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Available at: http://www.pmf.ni.ac.rs/filomat

On a class of fuzzy sets defined by Orlicz functions

Mikail Eta, Mohammad Mursaleenb, Mahmut Işıkc
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Abstract. The idea of difference sequences of real (or complex) numbers was generalized by Et and Çolak
[9]. In this paper, using the difference operator∆m and an Orlicz function, we introduce and examine a class
of sequences of fuzzy numbers. We study some of their properties like completeness, solidity, symmetricity
etc. We also give some inclusion relations related to this class.

1. Introduction

The concepts of fuzzy sets and fuzzy set operations were first introduced by Zadeh [30] and subse-
quently several authors have discussed various aspects of the theory and applications of fuzzy sets such as
fuzzy topological spaces, similarity relations and fuzzy orderings, fuzzy measures of fuzzy events, fuzzy
mathematical programming. Matloka [20] introduced bounded and convergent sequences of fuzzy num-
bers, studied some of their properties and showed that every convergent sequence of fuzzy numbers is
bounded. In addition, sequences of fuzzy numbers have been discussed by Altin et al. [1], Aytar and
Pehlivan [3], Başarır and Mursaleen [4], Bilgin [5], Et et al. [8], Nuray and Savaş [22], Nuray [23], Savaş [27],
Talo and Başar [28] and many others.

The study of Orlicz sequence spaces was initiated with a certain specific purpose in Banach space
theory. Indeed, Lindberg [17] got interested in Orlicz spaces in connection with finding Banach spaces
with symmetric Schauder bases having complementary subspaces isomorphic to c0 or ℓp

(
1 ≤ p < ∞)

.
Subsequently Lindenstrauss and Tzafriri [18] investigated Orlicz sequence spaces in more detail, and they
proved that every Orlicz sequence space ℓM contains a subspace isomorphic to ℓp

(
1 ≤ p < ∞)

.

Recently, Parashar and Choudhary [26] have introduced and discussed some properties of the four
sequence spaces defined by using an Orlicz function M,which generalized the well-known Orlicz sequence
space ℓM and strongly summable sequence spaces

[
C, 1, p

]
,
[
C, 1, p

]
0 and

[
C, 1, p

]
∞ . Later on, Mursaleen et al.

[21], Nuray and Gülcü [24], Tripathy et al. [29] used the idea of an Orlicz function to construct some spaces
of complex sequences. The Orlicz sequence spaces are the special cases of Orlicz spaces studied in [14].
Orlicz spaces find a number of useful applications in the theory of nonlinear integral equations. Whereas
the Orlicz sequence spaces are the generalizations of ℓp−spaces, the Lp−spaces find themselves enveloped
in Orlicz spaces [11].
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The purpose of this paper is to introduce and study the sequence space ℓ
(
M,∆m, p,F

)
which arises from

the notation of generalized difference operator ∆m and the concept of an Orlicz function. We examine some
topological properties of this space and establish elementary connections about this space.

2. Definitions and Preliminaries

In this section, we give the following definitions which will be needed in the sequel.

Fuzzy sets are considered with respect to a nonempty base set X of elements of interest. The essential
idea is that each element x ∈ X is assigned a membership grade u(x) taking values in [0, 1], with u(x) = 0
corresponding to nonmembership, 0 < u(x) < 1 to partial membership, and u(x) = 1 to full membership.
According to Zadeh a fuzzy subset of X is a nonempty subset {(x,u(x)) : x ∈ X} of X× [0, 1] for some function
u : X −→ [0, 1]. The function u itself is often used for the fuzzy set.

Let C(Rn) denote the family of all nonempty, compact, convex subsets ofRn. If α, β ∈ R and A,B ∈ C(Rn),
then

α(A + B) = αA + αB, (αβ)A = α
(
βA

)
, 1A = A

and if α, β ≥ 0, then (α+ β)A = αA+ βA. The distance between A and B is defined by the Haussdorffmetric

δ∞(A,B) = max{sup
a∈A

inf
b∈B
∥ a − b ∥, sup

b∈B
inf

a∈A
∥ a − b ∥},

where ∥ . ∥ denotes the usual Euclidean norm in Rn. It is well known that (C(Rn), δ∞) is a complete metric
space.

