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Laplace transform in spaces of ultradistributions

Bojan Prangoski?®

*University Ss. Cyril and Methodius, Skopje, Republic of Macedonia

Abstract. The Laplace transform in Komatsu ultradistributions is considered. Also, conditions are given
under which an analytic function is a Laplace transformation of an ultradistribution.

0. Introduction

The Laplace transform of distributions was defined and studied by Schwartz, [12]. Later, Carmichael
and Pilipovi¢ in [1] (see also [2]), considered the Laplace transform in L/, of Beurling-Gevrey tempered
ultradistributions and obtained some results concerning the so-called tempered convolution. In particular,
they gave a characterization of the space of Laplace transforms of elements from X/, supported by an
acute closed cone in R?. Komatsu has given a great contribution to the investigations of the Laplace
transform in ultradistribution and hyperfunction spaces considering them over appropriate domains, see
[7] and references therein (see also [14]). Michalik in [9] and Lee and Kim in [8] have adapted the space
of ultradistribution and Fourier hyperfunctions to the definition of the Laplace transform, following ideas
of Komatsu. Our approach is different. We develop the theory within the space of already constructed
ultradistributions of Beurling and Roumieu type. The ideas in the proofs of the two main theorems (theorem
2.1 and theorem 2.5) are similar to those in [13] in the case of Schwartz distributions. In these theorems are
characterized ultradistributions defined on the whole R through the estimates of their Laplace transforms.
This is the main point of our investigations contrary to other authors who investigated generalized functions
supported by cones. We consider a restricted class of ultradistributions assuming conditions (M.1), (M.2)
and (M.3) (for example, cases M, = p!*, s > 1) in order to obtain fine representations through the analysis
of the corresponding class of subexponentially bounded entire functions. With weaker conditions, (M.3)’
instead of (M.3), or even in the case of quasianalyticity, we can obtain different, technically more complicate,
structural representations.

1. Preliminaries

The sets of natural, integer, positive integer, real and complex numbers are denoted by N, Z, Z,, R, C. We
use the symbols for x € R%: (x) = (1 +|x[)'/2, D* = D{* ... D", D?j =i19%/9xY, a = (a1, ay, ..., a) € N
If z € €, by z* we will denote 22 + ... + z3. Note that, if x € R?, x? = [x[2.

1
Following [4], we denote by M, a sequence of positive numbers My = 1 so that:
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(M.1) Mf, SMp My, pEZy;
(M2) M, < coHY min {Mp_qu}, p,q € N, for some co, H > 1;

(M.3) Z M cquql,quM
p=g+1

although in some assertions we could assume the weaker ones (M.2)" and (M.3)’ (see [4]). For a multi-index
a € N4, M, will mean My, lal = a1 + ... + ag. Recall, m, = M,/M,_1, p € Z, and the associated function for
the sequence M, is defined by

oF
M(p) = sup logJr , p>0.
peN P
It is non-negative, continuous, monotonically increasing function, which vanishes for sufficiently small
p > 0 and increases more rapidly then In p” when p tends to infinity, for any p € IN.
Let U € R? be an open set and K cc U (we will use always this notation for a compact subset of an

open set). Then EM/(K) is the space of all ¢ € C*(U) which satisfy sup sup D% (x )l d Z);?A” M is
aeN? xeK he M,

a\ . . . ID*(x)|
the space of all p € C* (IR ) with supports in K, which satisfy sup sup < oo;
aeN4 xeK haM"‘
EMI(U) = lim lim EMM(K), EMI(U) = lim lim EM(K),
Kccl h—0 Kccl h—oo
D = lim D", oMUy = lim DEY,
70 Kecu
D" = lim DM, DM = lim D
h—o0 Kccu

The spaces of ultradistributions and ultradistributions with compact support of Beurling and Roumieu type
are defined as the strong duals of D™ (U) and EM/(U), resp. DM /(L) and EMH(U). For the properties of
these spaces, we refer to [4], [5] and [6]. In the future we will not emphasize the set U when U = R?. Also,
the common notation for the symbols (M) and {M,} will be *.

If f € L, then its Fourier transform is defined by (¥ f)(£) = f(&) = fRd e f(x)dx, & e R4

By R is denoted a set of positive sequences which monotonically increases to infinity. For (r,) € R,
consider the sequence No = 1, N, = M, H’;:l ri, p € Z4. One easily sees that this sequence satisfies (M.1)

P

and (M.3)" and its associated function will be denoted by N;,,(p), i.e. N,,(p) = suplog, ———, p > 0.
peN M H j=1 ]

Note, for given r, and every k > 0 there is pg > 0 such that N, (p) < M(kp), for p > po.

It is said that P(&) = Z &%, & e RY, is an ultrapolynomial of the class (M), resp. {M,}, whenever the

aeN?

coefficients c, satisfy the estimate |c,| < CL*/M,, a € IN“ for some L > 0 and C > 0, resp. for every L > 0
and some C, > 0. The corresponding operator P(D) = Y, c,D? is an ultradifferential operator of the class
(M,), resp. {M,} and they act continuously on EM)(U) and DM)(U), resp. EM/(U) and DM(U) and the
corresponding spaces of ultradistributions.

