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A note on Putinar’s matricial models

Jaewoong Kim?

?Department of Mathematics, Seoul National University, Seoul 151-742, Korea

Abstract. In this note we consider the conjecture that every hyponormal Putinar’s matricial model of rank
two is subnormal. Related to this conjecture, we show that there exists a non rationally cyclic subnormal
Putinar’s matricial model of rank two and then give a sufficient condition for it to be a subnormal operator.

1. Introducton

Let H and K be complex Hilbert spaces, let L(H, K) be the set of bounded linear operators from H
and K and write L(H) := L(H,H). An operator T € L(H) is said to be normal if T'T = TT", quasinormal if
T'T? = TT*T, hyponormal if the self commutator [T*,T] = T'T — TT* > 0, and subnormal if it has a normal
extension, i.e., T = Nz, where N is a normal operator on some Hilbert space K containing H. In general it
is quite difficult to determine the subnormality of an operator by definition. An alternative description of
subnormality is given by the Bram-Halmos criterion, which states that an operator T is subnormal if and
only if

Z(Tix]-, Tix;) > 0

i
for all finite collections xg, x1,- -+, xx € H ([2], [4]). It is easy to see that this is equivalent to the following
positivity test:

I T* T*k
T TT --- T*r

>0 (all k>1). 1)
T T*T% ... TkTE

Condition (1) provides a measure of the gap between hyponormality and subnormality. In fact, the positivity
condition (1) for k = 1 is equivalent to the hyponormality of T, while subnormality requires the validity
(1) for all k. Let [A,B] := AB — BA denote the commutator of two operators A and B, and define T to be
k-hyponormal whenever the k X k operator matrix
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MK(T) == ([T, TN 1, 2)
is positive. An application of the Choleski algorithm for operator matrices shows that the positivity of (2)
is equivalent to the positivity of the (k + 1) X (k + 1) operator matrix in (1); the Bram-Halmos criterion can
be then rephrased as saying that T is subnormal if and only if T is k-hyponormal for every k > 1 ([15]). The
classes of k-hyponormal operators have been studied in an attempt to bridge the gap between subnormality
and hyponormality (cf. [5]-[9],[12]-[16],[21]).

In view of the gap theory, it seems to be interesting to consider the following problem:

Which 2-hyponormal operators are subnormal ? 3)

The first inquiry involves the self commutator. Subnormal operators with finite rank self commutators have
been extensively studied ([1],[20],[26]-[28]). Particular attention has been paid to hyponormal operators
with rank one or rank two self commutators ([17],[22],[24],[25],[26],[29]). In particular, B. Morrel [22] showed
that a pure subnormal operator with rank one self commutator (pure means having no normal summand)
is unitarily equivalent to a linear function of the unilateral shift. Morrel’s theorem can be essentially stated
(also see [4, p. 162] ) that if

(i) T is hyponormal;
(i) [T, T] is of rank one; and 4)
(iii) ker[T*, T] is invariant for T,

then T — B is quasinormal for some € C. It would be interesting (in the sense of giving a simple sufficiency
for the subnormality) to note that Morrel’s theorem gives that

If T satisfies the condition (4), then T is submormal.
On the other hand, it was shown [13, Lemma 2.2] that if T is 2-hyponormal then
T(ker[T*, T]) C ker[T", T].
Therefore by Morrel’s theorem, we can see that
every 2-hyponormal operator with rank one self commutator is subnormal.

Recently, S.H. Lee and W.Y. Lee [19] obtained an extension of Morrel’s theorem to the case of rank two self
commutators:

Theorem 1.1. ([19]) Let T € L(H). If

(i) T is a pure hyponormal operator;

(ii) [T*, T] is of rank two; and

(iii) ker[T*, T] is invariant for T,

then we have

(1) If Tlyani7+,1) haas a rank one self commutator then T is subnormal;

(2) If Tlyanir-11 has a rank two self commutator then T is either a subnormal operator or a “Putinar’s martricial
model” of rank two; that is, T has the following two diagonal structure, with respect to the orthogonal decomposition

H=HoydH 1 ®---:

Bp 0 0 O
Ay Bi 0 0

r-|0 A B 0 - 5)
0 0 A B
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where

(i) dimH, = dimH,,q =2 (n > 0);
(it) [T, T] = ([Bg, Bol + AjAo) @ Oc; (6)
(ifi) A% By = ByA, (n > 0),

and if T,, denotes the compression of T to the space Hy, & Hypq @ - -+ for n > 0, then
H, = ran[T;, T,] foreveryn >0,

and T, = m.p.n.e.(Tps1) (n > 0) (See below for “m.p.n.e”). Here note that under unitary equivalence we may assume
that all A, are positive and invertible.
And they conjectured:

Conjecture 1.1. The Putinar’s matricial model of rank two is subnormal.

If T is a rationally cyclic subnormal operator of rank two self commutator, then there is a good characterization
([18], [20]). By Morrel’s theorem ([22]), they have two diagonal structure. So we can ask the following: If a Putinar’s
matricial model of rank two is a subnormal operator, is it rationally cyclic ? In this note we will give the negative
answer to this question and also give a sufficient condition for a Putinar’s matricial model of rank two to be subnormal.