Denote

L(Rn) = {u : Rn −→ [0, 1] | u satis f ies (i) − (iv) below},
where

i) u is normal, that is, there exists an x0 ∈ Rn such that u(x0) = 1;
ii) u is fuzzy convex, that is, for x, y ∈ Rn and 0 ≤ λ ≤ 1,u(λx + (1 − λ)y) ≥ min[u(x),u(y)];
iii) u is upper semicontinuous;
iv) the closure of {x ∈ Rn : u(x) > 0}, denoted by [u]0, is compact.

If u ∈ L(Rn), then u is called a fuzzy number, and L(Rn) is said to be a fuzzy number space.
For 0 < α ≤ 1, the α-level set [u]α is defined by

[u]α = {x ∈ Rn : u(x) ≥ α}.
Then from (i) − (iv), it follows that the α-level sets [u]α ∈ C(Rn).
For the addition and scalar multiplication in L(Rn),we have

[u + v]α = [u]α + [v]α, [ku]α = k[u]α

where u, v ∈ L(Rn), k ∈ R.
Define, for each 1 ≤ q < ∞,

dq(u, v) =

 1∫
0

(δ∞([u]α, [v]α))q dα

1/q

and d∞(u, v) = sup
0≤α≤1

δ∞([u]α, [v]α), where δ∞ is the Haussdorff metric. Clearly d∞(u, v) = lim
q−→∞

dq(u, v) with

dq ≤ ds if q ≤ s ([6], [16]).
A sequence X = (Xk) of fuzzy numbers is a function X from the setN of all positive integers into L(Rn).

Thus, a sequence of fuzzy numbers X is a correspondence from the set of positive integers to a set of fuzzy
numbers, i.e., to each positive integer k there corresponds a fuzzy number X(k). It is more common to write
Xk rather than X(k) and to denote the sequence by X = (Xk) rather than X. The fuzzy number Xk is called
the k-th term of the sequence.
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A sequence X = (Xk) of fuzzy numbers is said to be bounded if the set {Xk : k ∈N} of fuzzy numbers is
bounded, and X is said to be convergent to the fuzzy number X0, written as lim

k
Xk = X0, if for every ε > 0

there exists a positive integer k0 such that d (Xk,X0) < ε for k > k0. Let ℓ∞ (F) and c (F) denote the set of all
bounded sequences and all convergent sequences of fuzzy numbers, respectively.

The difference sequnce spaces ℓ∞ (∆), c (∆) and c0 (∆), consisting of all real valued sequences x = (xk)
such that ∆x = (xk − xk+1) in the sequence spaces ℓ∞, c and c0, were defined by Kızmaz [15]. The idea
of difference sequences was generalized by Et and Çolak [9] and studied by Altay and Başar [2], Et et al.
([7],[10],[12]), Isik [13], Malkowsky et al. [19] and many others.

A fuzzy sequence space E(F) is said to be solid (or normal ) if (Yk) ∈ E(F), for some (Xk) ∈ E(F),whenever
d(Yk, 0̄) ≤ d(Xk, 0̄) for all k ∈N.

Remark. If a fuzzy sequence space E(F) is solid, then E(F) is monotone.

A sequence space E(F) is said to be symmetric if
(
Xπ(n)

)
∈ E(F), whenever (Xk) ∈ E(F), where π is a

permutation ofN.
A sequence space E(F) is said to be sequence algebra if (Xk ⊗ Yk) ∈ E(F),whenever (Xk) , (Yk) ∈ E(F).

Let w(F) be the set of all sequences of fuzzy numbers. The operator ∆m : w(F)→ w(F) is defined by(
∆0X

)
k
= Xk,

(
∆1X

)
k
= ∆1Xk = Xk − Xk+1, (∆mX)k = ∆

1
(
∆m−1X

)
k
, (m ≥ 2) , for all k ∈N.