We denote by SQA ”’m (]Rd ), m > 0, the space of all smooth functions ¢ which satisfy

mla|+lﬁl(x>lalpﬁ@(x) 2
M, Mg

1/2
Om2(P) —[ dX] < oo, 1)

a,BeN

supplied with the topology induced by the norm g,,. The spaces '™ and S'™/! of tempered ultra-
distributions of Beurling and Roumieu type respectively, are defined as the strong duals of the spaces



B. Prangoski / Filomat 27:5 (2013), 747-760 749

SM) = lim SM o (]R”’) and SM! = hm SM " (Rd) respectively. All the good properties of S* and its strong
V"l—>00
dual follow from the equivalence of the sequence of norms gy, 2, m > 0, with each of the following sequences
of norms (see [2], [10]):
(a) Omp, Mm>0;p € [1, o0] is fixed,;

Z m B PD2 ()l

(b) Smp, m > 0; p € [1,00] is fixed, where s,,,(¢p) := T ,

a,BeNA

lal) D ()M
(c) sm, m > 0, where s,,(¢) := sup mlID () ”L‘”.
aeN4 M,

If we denote by S (]Rd) the space of all infinitely differentiable functions on R for which the norm ¢, «
is finite (obviously it is a Banach space), then SMy) (]Rd) = l(i£1 Sif’” - (]Rd) and SMv! (IRd) = li_n)l Sﬁf’”m (]Rd).
m—o0 m—0

Also, for m, > my, the inclusion Sm'" (]R”’) — S (]Rd) is a compact mapping. In [11] and [2]

it is proved that SM) = hm Sﬁf)(s , Where Sffp) o) = {go eCc” (]Rd) |)/(r,,),(sq)(§0) < oo} and y(rp),(sq)((p) =

i S/

[y D ()

et (T 1) M (T, ) M
of §™.

Also, the Fourier transform is a topological automorphism of S and

2. Laplace transform
For a set B C IR? denote by ch B the convex hull of B.

Theorem 2.1. Let B be a connected open set in R and T € D" (RY) be such that, for all & € B, e T(x) € S"(RY).

Then the Fourier transform F,_,, (e‘xéT(x)) is an analytic function of C = & + in for & € ch B, n € R%. Furthermore,
it satisfies the following estimates:
for every K cC ch B there exist k > 0 and C > 0, resp. for every k > 0 there exists C > 0, such that

[Frmsn(€T(0))(E + in)| < CMEM, v € K, ¥y e R 2)

Proof. Let K be a fixed compact subset of ch B. There exists 0 < ¢ < 1/4 and D), ..., D € B such that the
convex hull TT of the set {1, ..., P} contains the closed 4¢ neighborhood of K (obviously IT cc ch B). We
shell prove that the set

{s € DIS(x) = T(x)e =+ VIHF ¢ K} ®)

is bounded in 8. Note that by the condition in the theorem T(x)e™*¢ € §’* and e V 1+h js the restriction on

the real axis of the function e V1*# that is analytic and single valued on the strip RY + ily € IRdIIyI < 1/4},

and hence ¢¢ VI*I* is in &, Note that

1
T(x)e—xgﬂ 1+|x\2 Z‘ 1+|r|2a(x5 (x)e—xé(’”, 4)
k=1

!

-1
where a(x, &) = e (Z e‘x":m] . The function a(x, &) satisfies the following conditions:
k=1
0 <a(x,&)<1,(x & eRIXIT

ii) e’ VIHhPy(x, &) < e’ (x, &) € R x K, and Ve’ < 4¢;
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iii) a(x, £) € C* (R¥).

I I
iif) it’s obvious. To prove i), take & € I1. Then there exist ¢4, ..., t; > 0 such that £ = Z £E® and Z = 1.

k=1 k=1
Then, by the weighted arithmetic mean-geometric mean inequality, we have

I I
— — (k) —x&®) _ &)
e"é:l—[e"tk‘S SZ‘tke"‘E Sze"‘s,
k=1 k=1

1
k=1 =

from where it follows 7). For the prove of ii), note that, for (x,&) € R x K,

e VI (x, &) < "+ Mg(x, &) = ¢ r|r|1ax e a(x, &) = et rlrllax a(x,&+1) <e,
t<e’ tl<e’

where the last inequality follows from 7).
Now we will estimate the derivatives of a(x, £). Let s = I?anx |€]. Then a(z, &) is an analytic function of
€

z = x + iy on the strip RY + ify € ]RdIIyls < 1t/4}, for every fixed & € I1, because

2 2 2 2
I I I I
s xe® gt ) e V2
262‘5 = Ze"é o iYE Z(Zexé cosyé(k)] Z[Ze’(‘s > ] /
k=1 k=1 k=1 k=1
and hence
I I
_® V2 e ®
Zezé ZTZexg >0, (5)
k=1 k=1

