A and B on H̃n+1.

A =



√
An 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .


, B =


B̃ 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...
...
...
...
. . .


.

Then

BA =


B̃ 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...
...
...
...
. . .





√
An 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .


=


B̃
√

An 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .


and

ATn+1 =



√
An 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .




Bn+1 0 0 0 · · ·
An+1 Bn+2 0 0 · · ·

0 An+2 Bn+3 0 · · ·
0 0 An+3 Bn+4 · · ·
...

...
...

...
. . .


=



√
AnBn+1 0 0 0 · · ·

0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .


So BA = ATn+1. On the other hand,

T∗n+1A =


B∗n+1 A∗n+1 0 0 · · ·

0 B∗n+2 A∗n+2 0 · · ·
0 0 B∗n+3 A∗n+3 · · ·
0 0 0 B∗n+4 · · ·
...

...
...

...
. . .





√
An 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .


=


B∗n+1

√
An 0 0 0 · · ·

0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .


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and

AB =



√
AnB̃ 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...
...
. . .


.

Since AnBn+1 = BnAn,√
AnB̃ =

√
An

√
AnBn+1

√
An
−1 = AnBn+1

√
An
−1 = BnAn

√
An
−1 = B∗n+1

√
An.

So AB = T∗n+1A.

Now let N be an operator defined on H̃n+1
⊕
H̃n+1

⊕
H̃n+1.

N =

T∗n+1 0 0
A B 0
0 A Tn+1

 .
Then

N∗N =

Tn+1 A 0
0 B A
0 0 T∗n+1


T∗n+1 0 0

A B 0
0 A Tn+1

 =
Tn+1T∗n+1 + A2 AB 0

BA B2 + A2 ATn+1
0 T∗n+1A T∗n+1Tn+1


and

NN∗ =

T∗n+1 0 0
A B 0
0 A Tn+1


Tn+1 A 0

0 B A
0 0 T∗n+1

 =
T∗n+1Tn+1 T∗n+1A 0

ATn+1 A2 + B2 BA
0 AB A2 + Tn+1T∗n+1

 .
Since T is a Putinar’s matricial model of rank two, [T∗n+1,Tn+1] = ([B∗n+1,Bn+1] + A2

n+1) ⊕ 0∞ = A2
n ⊕ 0∞ = A2.

Hence, by the previous calculations, we have N∗N = NN∗, i.e., it is normal. Since N is clearly a normal
extension of Tn+1, Tn+1 is subnormal. Since T is the (n + 1)-th minimal partially normal extension of Tn+1, T
should be subnormal.
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