Definition 2.1 [8] Let X = (Xk) be a sequence of fuzzy numbers. Then the sequence X = (Xk) is said to be
∆m−bounded if the set {∆mXk : k ∈N} of fuzzy numbers is bounded, and X is said to be ∆m−convergent to
the fuzzy number X0, written as lim

k
∆mXk = X0, if for every ε > 0 there exists a positive integer k0 such that

d (∆mXk,X0) < ε for all k > k0. By ℓ∞ (∆m,F) and c (∆m,F) we denote the sets of all ∆m− bounded sequences
and all ∆m−convergent sequences of fuzzy numbers, respectively

Recall ([11],[14],[25]) that an Orlicz function is a function M : [0,∞)→ [0,∞), which is continuous, non
decreasing and convex with M(0) = 0,M(x) > 0 for x > 0 and M(x)→∞ as x→∞.

Lindenstrauss and Tzafriri [18] used the idea of Orlicz function to construct the sequence space

ℓM =
{
x ∈ w :

∑∞
k=1 M

( |xk |
ρ

)
< ∞, for some ρ > 0

}
.

The space ℓM is a Banach space with the norm

∥x∥ = inf
{
ρ > 0 :

∑∞
k=1 M

( |xk |
ρ

)
≤ 1

}
and this space is called an Orlicz sequence space. For M (t) = tp, 1 ≤ p < ∞, the space ℓM coincides with the
classical sequence space ℓp.

Definition 2.2 Two Orlicz functions M1 and M2 are said to be equivalent if there are positive constants α, β
and x0 such that M1 (αx) ≤M2 (x) ≤M1

(
βx

)
for all x with 0 ≤ x ≤ x0.

The existing literature on Orlicz spaces appears to have been restricted to real or complex sequences.
Now we will extend the idea to apply to sequences of fuzzy numbers.

Definition 2.3 Let M be an Orlicz function and p =
(
pk

)
be any sequence of strictly positive real numbers.

We define the following set

ℓ
(
M,∆m, p,F

)
=

X = (Xk) :
∞∑

k=1

[
M

(
d
(
∆mXk, 0̄

)
ρ

)]pk

< ∞, for some ρ > 0

 ,
where

0̄(t) =
{

1, t = (0, 0, 0, ..., 0)
0, otherwise .
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We get the following sequence spaces from ℓ
(
M,∆m, p,F

)
by giving particular values to p and M. Taking

pk = 1 for all k ∈N we have

ℓ (M,∆m,F) =

X = (Xk) :
∞∑

k=1

[
M

(
d
(
∆mXk, 0̄

)
ρ

)]
< ∞, for some ρ > 0

 ,
if we take M (x) = x, then we have

ℓ
(
∆m, p,F

)
=

X = (Xk) :
∞∑

k=1

[
d
(
∆mXk, 0̄

)]pk < ∞
 ,

if we take pk = 1 for all k ∈N and M (x) = x, then we have

ℓ (∆m,F) =

X = (Xk) :
∞∑

k=1

d
(
∆mXk, 0̄

)
< ∞

 ,
The sequence space ℓ

(
M,∆m, p,F

)
contains some unbounded sequences of fuzzy numbers. To show this let

M(x) = x, pk = 1 for all k ∈ N. Then the sequence X = (Xk) =
(
k̄m−1

)
belongs to ℓ

(
M,∆m, p,F

)
. Actually,

if X =
(
k̄m−1

)
, then ∆m

(
k̄m−1

)
= 0̄ and d

(
∆mXk, 0̄

)
= 0, and thus

∞∑
k=1

d
(
∆mXk, 0̄

)
< ∞, but the sequence X is

divergent and is not bounded.

For the classical number sequences, (xk) converges to ℓ implies (∆mxk) converges to 0, but this case does
not hold for the sequences of fuzzy numbers. For this see the following example.