Take 0 < r < 1/ Vd so small such that rs Vd < 71/4. Then, from Cauchy integral formula, we have
e
Zi=1 emwe® |’
If we use the inequality (5), we get (we put w = u + iv)
\/Ee—ué _ \/Ee—xée—(u—x)é
T €78 ) Vg € om0
V2 xE plu=xliél \2e~¥Eprs Vi
<

a!
|0%a(x, &) < = sup
r w1 —x1|<7,... Jwa—x4|<r

e—(u+iv)£

1 —(u+iv)E®
Zk:1e (u+iv)&

= V225 Vi, x, &).
- 22—1 o—xEW p=lu=x||E®| T Zi—l o—xEW p=rs Vi V2 (<)
So, we obtain the estimate
a!
|o%a(x, )| < \/Eezsma(x, &). (6)

Note that, by the previous estimate and the property ii) of a(x, &), it follows that a(x, &) € S for every &£ € K

and the set {a(x, &)|& € K} is a bounded set in S*. We will estimate the derivatives of e VI*** The function

e V1*2 ig analytic on the strip R? +i{y € R|y| < 1/4}, where we take the principal branch of the square root
which is single valued and analytic on C\(—c0,0]. If we take r < 1/(8d), from the Cauchy integral formula,

|
. 1/ 2 a. Vituw? . .
we get the estimate |9%¢¢ VITH| < i sup les %) Put w = u + iv and estimate as follows
" ol Jwg—xal<r
. e 2 Y 2 . _ - —
et V1+w? eRe(L V1+w) < €|£ 1+w | <et %/(1+|u|2 [02)2+4(uv)? <et 1+[ul2—[v]2+2|uv)|

2 —|2 2 2 o 2
ot VI+2uP o o V1 +4lu—x?+4fx] <ef V1+1+40 < o Vit '

IA
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Hence

3gesm < a_!eZé"/m. )

r|“|

If we take r small enough we can make the previous estimates for the derivatives of a(x, &) and ef VI+i* to

hold for the same r. Now we obtain

D (o Vi ate o)) Z(ﬁ)(a VI o Boata, )

£ Fla—p Al
<

IA

IA

\/EEZS a_!zlalek \/1+|x\2a(x (5)
r|a| e
Using the property ii) of the function a(x, &), we get

D- (8 \/1+\xl2 a(x, 5))‘ \/_625 \/1+Ix|2a(x &) < \/_e2s+25 a2 VEeK (8)

plal 7

By this estimate and proposition 7 of [3] one has ¢* VI+E p(x, &) is a multiplier for $”. Because of (4), (3) is
a subset of $”. Now to prove that (3) is bounded in 8. We will give the prove only in the {M,} case, the

(M,) case is similar. Let iy € S}, There exists i > 0 such that ¢ € S¥" Note that
<ef\’1+'xl2a(x, g)T(x)e-Xé‘k’,¢(x)> - <T(x)e-x5“’ e VInkP gy g)¢(x)> Vk e (1,..1},YE € K.

Choose m < h/4. By (8), we have

)P (D (e ViFage, ey (o)
MM
< By >ﬁz( )\/_62“25(06 Y129 ANDYP(x)|
- )/<a 1’"" V‘MQM‘B
a hlal+lﬁ|(a_y)|2|a—yl hld=M(q — y)!
< Clohm@)%(y) e DY e Cl"h‘”("b)Z( ) el M,
< Copw(y), Y& €K

Hence ef VP g(x, £)T(x)e ", & € K, is bounded in S'™). Buy (4), the set (3) is bounded in S’
We will prove that e~ Vi € S*. In order to do that we will estimate the derivatives of e~ VI** with
the Cauchy integral formula (similarly as for e¢ VI*"). We obtain

|
a;xe—s V1+x? < 0(_ sup |e—£ V1+w?

r|a| ’
w1 —x1|<7,... Jwa—x4|<r

where, 0 < r < 1/(84). Let w = u + iv. Then, if we put p = \/(1 +|u|2—|v|2)2+4(uv)2, cos =

1 2 _ |2 2
+ |ul® = o] sin@ = "o (where 6 € (—m, 7)), we have that 6 €

O+ 2 = oR)? + (o) V@l = oR)? + (o)
(—m/2,1/2) (because cos 6 > 0 and 6 € (—n, 7)) and

)

VP
2

7

N

Re\/1+|u|2—|71|2+2iuv = Re p(cosQ+isin9):Re\/ﬁ(cos§+isin§):\/ﬁcos—z
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where the second equality holds because we take the principal branch of v/z. Because r < 1/(8d), we get

pRe(—e Virw?) <e - VPR +4@woy <es £ \1+uP—loP
2
e—;,/1+%—|u—x|2—|v|2 < 6—3\/1+|x|2.