2. The main result

We first review a few essential facts concerning weak subnormality that we will need to begin with. An
operator T € L(H) is said to be weakly subnormal if there exist operator A € L(H’,H) and B € L(H’) such
that the following conditions hold:

[T, T] = AA" and A'T = BA",
T
0 B

or equivalently there is an extension T:= ( A) of T such that

T*?f:ﬁ*fforallfeﬂ.

The operator T is called a partially normal extension (briefly, p.n.e.) of T. We also say that T in L(K) is a
minimal partially normal extension (briefly, m.p.n.e.) of T if K has no proper subspace containing H to which

the restriction of T is also a partially normal extension of T. For convenience, if T = m.p.n.e(T) is also

weakly subnormal then we write T® := T and more generally,
T .= 5"7”‘\1),
which will be called the n-th minimal partially normal extension of T. It was ([10], [11], [13]) shown that
2-hyponormal = weakly subnormal = hyponormal

and the converses of both implications are not true in general. It was [13] known that

T is weakly subnormal = T(ker[T", T]) C ker[T", T]
and it was [11] known that if T:= m.p.n.e.(T) then forany k > 1,

T is (k + 1)-hyponormal < T is weakly subnormal and Tis k-hyponormal.
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So, in particular, one can see that
If T is subnormal, then T is subnormal.
It is worth to noticing that Morrel’s theorem gives that

every weakly subnormal operator with rank one self commutator is subnormal.

Now we will show that there exists a Putinar’s matricial model of rank two which is subnormal but not
rationally cyclic.

Theorem 2.1. There is a non rationally cyclic subnormal Putinar’s matricial model of rank two.

a
2+2a 0

Proof. Let By = ( 0 v BJr_zf‘) (O0O<a<l)and Ay = (\/E (1)) Then using the relations

[B .1, Bun]l + A2, = A2 and A,Bys1 = B,A, forn >0,

we can successively define A,’sand B,,’s . A straightforward calculation shows thatA,.c = A, and B+6 = B,,.
Hence we have the following operator

By O 0 0
Ay B O 0
7=|0 A1 B O on H=Hy®@H, & --

0 0 A, B;
Since [T*,T] = C ® 0o, where C =

((1) 2), T is hyponormal and has a rank two self commutator. So itis a

pure hyponormal operator. By [19, Theorem 2], it is subnormal. On the other hand, if A := By, then {A, C}
are complete unitary invariants, so that

A= (T%|r/11fL[T*,T])’e and C:= [T, T]lmn[T*,T]-

Recall ([20], [18]) that the characterization of rationally cyclic subnormal operators with rank two self
commutators as follows: If S is a pure rationally cyclic subnormal operator with rank two self commutator,
then S is unitarily equivalent to a dilation and shift of one of the following operators:

(@) S=S51®8S5,, where S; = a;U + p; withg; e Cand o; > 0 for j = 1,2,
(b) S=1Uy,

(c) S=U(U + a) for some a € C\{0},

(d) S=al+o6U(1-06U)", wherea € C\{0}and 0 < |8] < 1,

where if we let T, = dD U {a} (0 < a < 1) and A be a measure on T, such that dA(e’) = g—g and A({a}) = v,
then U, is the multiplication by z on P*(1) which is the closure of the polynomials under the inner product

.9 = f F@TDAAG) = f FEIEE +vf@i@,

and U is the unilateral shift. Then A and C are given by:

2
(1) For case (a), A = (%1 ﬁ.;) and C = (061 0%)
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(2) For case (b),
0 0 10
a=0:A=|_1_ OandC= v ).
Vit 0

a0 (al<1): A=

0 0
a(1-laP) 2| and
la] V1+v—|af?

243 ( 1+vjaf—|al? via(1-la?)
C 1=~ laF) ( Lbv—iaf? )  (viaPlaP) ViR
= via|(1-[aP) 23 Levial—laR ) | ¢
(+viaP—laP) \/1+v—laP vl =1aF) ( Tv=aP )
(0 0 [1+]|aP «a
(3) For case (c), A = (az 0) and C = ( 5 1).
(4) For case (d), A = [, = ° _0 d
orcaseld), A= (ad+p*p ad+p? an
laf? + ad +ad + p*  (ad + pz)p) ) |of?
C= _ with p = .
( @+ p?)p p* (withp = 5 e )

We next find the rank of [A*, A] for each case:
(1) [A*, A] =0, and so rank[A*, A] = 0,
1
2 a=0:[A",A]l = (16" _i), and so rank[A*, A] = 2
1+v

CAr Ap o [l aa _ _aO-bP) o AT = IOl 4 12 . AT =
az0:[A,A]= (aﬁ o) where o = AN Since det[A*, A] = —|al*(Ja|* + |a]*) # O, rank[A*, A] = 2.

2
3) [A*, A] = (|06| _l((l'z), and so rank[A*, A] = 2,
_ 2 2
(4) [A, A] = |ad + p*P (pp _[;2). Since det (pp _F;z) = —p*(1 + p?) #0, rank[A*, A] = 2.