Example 1. Consider the sequence X = (Xk) as follows:

Xk (x) =



k
k+1 x + 1−k

1+k , if x ∈
[

k−1
k , 2

]
− k

k+1 x + 3k+1
1+k , if x ∈ (2, 3k+1

k ]

0, otherwise

Then the sequence X = (Xk) is convergent to fuzzy number ℓ1,where

ℓ1 =


x − 1, if x ∈ [1, 2]
−x + 3, if x ∈ (2, 3]

0, otherwise
.

We find the α−level set of Xk and ∆Xk as follows respectively:

[Xk]α =
[

k − 1
k
+

k + 1
k
α,

3k + 1
k
− k + 1

k
α

]
and

[∆Xk]α =
[
−2k2 − 4k − 1

k2 + k
+

(
k + 1

k
+

k + 2
k + 1

)
α,

2k2 + 4k + 1
k2 + k

−
(

k + 1
k
+

k + 2
k + 1

)
α

]
.

Then we have ∆Xk → L,where [L]α = [−2 + 2α, 2 − 2α] , 0̄.
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3. Main Results

In this section we prove the main results of this paper related to ℓ
(
M,∆m, p,F

)
.We study their different

properties and obtain some inclusion relations involving these sets.

Theorem 3.1 Let
(
pk

)
be bounded. Then ℓ

(
M,∆m, p,F

)
is closed under the operations of addition and scalar

multiplication.

Proof. Omitted.

Theorem 3.2 The space ℓ
(
∆m, p,F

)
is complete metric space with the metric

δ∆ (X,Y) =
m∑

i=1

d (Xi,Yi) +

 ∞∑
k=1

[d (∆mXk,∆
mYk)]pk


1
K

where K = max
(
1,H = supk pk

)
.

Proof. Let (Xs) be a Cauchy sequence in ℓ
(
∆m, p,F

)
, where Xs =

(
Xs

i

)
i
=

(
Xs

1,X
s
2, ...

)
∈ ℓ (∆m, p,F

)
for each

s ∈N. Then

δ∆
(
Xs,Xt

)
=

m∑
i=1

d
(
Xs

i ,X
t
i

)
+

 ∞∑
k=1

[d (∆mXk,∆
mYk)]pk


1
K

→ 0, as s, t→∞.

Therefore
∑m

i=1 d
(
Xs

i ,X
t
i

)
→ 0 and

∞∑
k=1

[d (∆mXk,∆mYk)]pk → 0 as s, t→∞.

Hence
∑m

i=1 d
(
Xs

i ,X
t
i

)
→ 0 and d

(
∆Xs

k,∆Xt
k

)
→ 0 as s, t→∞, for each fixed k ∈N.

Now from

d
(
Xs

k+m,X
t
k+m

)
≤ d

(
∆mXs

k,∆
mXt

k

)
+

(
m
0

)
d
(
Xs

k,X
t
k

)
+ ... +

(
m

m − 1

)
d
(
Xs

k+m−1,X
t
k+m−1

)
we have d

(
Xs

k,X
t
k

)
→ 0, as s, t → ∞, for each k ∈ N. Therefore

(
Xs

k

)
s
=

(
X1

k ,X
2
k , ...

)
is a Cauchy sequence in

L (Rn) . Since L (Rn) is complete, it is convergent

lim
s

Xs
k = Xk

say, for each k ∈N. Since (Xs) is a Cauchy sequence, for each ε > 0, there exists n0 = n0 (ε) such that

δ∆
(
Xs,Xt

)
< ε for all s, t ≥ n0.

Hence we get

m∑
i=1

d
(
Xs

i ,X
t
i

)
< ε and

∞∑
k=1

[d (∆mXk,∆
mYk)]pk < εK, for all s, t ≥ n0.