—& V1+w?

g

IN

Hence, we obtain

af:e—s V1+x? < a—!e_i \/1+|x|2‘ (9)

r|0¢|

From this, it easily follows that e~ VI*M* € §*. So ¢ *T(x) € S” (lRﬁ), for £ € K, because e ™*T(x) =

T(x)e™ e+ VIHhPe=e V1T and we proved that T(x)e <+ VIHh? ¢ S (]Rﬁ), for £ € K.
Put f(& +in) = ?',(_,,,(e"“S T(x)). We will prove that f is an analytic function on ch B + iRY. Let U be an
arbitrary bounded open subset of ch B such that K = U cc ch B. For ¢ € 8* and & € U, we have

FE+m, o) = (Feoy (7T), 0() = (™ T(), F@))
= <ef‘5T<x>, f e”‘%b(n)dn> = <e“ VIHEe T (x), g7 VIHRE f efxwm)dn>
R¢ R¢
— <(65 \/1+|xlze—xéT(x)) ® 117, e ¢ V1+IXIZe—iXU¢(n)>
= [ (Ve e, e V)
R?
Hence
f(é + ”7) — <€E \/1+|x|2€—x§T(x)e—ixr], ¢ '\/1+|x|2> ) (10)

First we will prove that f € C* (U X ]R‘f]). We will prove the differentiability only in &; and in the {M,} case.
The existence of the rest of the derivatives is proved in analogous way and the (M,) case is treated similarly.
Let £0 = (&0, &0) = (e, &) et £ = (60 + &, 6D, &0) = (67 + £, &), x = (11, %) = (31, X). Let
0 < |&1] < 6 < € < 1 such that the ball with radius 6 and center in £© is contained in U. Then, by using (4)
and (10), we obtain

FE )~ PV _ (e NFT (e T, < VT

&1
_ Zl“ <e—1xne—x5<k>T( e W[a(x, €) —; (X, 5(0)) + 112 (x, 5(0))]/6—5 W>
k=1 1

05, 6) a5, 0)
&1

It is enough to prove that, for every i € SM!, ¢f VI+he [ +x1a (x, 5(0))] ¥(x) — 0, when

&1 — 0, in 8™ First note that

egm[a(x, £)-a(x, &) i, E(O))J _ VIshE, (x, é(()))(6_’“‘5;1 + xl).

& &1

Now, we get

SRS OO G/ SO L
T = g Y e = ) T
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So,forjeN,j>2and 0 <|&1] <0 <€ <1, we have

. e & _q R (—])"xg'ég'_l
Dl (— + x1) Dl (2 — |-

&1 ~

i (-1ynia e
(n—-jn!

n=j

o j n-2 X n—j n—j
13 |Z| 1 |§1| <& | 1714 < Selld,

< —
= (=)
Using similar technic, we obtain the estimates
e 1 A e~ ¥ _ 1 )
Dy, (5— + x1) < Olx1le™P and (5— + x1) < Ol Pei®.
1 1

. e—xlel -1
So, in all cases, we have ‘Dil —_—+ xl) < 6(xp Y2elo, By using (8), we get (for simpler notation we

&1

write j for the d-tuple ( j, s 0)
De (ef Vi (3, £0 )( — +x1)¢(x>)

) M e R L O e L

psa j<p
- 1=l
¢ T T () L T s, ) st
psar j<p
Bl
< C6<x1>222( )()(%) (B~ Iyl

psa jsp

where we used the inequality e2¢ VI*¥a(x, O)elild < ¢3¢ VI+ g(x £O0)) < ¢3¢ which follows from the prop-

erty ii) of a(x, £). Because ¢ € S™y} there exists m > 0 such that Y e Sﬁf”’m. Choose & such that h < m/4,
h <1/4 and hH < m. We get

h|a|+|ﬁ|<x>ﬁ D (es\/1+|x|2 (.X 5(0))( z -1 +x1)1}[)(3€))
MaM[;
2V DR o)
< C(SZZ( )( )(;) R Y B VY

ysa jsy

2\ (B2l B 2 Day )
Ci16 Z Z ( )( )(r) = Moy M,-jM;Mg.

ysa j<y
(7/) Iy ]| Y Blal+1Bl Il

IA

a
< Cabome(W )Z,Z(y) j e PR M
y<a j<y
|y il leel=Iyl hH Bl hb/\ — )
A
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Pp!

