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Products of composition and n-th differentiation operators
from a-Bloch space to Q, space

Haiying Li?, Cui Wang?, Tianyu Xue?, Xiangbo Zhang?

?College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, PR.China.

Abstract. Let ¢ be an analytic self-map of the open unit disk D on the complex plane and « > 0,p >
0,n € IN. In this paper, the boundedness and compactness of the products of composition operators and
nth differentiation operators C,D" from a-Bloch space B* and B to Q, space are investigated.

1. Introduction and preliminaries

Let ID be the open unit disk in the complex plane C, JID its boundary, H(ID) the space of all holomorphic
functions on ID and IN the set of all nonnegative integers. For a is any positive real number, then the
generalized Bloch space B* of the unit disk ID consists of analytic functions f : D — C, such that

sup(1 = [2*)*|f'(z)| < 0.
zeD
For f € BY(ID), define
Iflls= = 1f O + sup(1 — |z f 2)].

zeD

Under the norm, B*(D) is a Banach space. Note that B}(ID) is the usual Bloch space, which was first
considered by Arazy [1]. The little Bloch space B consists of all f € B*

lim(1 ~ 21/ 2) = 0.

The characterizations of generalized Bloch space were studied by many researchers. For more details
about B® see [5, 15, 17].

Fora € D, g(z,a) = log m is the Green’s function in ID, where @,(z) = 1= is the Mdobius map of ID
interchanging the points zero and a. The space Q) is defined as follows

Q= {f € HID): Iflo, = sup [ 1F @FPE A < o0,p >0}
aeD JD
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Where dA(z) denotes the normalized Lebesgue area measure, so that A(D) = 1. f € H(ID) belongs to Q,0,
which is the little subspace of Q,,

Quo = { f € HD): fllo,, = lim sup fD I QPR (2, a)dAE) = 0,p > o}.

Spaces Q, and Q0 have attracted a lot of attention in recent years, see examples [12, 13, 16]. Moreover
motivated by the theory of Qp, Qk(p, g) is recently introduced in [11-13].

Let ¢ denote a nonconstant analytic self-map of ID. Associated with ¢, a linear composition operator
Cof = f o isinduced for f € H(D). Thus, lots of attentions have been attracted to solve the problem
of characterizing the boundedness and compactness of composition operators on many Banach spaces of
analytic functions, see examples [2, 7].

Let D be the differentiation operator Df = f’ and n be a nonnegative integer, we have D"f = f, f €
H(ID). The differentiation operator is typically unbounded on many analytic function spaces. The products
of composition operator and nth differentiation operator are defined as following:

CoD"f = f" o ¢, f € H(D).

If n = 0, we get the linear composition operator. If n = 1, we get C,D, which was studied in [4, 8].

In [12], ]. Xiao studied the composition operator mapping B* to Q,. In [6], Li considered composition
operator mapping generally weighted Bloch space and Qi’og. In [14], Yang, Xu and Marko Kotilainen
introduced the boundedness and compactness of composition operator between Bloch type spaces to Qk
type spaces.

Motivated by [4] and the definition of the weighted differentiation composition operator, denoted by
Dg,.f(z) = u(z) F"(¢p(z)) in [10]. The purpose of this paper is to characterize the products of composition
operator and nth differentiation operator from B* to Q,, thatis C,D" : B* — Q,, where n € IN. The sufficient
and necessary conditions for the boundedness and the compactness of C,D" are given.

Throughout the remainder of this paper, C will denote a positive constant, the exact value of which will
vary from one appearance to the next. The notation A =< B means that there is a positive constant C such
that B/C < A < CB.