So we have

lim
t

m∑
i=1

d
(
Xs

i ,X
t
i

)
=

m∑
i=1

d
(
Xs

i ,Xi

)
< ε

and

lim
t

∞∑
k=1

[
d
(
∆mXs

k,∆
mXt

k

)]pk
=

∞∑
k=1

[
d
(
∆mXs

k,∆
mXk

)]pk
< εK
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for all n ∈ N and s ≥ n0. This implies that δ∆ (Xs,X) < 2ε, for all s ≥ n0, that is Xs → X as s → ∞, where
X = (Xk) . Since

∞∑
k=1

[
d
(
∆mXk, 0̄

)]pk ≤
 ∞∑

k=1

[
d
(
∆mXn0

k , 0̄
)
+ d

(
∆mXn0

k ,∆
mXk

)]pk


≤ D

∞∑
k=1

[
d
(
∆mXn0

k , 0̄
)]pk

+D
∞∑

k=1

[
d
(
∆mXn0

k ,∆
mXk

)]pk

where D = max
(
1, 2H−1

)
, we obtain X ∈ ℓ (∆m, p,F

)
. Therefore ℓ

(
∆m, p,F

)
is a complete metric space.

Theorem 3.3 Let 0 < pk ≤ qk < ∞ for each k ∈N. Then ℓ
(
M,∆m, p,F

) ⊂ ℓ (M,∆m, q,F
)
.

Proof. Let x ∈ ℓ (M,∆m, p,F
)
. Then there exists some ρ > 0

∞∑
k=1

[
M

(
d
(
∆mXk, 0̄

)
ρ

)]pk

< ∞.

This implies that M
(

d(∆mXk,0̄)
ρ

)
≤ 1 for sufficiently large values of k, say k ≥ k0 for some fixed k0 ∈ N. Since

pk ≤ qk for each k ∈N we get[
M

(
d
(
∆mXk, 0̄

)
ρ

)]qk

≤
[
M

(
d
(
∆mXk, 0̄

)
ρ

)]pk

for all k ≥ k0, and therefore
∞∑

k≥k0

[
M

(
d
(
∆mXk, 0̄

)
ρ

)]qk

≤
∞∑

k≥k0

[
M

(
d
(
∆mXk, 0̄

)
ρ

)]pk

.

Hence we have
∞∑

k=1

[
M

(
d
(
∆mXk, 0̄

)
ρ

)]qk

< ∞,

and so that X ∈ ℓ (M,∆m, q, F
)
.

The following result is a consequence of the above theorem.

Corollary 3.4 i) If 0 < pk ≤ 1 for all k ∈N. Then ℓ
(
M,∆m, p,F

) ⊂ ℓ (M,∆m,F) ,
ii) If 1 ≤ pk < ∞ for all k ∈N. Then ℓ (M,∆m, F) ⊂ ℓ (M,∆m, p,F

)
.

The proof of the following result follows from Definition 2.2.

Theorem 3.5 Let M1 and M2 be two Orlicz functions. If M1 and M2 are equivalent then ℓ
(
M1,∆m, p,F

)
=

ℓ
(
M2,∆m, p,F

)
.

Theorem 3.6 Let M1 and M2 be two Orlicz functions. Then ℓ
(
∆m,F,M1, p

)∩ℓ (∆m, F,M2, p
) ⊂ ℓ (∆m,F,M1 +M2, p

)
.

Proof. Let x ∈ ℓ (∆m,F,M1, p
) ∩ ℓ (∆m,F,M2, p

)
, then we have[

(M1 +M2)
(

d
(
∆mXk, 0̄

)
ρ

)]pk

=

[
M1

(
d
(
∆mXk, 0̄

)
ρ

)
+M2

(
d
(
∆mXk, 0̄

)
ρ

)]pk

≤ D
[
M1

(
d
(
∆mXk, 0̄

)
ρ

)]pk

+D
[
M2

(
d
(
∆mXk, 0̄

)
ρ

)]pk
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where D = max
(
1, 2H−1

)
, taking summation from k = 1 to ∞ in the above inequality, we get X ∈

ℓ
(
∆m,F,M1 +M2, p

)
.