kPp!
where we use (M.2) and the fact WP — 0, when p — co. Now, from this it follows that
4

gm[ﬂ(x, <) —a(x, 5«)))
e

> +xalx, cs“”)] Y@ — 0, & — 0

in S™) and by the above remarks, the differentiability of f(& + in) on U x R] follows. Also, from the
previous, we can conclude that (9‘5 f(E+in) = <e" VI+E (_x)ae=XE T (x)e~ 1 ¢~¢ V1+IXI2> and similarly at;; f(E+in) =
< ¢ VIHI (i)t p=xE T (x)pix =¢ V1+IP > From this and the arbitrariness of U, the analyticity of f(£+in) follows

because it satisfies the Cauchy-Riemann equations. So, for C = £ + in, we get

f(C) — <€E \/1+leze—xCT(x), et \/1+|x|2> (11)

and J¢ f(C) = <€S VI+HAE (_x)ae=2CT(x), e~¢ V1+|X|2>, for C € U + iRY, for each fixed U (¢ depends on U).
Now we will prove the estimates (2) for f(£ + in). Let K CC ch B be arbitrary but fixed. First we will
consider the (M,) case. We know that S™) is a (FS) - space and SM) = lim Sﬁf”’h. If we denote the closure

h—oo
of SMp) in SM by S then SM) = lim SY and the projective limit is reduced. Then S'™) = lim S
h—oo h—oo

which is injective inductive limit with compact maps (because the projective limit is with compact maps).
Because we proved that the set {S € D*|S(x) = T(x)e Xe+e VI+IP & ¢ K} is bounded in S'™), it follows that

there exists 1 > 0 such that {S € D”*|S(x) = T(x)e Xe+e I+ & ¢ K} c SM" and it’s bounded there. By (9),

we have the estimate

D« (e—ixne—s \/1+|x|2)
x

Hlal+Bl ()P

Z (0() (Zh)lal—lyl(Zh)lylhlﬁl<x>ﬁ|n|y(a — y)!e‘i V1+x?

MaMﬁ - = V4 2\a|r|a*V|Ma_yMyMﬁ
1 o\ 21\ (a— y)!eM(h<x)) M@ =5 ()
< C— —
2] é (V)( r ) Ma-y
< (oM@
. kPp!
where we use that eMUEe= 1) js bounded and Y 0 when p — 0. Then, for & € Kand 1 € RY,
p
|f(£ + ”])l — <ee \/1+|x|2€—x£T(x)’ e—ixne—e \/1+|x|2> <C e_ixne_gdlﬂxlz < CeM(2h|’7|).

Now we will consider the {M,} case. S™/! is a (DFS) - space and SM) = lim S‘f,f,""h, where the inductive
h—0
limit is injective with compact maps. Let & > 0 be fixed. For shorter notation, denote by F the set

{S € D”|S(x) = T(x)e ¥t VIHh? & ¢ K} and by J the inclusion S, SMi) Because we already proved
that F is a bounded subset of 8™/, its image under !J (the transposed mapping of ]) is a bounded subset

h . : TR .
of Sg,ﬂ” . By the above calculations we see that e7*1e™¢ 1+ §g in Slo\f”’m, for every m > 0. Hence, for £ € K
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and n € RY, we have

|f(é + ”7)' = <e€ \/1+leze—x£T(x)’ e—ixqe—s \/1+|x|2> — <t] (88 \/1+|xlze—x5T(x)) , e—ixqe—s \/1+|x|2>
< C e—ixz]e—sm < C;,eM(th')
- h Sﬁi{p,h - 4
hlal+lﬁl<x>ﬁ Da (e—ixne—s \/1+\x|2)
where we used the above estimate for . O

MM

Remark 2.2. If, for S € D", the conditions of the theorem are fulfilled, we call F,_,, (e"“SS(x)) the Laplace transform
of S and denote it by L(S). Moreover, by (11), L(S)(C) = <ef VIRt =205 (), gme VI >, for C € U + iR%, where

U cc ch B and ¢ depends on U.
Note that, if for S € D' the conditions of the theorem are fulfilled for B = R?, then the choice of € can be made
uniform for all K cC R?.

For the next theorem we need the following technical results.

p+q
Lemma 2.3. Let (k,) € R. There exists (ky,) € R such that k;, < k, and H K, < 2r* H K- H K, forallp,geZ..
j=1 j=1 j=1

177
easily checks that (k;.) is monotonically increasing. To prove that k;. tends to infinity, suppose the contrary.

Proof. Define k] = ki and inductively k = min {k i J —K } for j > 2, j € N. Obviously k;. < kj and one

Then, because (k;.) is a monotonically increasing sequence of positive numbers, it follows that it is bounded
by some C > 0. Because (k;) € R, there exists jo, such that, for all j > jo, j € N, k; > 2C. So, for all j > jo + 1,

K. = Lk' ;- We get that k; = ,Lk’. — oo, when j — oo, which is a contradiction. Hence (k) € %.
I i g o
] g p R
Note that, for all p, j € Z., we have k,,; < ——kj. Hence Hk' Hk’ H ks H : H T - =
i P
(p + q) ’ / p+q ’ /
m Hk Hk <2 Hk Hk O
j= j=

We will construct certain class of ultrapolynomials similar to those in [4], (see (10.9) in [4]), which will
have the added beneficence of not having zeroes in a strip containing the real axis.
Let ¢ > O be fixed. Letk >0,/ > 0and (ky) € R, (I,) € R be arbitrary but fixed. Choose g € Z, such that

M < %, forallp € N, p > g in the (M,) case and i <3 for allp € N, p > g in the {M,} case. Consider

Imy, Lymy,
the entire functions
Pi(w) = H [1 + W] we ! 12)
j=q j

in the (M,) case, resp.