2. Main results

Based on a result from [9], in [3] the authors proved the following result.
Lemma 2.1. Suppose that a € (0, o0). Then there exist two holomorphic functions f, g € B* such that

If' @I+ 19’ (2)] > =P

forallz e D.
Lemma 2.2. Suppose that a € (0, o), for any positive integer 7, there exist two functions f, g € B* such

that C
(n) (1) R —
|f (Z)| + |g (Z)l = (1 _ |Z|2)a+n—1 :

Proof. From Lemma 2.1, there exist two functions f, g € B* such that

! / C
@I +19'(2) = =P

By the following well-known characterization for B%, see Proposition 8 of [17],

n—-1
sup(1 - 221/ @) = Y If2(0)] + sup(1 - [2P)**" 1 {9 ().
=0 zeD

zeD



H.Li, C.Wang, T.Xue, X.Zhang / Filomat 27:5 (2013), 761-766 763

We know that
If (@)l < C(1L = P (2),
lg'(2)] < C(1 = 125" g™ (2)].

It follows that c
(1) (1) -
PO+ 197N 2

Lemma 2.3. Let n be a nonnegative integer. Suppose ¢ : ID — D be analytic, @ > 0,p > 0. Then
CyD" : B* — Q, is compact if and only if C,D" : B* — Q, is bounded and for any bounded sequence (fi)ren
in B* which converges to zero uniformly on compact subsets of ID, ||C,D" kaIQp — 0ask — oo,

Proof. This characterization of compactness can be proved in a standard way, see [2], so we omit the
proof.

Theorem 2.4. Let n be a nonnegative integer. Assume thatp >0, « > 0, ¢ : D — D be analytic, then the
following statements are equivalent:

(1) C,D" : B* — Q, is bounded;

(2) C,D" : B — Q, is bounded;

/(2 2
(3) SUP,ep Jpy e 9 (2 MA(R) < oo.
Proof. (1) = (2) is clearly true, since B € B*.
Suppose (2) holds, then there exists a constant C such that for all f € Bf, ||C,D" fllg, < ClIfll5: -
Given f € B*, g € B%, the function f;(z) = f(tz) € B, g:(z) = g(tz) € B§, where 0 < t < 1, since the property
Ifellzx < 1l fllg=, llgellge < llgllge. By Lemma 2.2,
o > sup?2 f (™ 0 @) (2)P + (g™ o @) (2)*19" (2, a)dA(2)
D

aeD

v

sup2 fD (A" 0 ) @F + 19" 0 ) )19z, @)dA)

acD

v

sup fD (£ 0 o) @) + (0" 0 0) @R (2, )IA)

acD

= sup fD 1Y 0 ) @) + 167 0 ) @) P’ 21297 (2, a)dA(2)

acD
lte’ ()17
= O fD A= lpppam? & DAG).

The above estimate together with the Fatou’s lemma, then (3) holds.
Next, we show that (3) implies (1), let f € B¢, then using the following equation

n-1
sup(1 - ZP)*If' @) = ) [FOO)] + sup(1 - [z2)* " fO(2).
zeD =0 zeD
We can get

sup fD PO (@) e 2 a)dAR)

aeD

= sup ID [F" D (@@)Ple ()P (2, a)dA(2)

acD

IA

2 o’ )
£ 115 ilgﬂ}; jﬂ; AP 7' (z,a)dA(2).
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Hence, for f € B* (1) follows by (3).

Theorem 2.5. Let 1 be a nonnegative integer. Assume thatp >0, @ > 0, ¢ : D — D be analytic, then the
following statements are equivalent:

(1) C,D" : B* — Q, is compact;
(2) CyD" : By — Qp is compact;
(3) ¢ € Qp and

lim supf LZ)JZ;}”(Z, a)dA(z) = 0. (2.1)
=1 4eD Jp@isn (1= lp@)P)Hem

Proof. Obviously (1) implies (2). Suppose (2) holds, then the operator is bounded, from this and since

n+1

gn(Z) = m [S Bg

It follows that

lpllo, = ICeD" (gnllo, < ICeD"ll5s—0,l1gnllg,-

Thatis ¢ € Q,. Set

Zk+n

@ = k- DA - a -1/

From the definition of B;, we know fr € Bj, where k € IN. Moreover there is a positive constant C such
that [|fllp: < C and fi(z) — 0 locally uniformly on the unit disk as k — co. Then by the compactness of
C,D", ||C(pD”fk||Qp — 0, k > oo. This means that for V € > 0, ko € N for all k > ky such that

aGlE N2
ig}g L —(1 A1 o’ (2)I° 9P (z,a)dA(z) < e.