Theorem 3.7 The inclusion ℓ
(
∆m−1,F,M

)
⊆ ℓ (∆m,F,M) is strict, for m ≥ 1. In general ℓ

(
∆i,F,M

)
⊆ ℓ (∆m,F,M)

for i = 1, 2, ...,m − 1 and the inclusion is strict.
Proof. Choose ρ = 2ρ1. Then we observe that (Xk) ∈ ℓ

(
∆m−1,F,M

)
implies (Xk) ∈ ℓ (∆m,F,M) from the

following inequality[
M

(
d
(
∆mXk, 0̄

)
ρ

)]
≤ 1

2


M

d
(
∆m−1Xk, 0̄

)
ρ1


 +

M
d

(
∆m−1Xk+1, 0̄

)
ρ1



 .

We get

ℓ
(
∆i,F,M

)
⊆ ℓ (∆m,F,M)

for i = 0, 1, ...,m − 1 by applying induction. The sequence
(
k̄
)

belongs to ℓ
(
∆2, F

)
, but does not belong

to ℓ (∆,F) , for M (x) = x and pk = 1 for all k ∈ N. Therefore the inclusion is strict for = 0, 1, ...,m − 1.
Actually, if X =

(
k̄
)
, then ∆2

(
k̄
)
= 0̄ and ∆

(
k̄
)
= −1̄ and thus d

(
∆2Xk, 0̄

)
= 0 and d

(
∆Xk, 0̄

)
= 1. Therefore

∞∑
k=1

d
(
∆2Xk, 0̄

)
< ∞, but

∞∑
k=1

d
(
∆Xk, 0̄

)
= ∞.

Theorem 3.8 The sequence space ℓ (M,F) is solid and hence monotone, but the sequence space ℓ
(
M,∆m, p,F

)
is not solid.

Proof. Let (Xk) ∈ ℓ (M,F) and (Yk) be such that d
(
Yk, 0̄

) ≤ d
(
Xk, 0̄

)
for each k ∈N. Since M is non-decreasing,

we get

∞∑
k=1

M
(

d
(
Yk, 0̄

)
ρ

)
≤
∞∑

k=1

M
(

d
(
Xk, 0̄

)
ρ

)
.

Hence ℓ (M,F) is solid and hence monotone. It follows from the following example that the space
ℓ
(
∆m,F,M, p

)
is not solid.

Example 2. Let M (x) = x, and pk = 1 for all k ∈ N and consider the sequences X = (Xk) =
(
1̄
)

and
Y = (Yk) =

((−1̄
)k). Then d

(
Yk, 0̄

)
= d

(
Xk, 0̄

)
= 1, ∆X =

(
0̄
)

and so that X ∈ ℓ (∆,F) , but d
(
Yk, 0̄

)
= 2 and so

that X < ℓ (∆,F) . Hence ℓ (∆,F) is not solid.

Theorem 3.9 The sequence space ℓ
(
∆m,F,M, p

)
is not symmetric.

Proof. It follows from the following example that the space ℓ
(
∆m,F,M, p

)
is not symmetric.

Example 3. Let M (x) = x, and pk = 1 for all k ∈ N, then the sequence X =
(
k̄
)
∈ ℓ (M,∆m, p,F

)
. Let (Yk) be a

rearrangement of (Xk), which is defined as follows:

(Yk) =
{
X1,X2,X4,X3,X9,X5,X16,X6,X25,X7,X36,X8,X49,X10,...

}
.

Then (Yk) < ℓ
(
M,∆m, p,F

)
.

Theorem 3.10 The sequence space ℓ
(
∆m,F,M, p

)
is not sequence algebra.

Proof. This follows from the following example.

Example 4. Let M (x) = x, and pk = 1 for all k ∈ N, then the sequence X =
(
k̄
)

and Y =
(
k̄
)

belong to

ℓ
(
M,∆2, p,F

)
, but (Xk ⊗ Yk) < ℓ

(
M,∆2, p,F

)
.
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4. Conclusion

In this paper, using an Orlicz function we have introduced some of fairly wide classes of sequences of
fuzzy numbers. Giving particular values to the sequence p =

(
pk

)
, M and m we obtain some sequence spaces

which are the special cases of the sequence space that we have defined. The most of the results proved in
the previous sections will be true for these spaces.
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