Py, (w) = H[l + : 22), w e C? (13)

=4 j
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in the {M,} case. It is easily checked that the entire function Pi(w,0,...,0), resp. Py, (w1,0, ..., 0), of one
variable satisfies the condition c) of proposition 4.6 of [4]. Hence, P\(w), resp. P}, (w), satisfies the equivalent
conditions a) and b) of proposition 4.5 of [4]. Hence, there exist L > 0 and C" > 0, resp. for every L > 0 there
exists C’ > 0, such that |Pj(w)| < C'eMHD, resp. |P; (w)] < C'eMD, for all w € €% and Py(D), resp. Py, (D),
are ultradifferential operators of (M,), resp. {M,}, type. It is easy to check that P;(w) and Py (w) don’t have

zeroes in W = R + i{v € ]Rdllvjl <c j=1,..,d. Forw=u+iveW,|u > 2cVd, we have (w2| > — and
w?
1+ ——| 21, for j > q. We estimate as follows
12 2
j
o w? P > P Jw]?
IPZV(w)I = H 1+ _Z2m2 = supH 1+ _lzmz > supH 2 2 H lz 2
j=q it Poj=g i ”qu'

9-1 412 2
H 4l [ |w|pMﬂ‘1 ] - ( - 1HJ 1 ]} Nay (W) > 7 e )
=0 -

su —_—
P P M T, 2 ol 0 2D
q-1 4[2

where we put Cj, = H k_2] and [, = I and k, = k in the (M,) case. For w € W, because P)(w), resp. P, (w),
=1

doesn’t have zeroes in W, we get that there exist Cy > 0 such that
|Py(w)| > COE*ZM(IwI/k)eM(Iw\/(ﬂ)), resp. |Pl,, (w)| > Coe—ZNkp(le)esz,,(lwl), weW (14)

Now, by using Cauchy integral formula, we can estimate the derivatives of 1/P)(x), resp. 1/P, (&). We will
introduce some notations to make the calculations less cumbersome. For r > 0, denote by B,(a) the polydisc
with center at 2 and radii 7, i.e. {z € CY||z; —ajl <1, j = 1,2,...,d} and by T,(a) the corresponding polytorus
{z € Cdllzj —ajl=r,j=1,2,..,d}. We will do it for the {M,} case, for the (M,) case it is similar. We already
know that on W, 1/P,(w) is analytic function (P, doesn’t have zeroes in W). Hence

1 2N, (i)

1
5 ——| <
“Py(x)

P,(2)

a!
< —.
CQT‘“I

a!

rlal

4
N2y (2D

7

L(T(x))

L(Tr(x))

for arbitrary but fixed < ¢ (so B,(x) € W). Forx € ]Rd\BZmH(O)' there exists j € {1, ..., d} such that |x;| > 2r Vd.

Then, on T,(x), |z| = |x| — |z — x| = |x| — ¥ Vd > [x]/2, i.e. N ED > Ny (R1/2) = oNuy (M) Moreover, for such x, we
have

PNy () < 2Ny (b7 V) 42N, (2r VD) 2Ny, Q) — (0 2N, (21D

where in the last inequality we used that eM1+) < 2eM@VM2) for A > 0, v > 0. So, we obtain |97

ZUP ( )
! N @D

2Nkv(lzl)e_l\'”r’(lzl)” is bounded, so we can conclude that the above

"l Ny () For x in By, 5(0), [l Lo(T, ()

inequality holds, possible with another constant C. Analogously, we can prove that, for the (Mp) case,

1 al e2M@lx/k)

dpy—— v iaryowyr

YPix)| T plal pM(lxl/(41))

can find I > 0, resp. (I,) € R, such that PMEH/R=ME/ED) < C7e=MI/R) regp. Ny @D Nup () < Cr7e=Nyp (M)

for some C” > 0. This inequality trivially follows from proposition 3.6 of [4] in the (M,) case. To prove

the inequality in the {M,} case, first note that XN @D Ny () < 3Ni2(K) - By lemma 2.3, there exists (k) € R
Pt p q

3N, 2 (|x]) 3Ny (Ix1)

such that k;, < ky/2 and Hk; < 2P* Hk; . Hk}, for all p,q € Z,. So MNwr( < %™ " If we put

j= j=1 j=1

This is important, because, if k > 0 is fixed, resp. (k,) € R is fixed, then we
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p
No =1and N, = M, H k', for p € Z,, then, by the properties of (kr’,), it follows that N, satisfies (M.1),
=1
(M.2) and (M.3)" where the constant H in (M.2) for this sequence is equal to 2H. Moreover, note that
N(A) = Nk;(/\), for all A > 0. We can now use proposition 3.6 of [4] for N(|x|) (i.e. for Nk;;(lxl)) and obtain