Thusfor0<r<1

sup ! fD W P (P (2 )IAR)

e (1= (1=1/ko)?)%
2(ko-1)

'(2)Pg (z,0)dA(2).
= (1 -1 —1/ko)?)* igg jl;(p(z)>r} W@ a)dAd)

. 2(kg—1)
Taking f——yr,pp

> 1, we get

sup f |(p’(z)|2g” (z,a)dA(z) < e. (2.2)
{lp@)[>r}

acD

Now let f with ||f||33 < 1, we consider the functions f,(z) = f(tz), t € (0,1). Thus f; € ]BBS’ fi = f
locally uniformly on ID as t — 1. By the compactness of C,D", ||C,D"f — C,D" fillg, — 0 ast — 1. Then
Ve>0,3t€(0,1), Vt>ty

sup j];, (™ 0 ) (2) = (£ 0 ) ()P (z, )dA(z) < e.

aeD
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Then we fix ¢, the triangle inequality and (2.2) give,

sup I(F™ 0 @) (2)PgF (z, a)dA(z)

aeD J{lp(z)>r}
< sup f (F 0 ) (2) — (£ 0 ) (P9 (z, A)A()

aeDJ{|p(z)[>r}

+sup 1™ o @) (2)PgP (z,)dA(z)

aeD {|(p(z)\>r
< e+ lfVIR sup f 0 @R 2 AAG)
aeD J{|p(z)[>r

< e+ A"V (23)

Having in mind (2.2) and (2.3) we conclude that for each f(z) € Bg: and ¢ > 0, there is 6 depending on
f,¢€, such that for r € [§,1),
sup [ (0 g @Rz, A <. 4
aeD JH{|p(z)]>r
Since C,D" is compact, it maps the unit ball of Bj to a relatively compact subset of Q). Thus for each
¢ > 0 there exists a finite collection of functions fi, f, ..., fy in the unit ball of B, such that for each ||f ||Bg <1
thereisaky € {1,2, ..., k} with

sup [ 1770 9@~ (1 o 0 (PP e, MAG) <

aeD

By (2.4), we get that for 6 = max;<j« 6(fj, €) and r € [5,1),

sup f B oo R e aiAe <
(PZ >r

acD

Thus we get that
sup f (™ 0 @) (2)PgF (z,a)dA(z) < 2e.
llp@)I>1}

acD

So we can shown that for any ¢ > 0, there exists 6 € [0, 1) such that for all f in the unit ball of B

sup f I(F™ o @Y 2)Pg? (z,a)dA(z) < 2e.
{lp@)|>r}

aeD

By Lemma 2.2 and the Fatou’s Lemma, (2.1) holds.

To prove (3) = (1), we assume that ¢ € Q, and (2.1) holds. Let {fi}en be a sequence of functions in the
unit ball of B%, such that sup, |l fkllz: < o0 and f; — 0 as k — oo, uniformly on the compact subsets of the
unit disk.

Letr € (0,1), then

IC,D"ilE, = sup f (0 ) @P g A)

aeD

= sup I( f]f”) o @) (2)Pg" (z, a)dA(2)

aeD J{lp(z)|<r}

+ sup f (£ 0 @) 2)Pg (z,a)dA(2)
lp()|>r}

aeD
= L+
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Since fiy — 0 as k — oo, uniformly on ID on the compact subsets of the unit disk along with Cauchy’s

estimate gives that fk('”l) — 0 on compact subsets of ID as k — oo. Letting k — oo in I;, using the fact that ¢

is an arbitrary positive number and by the assumption ¢ € Q,, we obtain that I; < ell(plle .
)

On the other hand,
lp’ (2)?
I < 2z —————gP(z,a)dA(2).
2> ”fk“B f{;(p(z)pr] (1 — |(P(Z)|2)2(“+n)g (Z ﬂ) (Z)

By (2.1), it follows that I < &. From the above proof, then we get [|C,D"fillg, — 0 as k — o0. so
CyD" : B* — Q, is compact. The proof is completed.
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