Assume that T is rationally cyclic. Then T must be unitarily equivalent to a dilation and shift of one of
the above operators. Since rank[A", A] is invariant under dilation and shift, and rank[Bj, Bo] = 0, T is not
unitarily equivalent to a dilation and shift of one of the cases (b), (c), and (d). Hence T must be the case (a).
Since, for C and A for T,

0 ,/ﬁ) ( 0 « L)

=CA#AC= 242 |
(“ Vom0 Vom0

C and A for T are not simultaneously diagonalizable. Since the simultaneous diagonalization is invariant

under a dilation and shift, T is not unitarily equivalent to the case (a) and so T is not rationally cyclic. Hence
T is the desired operator. [

Corollary 2.2. Let T be a Putinar matricial model of rank two. If A% 1= [Bg, Bo] + Aé) and By are simultaneously
diagonalizable, then T is a subnormal operator.

Proof. Since A%, and B are simultaneously diagonalizable, we may write that

2
2 _ al 0 _ ﬁ] 0
el g w=o 5)

Now we can find a rationally cyclic subnormal operator S with its complete unitary invariants such as (see

the proof of Theorem 2.1.):
(B O _[a? 0
A= (0 B and C-= 0 a2
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By Morrel’s Theorem [22], S has two diagonal structure as in (5). Since T is a Putinar’s matricial model of
rank two, it also satisfies the relation (6). So S and T must be the same and T is subnormal. [

If a Putinar’s matricial model of rank two T is rationally cyclic, then we can get the following:

Corollary 2.3. Let T be a rationally cyclic operator represented by a Putinar matricial model of rank two. If
rank[By, Bo] = 1, then T can not be a subnormal operator.

Proof. If T is subnormal, then it is a dilation and shift of one of the four cases in the proof of Theorem 2.1.
For them, rank[A*, A] = 0 or 2. Since rank[A*, A] is invariant under dilation and shift and By is A for T,
rank[By, B] can not be 1. Hence T can not be subnormal. [

Now we will give a sufficient condition for a Putinar’s matricial model of rank two to be subnormal.

Theorem 2.4. Let T be a Putinar’s matricial model of rank two as in (5). If B, = B}, for somen > 0, then T is a
subnormal operator.

Proof. Consider the operator

B+1 0 0 0
An+1 Bn+2 0 0

T = 0 An+2 By 0 01’1;{ =N ® H. D---.
n+1 0 0 An+3 Bn+4 o n+l n+1 n+2

Since T is a Putinar’s matricial model of rank two, A, is positive and invertible and so we can find VA,
and VA, . Let B = VA,B,+1 VA, ! and define operators A and B on H,.1.

VA, 0 0 0 B 0O O
0 00 0 0 00 O
A=| O 000 --- . B= 0 00 O
0 0 0 O . 0 00 O
Then _ _
B 0 0 O VA, 0 0 O BvVA, 0 0 O
0 00 O 0 0 0 O 0 0 0O
BA=|0 0 0 O 0 0 0 O — 0 0 0O
0 00O 0 0 0 O 0 0 0O
and
VA, 0 0 O By 0 0 0 VA,B,s1 0 0 O
0 0 0O Ans1 By 0 o - 0 0 00
AT, .1 = 0 0 0O 0 Ao Bug 0o --]= 0 0 0O
0 0 0O 0 0 A3 By - 0 0 0O
So BA = AT, 4+1. On the other hand,
B ., A 0 0 \(VA, 0 0 O B, VA, 0 0 O
B ., A., 0 .- 0 0 0O 0 0 0O
T;HA: 0 0 B:z+3 A:z+3 0 0 00 = 0 000
0 0 0 B* 0 0 0O 0 0 0O
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and .
VA, B 0 0 0
0 000
AB=| 0 000
0 000

Since A,B,+1 = B,A,,

VAnB = VAn VAan+1 VAn_l = AnBun VAn_l = B A, VAn_l = B:Hl VAn-
So AB=T* A.
n+l1 . . .
Now let N be an operator defined on H,,+1 P Hor1 P Ho1.

T, 0 0
N=| A B 0
0 A Tun
Then
T.se1 A 0 " 0 0 Ty T, + A? AB 0
N'N=| 0 B A A B 0 |= BA B2+ A2 AT,
0 0 T, 0 A T, 0 A T Tun
and
., O 0 \Tw A O T, Tus1 Tz” 1A 0
NN =| A B 0 0 B A |=| AT,.1 A?+B? BA
0 A T, 0 0 T, 0 AB A? + Ty T,

Since T is a Putinar’s matricial model of rank two, [T?, Tus1] = ([B:,, Bus1] + A2, ) ® 0 = A2 ® 00 = A%

Hence, by the previous calculations, we have N*N = NN, i.e,, it is normal. Since N is clearly a normal
extension of Ty4+1, Ty+1 is subnormal. Since T is the (1 + 1)-th minimal partially normal extension of T;.41, T
should be subnormal. [
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