, , (4H2); N,
e3Nkp(‘xl) < C"gNkp(4H D _ e kﬂ/“‘”Z)(‘xD, for some ¢”” > 0. Now take [, such that 4/, = k;,/(4H2), p € Z, and the
desired inequality follows. So, we obtain
al Mgk

C-—e¢
r|05|

al _
<C-—e Ml ye R 0 e N,

24 !
r\a|

, Tesp.
p * Py, (x)

% Pi(x)

where C depends on k and [, resp. (k,) and (l,), and M,; r < c arbitrary but fixed. Moreover, from the above
observation and (14), we obtain

IPy(w)| > CeMVP, resp. Py (w)| > CeNo ™, w e W, (15)
for some C > 0.

Lemma 2.4. let g : [0, 00) — [0, 00) be an increasing function that satisfies the following estimate:
for every L > 0 there exists C > 0 such that g(p) < M(Lp) + InC.
Then there exists subordinate function €(p) such that g(p) < M(e(p)) + InC’, for some constant C’' > 1.

For the definition of subordinate function see [4].

Proof. If g(p) is bounded then the claim of the lemma is trivial (we can take C’ large enough such that the
inequality will hold for arbitrary subordinate function). Assume that g is not bounded. We can easily find
continuous strictly increasing function f : [0, 00) — [0, c0) which majorizes g such that for every L > 0
there exists C > 0 such that f(p) < M(Lp) + InC. Hence, there exists p; > 0 such that f(p) > 0 for p > p;.
There exists pp > 0 such that M(p) = 0 for p < py and M(p) > 0 for p > po. Because M(p) is continuous
and strictly increasing on the interval [pg, o0) and ;ggo M(p) = oo, M is bijection from [py, o) to [0, co) with

continuous and strictly increasing inverse M~! : [0, 00) — [pyg, ). Define €(p) on [p1, o) in the following
way €(p) = M~1(f(p)) and define it linearly on [0, p1) such that it will be continuous on [0, o) and €(0) = 0.
Then e(p) is strictly increasing and continuous on [0, o). Moreover, for p € [p1, ), it satisfies f(p) = M(e(p)).
Hence, there exists C’ > 1 such that f(p) < M(e(p)) + InC’, for p > 0. It remains to prove that e(p)/p — 0
when p — co. Assume the contrary. Then, there exist L > 0 and a strictly increasing sequence p; which
tends to infinity when j — oo, such that e(p;) > 2Lpj, i.e. f(p;) = M(2Lp;). For this L, by the condition for
f,choose C > 1 such that f(p) < M(Lp) +InC. Then we have M(2Lp;) < M(Lp;) +In C, which contradicts the
fact that eM®) increases faster then p? for any p. One can obtain this contradiction by using equality (3.11)
of [4]. O

Theorem 2.5. Let B be a connected open set in IRZ and f an analytic function on B+ ilRﬁ. Let f satisfies the condition:
for every compact subset K of B there exist C > 0 and k > 0, resp. for every k > O there exists C > 0, such that

If(& +in)l < CMF ve e K, Vi e RY. (16)
Then, there exists S € D' (RY) such that e=*¢S(x) € S”(RY), for all £ € B and

LONE +in) = Ty (ES@) (E + i) = fE +in), E€B, neRY. (17)

Proof. Because of (16), for every fixed £ € B, f: = f( +in) € S’*(]R’,”]). Put T:(x) = 7—',7‘_1,x (f:(m) (x) € S™*(RY)
and Sg(x) = e¥Ts(x) € D*(IRY). We will show that S¢ does not depend on & € B. Let U be an arbitrary, but

fixed, bounded connected open subset of B, such that K = U cc B.
Let ¢ > 2 be such that || < ¢/2, for & = (&1,...,&1) € K. In the (M,) case, choose s > 0 such that
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f MEe=MGD gy < 0o and e2M*D < MG, for some constant & > 0. For the {M,} case, by the conditions
R4

in the theorem, for every k > 0 there exists C > 0, such that In, [f(£ + in)| < M(kinl) + InC for all £ € K and
1 € R%. The same estimate holds for the nonnegative increasing function

g(p) = supsupIn, |f(& +in)l.
hi<p &ek

If we use lemma 2.4 for this function we get that there exists subordinate function e(p) and a constant C > 1
such that g(p) < M(e(p)) + In C. From this we have that In, (£ + in)| < g(In]) < M(e(In])) + InC, i.e.

If(& + in)| < CeMEMD ve e K, Vi e RY, (18)

for some C > 1. By lemma 3.12 of [4], there exists another sequence Np, which satisfies (M.1), such that
N(p) > M(e(p)) and k;, = fi,/m, —> oo when p — oo. Take (k,) € R such that k, < kl’,, p € Z,. Then
o? oF y
Nip(0) — sup 7 2 sup ————— = M) > MECP),
M I K~ 0 My I, K
Hence, from (18), it follows that |f(& + in)| < CeNe(™, for all £ € K and i € RY. Choose (sp) € N such that
f N (D g=Noy (g < 00 and eV < 2N 0D for some & > 0.
]Rd

Now, for the chosen ¢ and s, resp. (s,), by the discussion before the theorem, we can find [ > 0, resp.
(I,) € R, and entire functions Pj(w) as in (12), resp. P, (w) as in (13), such that they don’t have zeroes in

W=R+i{ve ]Rdllvjl <¢, j=1,..,d} and the following estimates hold

o~ Mslx))
r|a|

al _
a® Ny y e RY, 0 € N7,
r

aa ad

, res
* Pz(x) P

<C
Plp(x)

where C depends on s and /, resp. (sp) and (l,), and M,; r < c is arbitrary but fixed. For shorter notation,
we will denote P)(w) and P; (w) by P(w) in both cases. Define the entire functions Ps(w) = P(w — i) =

) _io\2 ) _io\2
H (1 + %} in the (M,) case, resp. Pg(w) = P(w — i) = H [1 + %] in the {M,} case. As we
j=q j j=q it

noted in the construction of the entire functions P(w) (the discussion before the theorem), P(w) satisfies the
equivalent conditions a) and b) of proposition 4.5 of [4]. Hence, there exist L > 0 and C’" > 0, resp. for every
L > 0 there exists C’ > 0, such that |P(w)| < C’'eM®) w € C? and P(D) are ultradifferential operators of (M,),

resp. {M,}, type. So, we obtain
IP¢(w)| = [P(w — i&)] < C'MEE) < 7M€ 7,

because & = (&1, ..., &q) is such that || < ¢/2, for j = 1,...,d. Hence, by proposition 4.5 of [4], P¢(D) is an
ultradifferential operator of class (M,), resp. of class {M,}, for every & = (&1, ..., &) such that |&;] < ¢/2,
j=1,..,d. Moreover, by the properties of P(w), it follows that P:(w) is an entire function that doesn’t have
zeroes in RY + ifv € Rjvj| < ¢/2, j = 1,...,.d} for all & € K. So, by using the Cauchy integral formula to
estimate the derivatives, one obtains that Pg() and 1/P¢(n) are multipliers for S’*(le). Also, by (15), we
have [P¢()| = |P(n — i&)| > CeMC=i€) > C7eMGID, for all & € K and 1 € R? in the (M,) case and similarly,
IPs()| = 1P(n = i&)] = CeNo 117D > CreNas (D for all £ € K and 1 € RY, in the {M,} case. For & € B, put
fe(n) = f(& +in). Then fe(n)/Pe(n) € L' (RY) N & (RY), for all & € K. Observe that

4 c P
o () () = €57, (fé (gz(;)(n))( ) = “P(Dy) ("ﬁ;x (fin)))< >)
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i.e.

X - fé(’?)
Se(x) = ePs(Dy) (ffnjx (Pg (17)) (x)). (19)

Let P(w) = Z co,w®. For simpler notation, put R(n) = f:(1)/P:(n) and calculate as follows

; . (g)(—ié>ﬁe"‘fD,‘f‘ﬁﬁixm)(x)

B=<a

exé;%Z(g)“@ﬁl’i‘ﬁﬂixmxxr

B=za

P(Dy) (¢, (R)())

Note that
Y ), (g)<—ia>ﬁDZ‘ﬁﬂix<R><x)

Frke [Z ey (g)(—ié)ﬁna—ﬁR(n)J () = Fybs [2 cal - ié)“R(n)] (x)

p<a
= Foox (P = ERM)) (1) = F, 5 (Pe(MR() (%) = Pe(Da)F 2 (R)().
From this and (19), we get S¢(x) = P(Dx) (e"éﬂ__l)x (;5((?]))) (x)). Now, for w = n — i§, we have
et [ Je() ) 1 f(E +in)elsrinx 1 f(iw)e™
< = _ dn = —d
T s (Pé(q) = o e P-18 1T rf S Pw)
The function % is analytic for iw € U+iR?, i.e. w € R?—il (because P(w) is analytic in the last set and

doesn’t have zeroes there). Using the growth estimates for f and P, from the theorem of Cauchy-Poincaré,
it follows that the last integral doesn’t depend on & € U. From this and the arbitrariness of U it follows that
S¢(x) doesn’t depend on & € B. We will denote this by S(x). Now, by the observations in the beginning, it

follows that ¥, (e"‘5 S(x)) = f; as ultradistributions in 7 for every fixed & € B. By theorem 2.1, it follows
that F,,, (e"‘éS(x)) is analytic function for C = & +in € B +iR¢, hence the equality (17) holds pointwise. [J

Remark 2.6. If f is an analytic function on O = B + i]Rf; and satisfies the conditions of the previous theorem then,

by this theorem and theorem 2.1, it follows that f is analytic on ch B + i]Rf] and satisfies the estimates (2) for every
KccchB.
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